

Werk

Label: Article **Jahr:** 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0104|log72

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

EMBEDDING TREES INTO CLIQUE-BRIDGE-CLIQUE GRAPHS

BOHDAN ZELINKA, Liberec (Received January 11, 1977)

The paper [2] concerns embedding trees into graphs which have exactly two blocks, each of them being a clique. Now we shall study a similar problem — embedding trees into graphs which consist of two vertex-disjoint cliques and of a bridge between them. Such a graph will be called a clique-bridge-clique graph (shortly CBC-graph).

Let n and k be two positive integers, $2 \le k \le \lfloor \frac{1}{2}n \rfloor$. By $H_n(k)$ we denote the *CBC*-graph in which one of the mentioned cliques has k and the other n-k vertices. We shall investigate the conditions for a tree with n vertices to be embeddable into $H_n(k)$.

We shall use some concepts from [2]. A median of a tree T with n vertices is a vertex a of T at which the vertex deviation $m_1(a)$ attains its minimum. The vertex deviation is defined by

$$m_1(a) = \frac{1}{n} \sum_{x \in V} d(a, x),$$

where V is the vertex set of T and d(a, x) denotes the distance between a and x in T. A tree has either exactly one median, or exactly two medians which are joined by an edge.

We recall also the definition of a branch. Let a be a vertex of a tree T. We define a binary relation E on the set of vertices of T which are distinct from a such that $(x, y) \in E$ if and only if the vertex a does not separate x from y in T (this means that the path connecting x and y in T does not contain a). The relation E is evidently an equivalence. The subtree of T induced by the union of one class of E with the one-element set $\{a\}$ is called a branch of T with the knag a.

Theorem 1. Let n be an even positive integer, $n \ge 4$. A tree T with n vertices can be embedded into $H_n(\frac{1}{2}n)$ if and only if it has two medians.

Prpof. The weight of a vertex v of a tree T is defined in [1] as the maximal number of edges of a branch with the knag v. In [3] it is proved that a vertex of a tree has the

minimal weight if and only if it is a median of this tree. Let T be a tree with n vertices and two medians. By Theorem 3 from [2] it can be embedded into the graph $G_n(\frac{1}{2}n)$ consisting of two blocks which are both cliques, one of them has $\frac{1}{2}n$, the other $\frac{1}{2}n + 1$ vertices. Let the former be B_1 , the latter B_2 . Let a be the vertex of T which is mapped onto the cut vertex of $G_n(\frac{1}{2}n)$ in this embedding. The weight of a is evidently at most $\frac{1}{2}n$, the weight of any vertex mapped onto a vertex of B_1 which is not a cut vertex is greater than $\frac{1}{2}n$, because there exists a branch with this vertex as a knag which contains all vertices which are embedded into B_2 . Thus a is a median of T and the other median a' of T is mapped onto a vertex of B_2 . The vertex a cannot be joined in T with other vertex embedded into B_2 than a'. If we delete from $G_n(\frac{1}{2}n)$ all edges joining a with vertices of B_2 except for the edge aa', we obtain the graph $H_n(\frac{1}{2}n)$ and T is embedded into $H_n(\frac{1}{2}n)$. On the other hand, let a tree T be embedded into $H_n(\frac{1}{2}n)$, let a and a' be the vertices of T which are mapped onto the end vertices of the bridge of $H_n(\frac{1}{2}n)$ in this embedding. Then evidently the weights of a and a' are both equal to $\frac{1}{2}n$ and the weights of all other vertices are greater. Therefore a and a' are medians of T.

Theorem 2. Let T be a tree with $n \ge 4$ vertices. The tree T can be embedded into $H_n(\lceil \frac{1}{2}n \rceil)$ if and only if the weight of its median is $\lceil \frac{1}{2}(n+1) \rceil$.

Proof. First we shall prove necessity of the condition. If n is even, then $\lceil \frac{1}{2}(n+1) \rceil = \lceil \frac{1}{2}n \rceil = \frac{1}{2}n$. By Theorem 1 the tree T can be embedded into $H_n(\frac{1}{2}n)$ if and only if it has two medians. Thus let T have two medians a and a'. Let B (or B') be the branch of T with the knag a (or a') which contains a' (or a, respectively). If B has less than w(a) edges (where w(a) denotes the weight of a), then there exists a branch with the knag a other than B which has w(a) edges. It is a proper subtree of B', therefore B' has more than w(a) edges and a' is not a median, which is a contradiction. Therefore B has w(a) edges and analogously B' has w(a') = w(a) edges. The branches B and B' have exactly one common edge aa' and their union is the whole tree T, therefore n-1=2 w(a)-1 and $w(a)=\frac{1}{2}n$. We have proved necessity of the condition for n even. Now let n be odd. Then $\left[\frac{1}{2}(n+1)\right] = \frac{1}{2}(n+1)$, $\lceil \frac{1}{2}n \rceil = \frac{1}{2}(n-1)$. Suppose that the weight w(a) of a median a of T is greater than $\frac{1}{2}(n+1)$. Let b be the vertex adjacent to a and belonging to the branch with the knag a which has w(a) edges. The branch with the knag b which contains a has n - w(a) edges, the sum of numbers of edges of other branches with the knag b is w(a) - 1. Thus $w(b) \le \min(w(a) - 1, n - w(a))$. We have $w(a) - 1 > \frac{1}{2}(n+1) - 1 = \frac{1}{2}(n+1)$ $=\frac{1}{2}(n-1), n-w(a) < n-\frac{1}{2}(n+1)=\frac{1}{2}(n-1), \text{ therefore } w(b) \leq \frac{1}{2}(n-1) < \infty$ < w(a) and this is a contradiction with the assumption that a is a median of T. Therefore $w(a) \leq \frac{1}{2}(n+1)$. Now let v be a vertex of T which is not a median of T; let again a be a median of T. Let B (or B') be the branch of T with the knag v (or a) which contains a (or v, respectively). If there is a branch with the knag v with w(v)edges other than B, then B' contains all this branch and, moreover, the path connecting a and v, thus it has more than w(v) edges and w(a) > w(v), which is a contradiction. Thus B has w(v) edges. Suppose that $w(v) < \frac{1}{2}(n+1)$. The sum of numbers of edges of branches with the knag a other than B' is less than w(v), therefore B' has at least n - w(v) edges and $w(a) \ge n - w(v)$, which implies $w(v) \ge n - w(a)$. As $w(a) \le \frac{1}{2}(n+1)$, we have $w(v) \ge n - \frac{1}{2}(n+1) = \frac{1}{2}(n-1)$. We have proved that w(v) can be less than $\frac{1}{2}(n-1)$ only if v is a median of T. Let T be embedded into $H_n(\frac{1}{2}(n-1))$. Let B_1 be the clique of $H_n(\frac{1}{2}(n-1))$ with $\frac{1}{2}(n-1)$ vertices, let u be the vertex of T which is mapped onto the end vertex of the bridge of $H_n(\frac{1}{2}(n-1))$ not belonging to B_1 . The vertices of T which are mapped onto vertices of T with the knag u. This branch has $\frac{1}{2}(n+1)$ edges, thus $w(u) = \frac{1}{2}(n+1)$ and u is a median of T.

Now we shall prove sufficiency of the condition. Let $w(a) = \left[\frac{1}{2}(n+1)\right]$ for a median a of T. Then evidently T can be embedded into $H_n(\left[\frac{1}{2}n\right])$ so that a is mapped onto the end vertex of the bridge belonging to the clique with $\left[\frac{1}{2}n\right]$ vertices and all vertices of the branch with the knag a having w(a) edges except for a are mapped onto the vertices of the other clique.

Theorem 3. Let T be a tree with $n \ge 4$ vertices, let T contain a subtree T' which is a snake and one terminal vertex of which is a median of T. Let T' have $\left[\frac{1}{2}n\right]$ vertices. Then T can be embedded into $H_n(k)$ for all $k = 2, ..., \left[\frac{1}{2}n\right]$.

Remark. A snake is a tree which consists of vertices and edges of one simple path.

Proof. Let the vertices of the snake T' be $u_0, ..., u_m$, where $m = \left[\frac{1}{2}n\right]$. Let u_m be the median of T. Then for each $k = 2, ..., \left[\frac{1}{2}n\right]$ we can embed T into $H_n(k)$ so that the end vertices of the bridge coincide with the vertices u_k and u_{k+1} .

Theorem 4. Let $n \ge 4$ be a positive integer, let K be a subset of the number set $\{2, ..., \left[\frac{1}{2}n\right]\}$. Then there exists a tree with n vertices which can be embedded into $H_n(k)$ for each $k \in K$ and cannot be embedded into $H_n(k)$ for $k \notin K$.

Proof. We shall use the concept of caterpillar (introduced by F. HARARY). A caterpillar is a tree with the property that after deleting all terminal vertices from it a snake is obtained. This snake is called the body of the caterpillar [4]. If the vertices of the body are u_0, \ldots, u_m and the edges $u_i u_{i+1}$ for $i=0,1,\ldots,m-1$, then we denote by α_i the number of terminal vertices of the caterpillar which are adjacent to u_i for $i=0,1,\ldots,m$. Thus we assign a vector $[\alpha_0,\ldots,\alpha_m]$ to the caterpillar. For $K \neq \emptyset$ the required tree is a caterpillar with the vector $[\alpha_0,\ldots,\alpha_m]$ which is described as follows. Let $K=\{k_1,\ldots,k_q\}$ and let $k_i < k_j$ for i < j. Then m=2q-1, $\alpha_0=k_1$, $\alpha_i=k_{i+1}-k_i$ for $i=1,\ldots,q-1$. Further $\alpha_{m-i}=\alpha_i$ for $i=0,1,\ldots,q-1$. The caterpillar C can be embedded into $H_n(k_i)$ so that onto the end vertices of the bridge of $H_n(k_i)$ the vertices u_{i-1},u_i or the vertices u_{m-i+1},u_{m-i} are mapped. On the other hand, the unique edges of C which can be mapped onto