

Werk

Label: Article Jahr: 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0104|log68

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

CASOPIS PRO PESTOVÁNÍ MATEMATIKY

Vydává Matematický ústav ČSAV, Praha SVAZEK 104 * PRAHA 19.11.1979 * ČÍSLO 4

QUASI-ORDERS OF ALGEBRAS

JIŘÍ RACHŮNEK, Olomouc (Received June 25, 1976)

In this paper the set $\mathcal{Q}(\mathfrak{A})$ of all quasi-orders of an arbitrary partial algebra $\mathfrak{A} = (A, F)$ is studied, in particular, properties of this set provided \mathfrak{A} is a group are shown.

In the first section it is proved that $\mathcal{L}(\mathfrak{A})$ ordered by inclusion is an algebraic lattice and its compact elements are described. The methods and the results of Schmidt's book [2] are essentially used here. In the second section the lattice $\mathcal{L}(\mathfrak{G})$ for an arbitrary group $\mathfrak{G} = (G, +)$ is characterized by means of the set $\mathscr{P}(\mathfrak{G})$ of all invariant subsemigroups with 0 of G. $\mathscr{P}(\mathfrak{G})$ ordered by inclusion is a lattice isomorphic to $\mathscr{L}(\mathfrak{G})$. Constructions of the lattice operations in both of these lattices are shown and it is proved that, in general, this lattices are not modular.

BASIC CONCEPTS AND NOTATIONS

Let $A \neq \emptyset$ be a set, n a positive integer, R an n-ary relation on A. A mapping $f: R \to A$ is called an n-ary partial operation on A. In this case let us write also R = D(f, A). The arity of f is denoted by n_f . If $D(f, A) = A^n$, then we call f an n-ary operation on A.

A partial algebra $\mathfrak A$ is an ordered pair (A, F), where $A \neq \emptyset$ is a set and F is a family of finitary partial operations on A. If each $f \in F$ is an operation on A, then $\mathfrak A$ is called an algebra.

If $\mathfrak{A} = (A, F)$ is a partial algebra, then the elements of F are called fundamental operations on \mathfrak{A} . Let i, n be positive integers, $i \leq n$. Then $e^{i,n}$ denotes the i-th n-ary projection on A, i.e. the operation on A such that for each $a_1, \ldots, a_n \in A$ it is $a_1 \ldots \ldots a_n e^{i,n} = a_i$. Let $F^* = F \cup \{e^{i,n}; i, n \in \mathbb{N}, i \leq n\}$. Let $X \neq \emptyset$ be a set and let $w = w(x_1, \ldots, x_m)$ be a word generated by F^* on X. Let a_1, \ldots, a_k ($k \leq m$) be elements of A, $1 \leq i_1, \ldots, i_k \leq m$, and let us substitute the elements a_1, \ldots, a_k for x_{i_1}, \ldots, x_{i_k} . Then we obtain an (n - k)-ary partial operation on A that we denote by $w(\ldots, a_1, \ldots, a_k, \ldots)$. This partial operation is called an algebraic function on A induced by A. If A is A is a partial operation induced by A will be called an elementary translation on A. Each product of elementary translations on A is called a translation on A.

1. THE LATTICE OF ALL QUASI-ORDERS OF A PARTIAL ALGEBRA

Let $A \neq \emptyset$ be a set and let Q be a binary relation on A. Q is a quasi-order of A if it is reflexive and transitive. An antisymmetric quasi-order of A is called an order of A. A quasi-ordered set (qo-set) is a pair (A, Q), where $A \neq \emptyset$ is a set and Q is a quasi-order of A. Similarly an ordered set (po-set).

For any binary relation R, aRb will denote $(a, b) \in R$. Let $\mathfrak{A} = (A, F)$ be a partial algebra and let Q be a quasi-order of the set A. Then Q is called a quasi-order of the partial algebra \mathfrak{A} if it satisfies the property (C):

(C) If $f \in F$, both $a_1 \dots a_{n,f} f$ and $b_1 \dots b_{n,f} f$ are defined and $a_i Q b_i$ $(a_i, b_i \in A, i = 1, ..., n_f)$, then $a_1 \dots a_{n,f} f Q b_1 \dots b_{n,f} f$. A quasi-order Q of $\mathfrak A$ is called strong if, whenever $a_i Q b_i$ $(a_i, b_i \in A, i = 1, ..., n_f)$ and $a_1 \dots a_{n,f} f (b_1 \dots b_{n,f} f)$ exists, then also $b_1 \dots b_{n,f} f (a_1 \dots a_{n,f} f)$ exists and $a_1 \dots a_{n,f} f Q b_1 \dots b_{n,f} f$.

For a partial algebra $\mathfrak{A} = (A, F)$, let us introduce the following notation:

- $\mathcal{Q}_0(A)$ denotes the set of all quasi-orders of the set A,
- $\mathcal{Q}(\mathfrak{A})$ denotes the set of all quasi-orders of \mathfrak{A} ,
- $\mathcal{Q}_s(\mathfrak{A})$ denotes the set of all strong quasi-orders of \mathfrak{A} .

We consider the sets $\mathcal{Q}_0(A)$, $\mathcal{Q}(\mathfrak{A})$ and $\mathcal{Q}_s(\mathfrak{A})$ ordered by inclusion. It is clear that $\mathcal{Q}_0(A)$ is a complete lattice in which the infimum of each system of elements is formed by its intersection and the supremum by its transitive hull. $A \times A$ is the greatest element, $A_A = \{(a, a); a \in A\}$ is the smallest element in $\mathcal{Q}_0(A)$. In the paper \cup and \cap denote the set-theoretical intersection and union, respectively, \vee and \wedge denote the lattice operations sup and inf, respectively.

Lemma 1.1. Let $\mathfrak{A} = (A, F)$ be a partial algebra, $Q_{\alpha} \in \mathcal{Q}(\mathfrak{A})$ $(\alpha \in I)$. Then $\bigcap_{\alpha \in I} Q_{\alpha} \in \mathcal{Q}(\mathfrak{A})$.

Proof. It is $\bigcap_{\alpha \in I} Q_{\alpha} \in \mathcal{Q}_0(A)$. Let $f \in F$ and let $a_i (\bigcap_{\alpha \in I} Q_{\alpha}) b_i$ $(i = 1, ..., n_f)$. Then $a_i Q_{\alpha} b_i$ for all $\alpha \in I$ and thus if $a_1 ... a_{nf} f$, $b_1 ... b_{nf} f$ are defined it follows that $a_1 ... a_{nf} f Q_{\alpha} b_1 ... b_{nf} f$ for all $\alpha \in I$. This means $a_1 ... a_{nf} f (\bigcap_{\alpha \in I} Q_{\alpha}) b_1 ... b_{nf} f$.

Corollary 1.1.1. For a partial algebra $\mathfrak{A} = (A, F)$, $\mathcal{Q}(\mathfrak{A})$ is a complete lattice that is a closed \wedge -subsemilattice of the lattice $\mathcal{Q}_0(A)$. The lattices $\mathcal{Q}(\mathfrak{A})$ and $\mathcal{Q}_0(A)$ have the same greatest and smallest elements.

Lemma 1.2. If Q_{α} ($\alpha \in I$) are strong quasi-orders of a partial algebra $\mathfrak{A} = (A, F)$, then the transitive hull of the system $\{Q_{\alpha}; \alpha \in I\}$ is also a strong quasi-order of \mathfrak{A} .

Proof. Let us denote the transitive hull of $\{Q_{\alpha}; \alpha \in I\}$ by Q. It is $Q \in \mathcal{Q}_0(A)$. Let $f \in F$, $a_i Q b_i$ $(a_i, b_i \in A, i = 1, ..., n_f)$ and let $a_1 ... a_{n_f} f$ be defined. Then there exists a sequence

$$a_i = z_1^i, z_2^i, ..., z_{k_i}^i = b_i$$

of elements of A such that

$$z_{j-1}^iQ_{\alpha_j}^iz_j^i\,,\quad j=2,\,\ldots,\,k_i\,,\quad Q_{\alpha_j}^i\in\left\{Q_\alpha;\,\alpha\in I\right\}\,.$$

From the reflexivity of quasi-orders it follows that we can suppose

$$k_1 = k_2 = \dots = k_n$$
, and $Q_{\alpha_1}^1 = Q_{\alpha_1}^2 = \dots = Q_{\alpha_1}^{n_f} = Q_{\alpha_1}$.

Then

$$a_1 Q_{\alpha_1} z_2^1, \ldots, a_{n_f} Q_{\alpha_1} z_2^{n_f}$$
.

If $a_1 \ldots a_{n_f} f$ exists, then there also exists $z_2^1 \ldots z_2^{n_f} f$ and it is $a_1 \ldots a_{n_f} f Q_{\alpha_1} z_2^1 \ldots z_2^{n_f} f$. Similarly we obtain $z_2^1 \dots z_2^{n_f} f Q_{\alpha_2} z_3^1 \dots z_3^{n_f} f$, etc. Therefore $a_1 \dots a_{n_f} f Q b_1 \dots b_{n_f} f$. Analogously for the case that $b_1 \dots b_n$, exists.

Corollary 1.2.1. If $\mathfrak{A} = (A, F)$ is a partial algebra, then $2s(\mathfrak{A})$ is a principal ideal in $\mathcal{Q}(\mathfrak{A})$ that is a closed complete sublattice of $\mathcal{Q}_0(A)$.

Corollary 1.2.2. If $\mathfrak{A} = (A, F)$ is an algebra, then $\mathfrak{L}(\mathfrak{A})$ is a closed complete sublattice of $\mathcal{Q}_0(A)$.

Lemma 1.3. Let ϱ be a reflexive binary relation on a set $A \neq \emptyset$. Then $R = \bigcup \varrho^n$ is the smallest quasi-order of A that contains q.

Let (A, \leq) be a po-set. A family S of elements of A is called *directed* if each finite subset $\subseteq S$ has an upper bound in S.

Lemma 1.4. Let $\{Q_{\alpha}; \alpha \in I\}$ be a directed family of quasi-orders of a partial algebra $\mathfrak{A} = (A, F)$. Then $\bigcup_{\alpha \in I} Q_{\alpha} = \bigvee_{\alpha \in I} Q_{\alpha}$ in $\mathcal{Q}_0(A)$ and $\bigcup_{\alpha \in I} Q_{\alpha} \in \mathcal{Q}(\mathfrak{A})$.

Proof. It is $\bigcup_{\alpha \in I} Q_{\alpha} \subseteq \bigvee_{\alpha \in I} {}_{2_0(A)}Q_{\alpha}$. Let $a(\bigvee_{\alpha \in I} {}_{2_0(A)}Q_{\alpha})$ b. Then there exists a sequence

$$a = z_0, z_1, ..., z_n = b$$

of elements of A such that

$$z_{i-1}Q_{\alpha_i}z_i \ (i=1,...,n), \ Q_{\alpha_i} \in \{Q_{\alpha}; \alpha \in I\}.$$

Since $\{Q_{\alpha}; \alpha \in I\}$ is a directed family, there exists an element Q of this family such that $Q_{\alpha_i} \subseteq Q$ (i = 1, ..., n). Therefore $z_{i-1}Qz_i$ (i = 1, ..., n), and so aQb. This means that $a(\bigcup_{\alpha \in I} Q_{\alpha})$ b and $\bigvee_{\alpha \in I} Q_{\alpha} \subseteq \bigcup_{\alpha \in I} Q_{\alpha}$.

Let us show that $\bigvee_{\alpha \in I} Q_{\alpha} \in \mathcal{Q}(\mathfrak{A})$. Let $f \in F$, $a_i(\bigvee_{\alpha \in I} Q_{\alpha})$ b_i $(a_i, b_i \in A, i = 1)$

= 1, ..., n_f), and let $a_1 \ldots a_{n_f} f$ and $b_1 \ldots b_{n_f} f$ exist. Then for each $i = 1, \ldots, n_f$ there exists a sequence

$$a_i = z_0^i, z_1^i, ..., z_{k_i}^i = b_i$$

of elements of A such that $z_j^i Q_{i,j} z_{j+1}^i$, $Q_{i,j} \in \{Q_\alpha; \alpha \in I\}$. Since the family $\{Q_\alpha; \alpha \in I\}$ is directed, there exists $Q \in \{Q_\alpha; \alpha \in I\}$ for which $Q_{i,j} \subseteq Q$ $(i = 1, ..., n_f, j = 1, ..., k_i)$. Then $z_j^i Q z_{j+1}^i$, and so $a_i Q b_i$. By condition (C) we obtain $a_1 ... a_{nf} f Q b_1 ... b_{nf} f$, therefore also $a_1 ... a_{nf} f (\bigvee_{\alpha \in I} z_{\alpha(A)} Q_\alpha) b_1 ... b_{nf} f$.

A complete lattice L is called *algebraic* if each element of L is the supremum of a set of compact elements.

Lemma 1.5. Let $A \neq \emptyset$ be a set. Then the lattice $\mathcal{Q}_0(A)$ is algebraic.

Proof. It is known that the lattice $\mathcal{R}_0(A)$ of all reflexive relations on the set $A \neq \emptyset$ is algebraic. The infimum (the supremum) in $\mathcal{R}_0(A)$ is formed by the intersection (by the union). The smallest element in $\mathcal{R}_0(A)$ is Δ_A , the greatest element is $A \times A$. It is clear that $\mathcal{Q}_0(A)$ is a closed \wedge -subsemilattice of $\mathcal{R}_0(A)$. By the proof of Lemma 1.4, every directed family $\{R_\alpha; \alpha \in I\}$ of elements of $\mathcal{Q}_0(A)$ fulfils $\bigvee_{\alpha \in I} \mathcal{Q}_{0(A)} R_\alpha = \bigcup_{\alpha \in I} R_\alpha$, thus $\bigvee_{\alpha \in I} \mathcal{R}_{0(A)} R_\alpha \in \mathcal{Q}_0(A)$. Δ_A , $A \times A \in \mathcal{Q}_0(A)$, therefore by [2, Folgerung 4.7] $\mathcal{Q}_0(A)$ is an algebraic lattice.

Let (A, \leq) be a po-set. A closure operator in A is a function $\lambda: A \to A$ such that for each $a, b \in A$

- (i) $a \leq a\lambda$;
- (ii) $a \leq b$ implies $a\lambda \leq b\lambda$;
- (iii) $(a\lambda) \lambda = a\lambda$;
- (iv) if A contains the smallest element 0, then $0\lambda = 0$.

Let L be an algebraic lattice. A closure operator in L is called *algebraic* if it holds for each compact element $a \in L$: If $a \le x\lambda$, then there exists a compact element $x' \le x$ such that $a \le x'\lambda$.

Let $\mathfrak{A}=(A,F)$ be a partial algebra and let $R\subseteq A\times A$. Since $A\times A\in \mathscr{Q}(\mathfrak{A})$, then by Lemma 1.1 there exists a smallest quasi-order Q_R of \mathfrak{A} that contains R. It is clear that a function $\lambda:\mathscr{Q}_0(A)\to\mathscr{Q}_0(A)$ such that $R\lambda=Q_R$ for each $R\in\mathscr{Q}_0(A)$ is a closure operator in $\mathscr{Q}_0(A)$.

Theorem 1.6. λ is an algebraic operator.

Proof. By Lemma 1.5, $\mathcal{L}_0(A)$ is an algebraic lattice. Then from Lemma 1.4 and [2, Lemma 4.7] it follows that λ is algebraic.

Corollary 1.6.1. 2(A) is an algebraic lattice.

Proof. The lattice $\mathcal{Q}_0(A)$ and the operator λ are algebraic, thus the assertion follows from [2, Lemma 4.2].

Corollary 1.6.2. The lattice $\mathcal{Q}_s(\mathfrak{A})$ is algebraic.

Proof follows from the fact that $\mathcal{Q}_{s}(\mathfrak{A})$ is a principal ideal in $\mathcal{Q}(\mathfrak{A})$.

Lemma 1.7. Let $\mathfrak{A} = (A, F)$ be a partial algebra and let $R, R_{\alpha} (\alpha \in I)$ be binary relations on A such that $R = \bigcup_{\alpha \in I} R_{\alpha}$. Then $Q_R = \bigvee_{\alpha \in I} \mathfrak{L}(\mathfrak{A}) Q_{R_{\alpha}}$.

Proof. It is $R_{\alpha} \subseteq R$, thus $\bigvee_{\alpha \in I} Q_{R_{\alpha}} \subseteq Q_{R}$. If $Q \in \mathcal{Q}(\mathfrak{U})$, $Q \supseteq \bigvee_{\alpha \in I} Q_{R_{\alpha}}$, then $Q \supseteq R_{\alpha}$ for each $\alpha \in I$ and then also $Q \supseteq \bigcup_{\alpha} R_{\alpha}$. This implies $Q = Q_Q \supseteq Q_R$. Therefore $\bigvee_{\alpha \in I} Q_{R_{\alpha}} \supseteq Q_{R}, \text{ i.e. } Q_{R} = \bigvee_{\alpha \in I} Q_{R_{\alpha}}.$

For $a, b \in A$ we denote $Q_{\{(a,b)\}}$ by $Q_{a,b}$.

Corollary 1.7.1. If $R \subseteq A \times A$, then $Q_R = \bigvee_{(a,b) \in R} Q_{a,b}$. Let now $\mathfrak{N} = (A, F)$ be a partial algebra and let R be a binary relation on A. Then R^T denotes the transitive hull of R, i.e. $R^T = \bigcup_{n=0}^{\infty} R^n$;

 R^F denotes the set of all $(u, v) \in A \times A$ such that for an appropriate algebraic function $x_1
dots x_n p$ there exist $(a_i, b_i) \in R$ (i = 1, ..., n) such that $u = a_1
dots a_n p$, $v = b_1 \dots b_n p;$

 R^U denotes the set of all $(u, v) \in A \times A$ such that for an appropriate unary algebraic function p there exists $(a, b) \in R$ such that u = ap, v = bp;

 $R^{U'}$ denotes the set of all $(u, v) \in A \times A$ such that for an appropriate translation p there exists $(a, b) \in R$ such that u = ap, v = bp.

It is clear that T, F, U, U' are closure operators in the complete lattice exp $(A \times A)$. Let us denote

$$R_0 = R$$
, $R_1 = R_0^F$, $R_2 = R_1^T$, $R_3 = R_2^F$, ..., $R_{2i} = R_{2i-1}^T$, $R_{2i+1} = R_{2i}^F$, ...

It holds $R_0 \subseteq R_1 \subseteq \dots$. Let us denote $\overline{R} = \bigcup_{i=1}^{\infty} R_i$ for $R_i \neq \emptyset$ and $\overline{\emptyset} = \Delta_A$. It is clear that $\overline{R}^T = \overline{R}^F = \overline{R}$.

Theorem 1.8. Let $\mathfrak{A} = (A, F)$ be a partial algebra and let $R \subseteq A \times A$. Then $Q_R = \overline{R}$.

Proof. It holds $R \subseteq \overline{R} \subseteq Q_R$. Let us show that $\overline{R} \in \mathcal{Q}(\mathfrak{A})$. Let $c \in A$, $(x_1, x_2) \in R$ and let us consider the algebraic function $xp = cxe^{1/2}$. Then $(c, c) \in R^F$ and therefore $(c, c) \in \overline{R}$. This means \overline{R} is reflexive. Further $R_{2i-1}R_{2i-1} \subseteq R_{2i}$, thus $\overline{R}\overline{R} \subseteq \overline{R}$. Hence \overline{R} is transitive.

Let now $f \in F$, $a_1 \overline{R} b_1, ..., a_n \overline{R} b_n$, and let us assume that $a_1 ... a_n f$, $b_1 ... b_n f$ exist. Then there exists i such that $(a_j, b_j) \in R_{2i}$ $(j = 1, ..., n_f)$ and so $a_1 ...$... $a_n f R_{2i+1} b_1 \dots b_n f$. Therefore \overline{R} satisfies the condition (C).

Theorem 1.9. Let $\mathfrak{A} = (A, F)$ be an algebra, $R \subseteq A \times A$. Then $(R^U)^T = (R^F)^T$, $(R^U)^T = ((R^U)^T)^U$.

Proof. Since $R^U \subseteq R^F$, then $(R^U)^T \subseteq (R^F)^T$. Let $(c, d) \in (R^F)^T$. Then there exists a sequence

$$c = z_0, z_1, ..., z_n = d$$

of elements of A such that $(z_{i-1}, z_i) \in R^F$ (i = 1, ..., n). This means that for an appropriate algebraic function $x_1 ... x_k p$ it holds $z_{i-1} = a_1 ... a_k p$, $z_i = b_1 ... b_k p$, where $(a_i, b_i) \in R$ (j = 1, ..., k).

Let us introduce the following unary functions:

$$xP_1 = xa_2a_3...a_kp, xP_2 = b_1xa_3...a_kp, ..., xP_k = b_1b_2...b_{k-1}xp.$$

It is $a_1P_1 = z_{i-1}$, $b_jP_j = a_{j+1}P_{j+1}$, $b_kP_k = z_i$ (j = 1, ..., k-1), i.e. $(z_{i-1}, z_i) \in (R^U)^T$. Thus $(R^U)^T = (R^F)^T$.

Let $(c, d) \in ((R^U)^T)^U$. Thus there exist $(a_1, b_1), ..., (a_n, b_n) \in R$ such that for appropriate unary algebraic functions $p_1, p_2, ..., p_n, q$ it holds

$$c' = a_1 p_1, b_1 p_1 = a_2 p_2, b_2 p_2 = a_3 p_3, ..., b_n p_n = d'$$

and

$$c = c'q$$
, $d = d'q$.

Let $P_i = p_i q$. Then

$$a_1P_1 = c$$
, $b_iP_i = a_{i+1}P_{i+1}$, $b_nP_n = d$ $(j = 1, ..., n-1)$.

Therefore $(c, d) \in (R^U)^T$, and so $(R^U)^T = ((R^U)^T)^U$.

Theorem 1.10. Let $\mathfrak{A} = (A, F)$ be an algebra and let R be a binary relation on A. Then $Q_R = (R^U)^T$ (i.e. for $c, d \in A$ it holds cQ_Rd if and only if there exist $c = z_0, ..., z_n = d \in A$, $(a_i, b_i) \in R$ (i = 1, ..., n), and unary algebraic functions $p_1, ..., p_n$ such that $a_ip_i = z_{i-1}$, $b_ip_i = z_i$ for i = 1, ..., n).

Proof. The assertion follows immediately from Theorems 1.8 and 1.9.

Corollary 1.10.1. Let $\mathfrak{A} = (A, F)$ be an algebra, $a, b, x, y \in A$. Then $xQ_{a,b}y$ if and only if there exist a sequence $x = z_0, z_1, ..., z_n = y$ of elements of A and a sequence of unary algebraic functions $p_0, p_1, ..., p_{n-1}$ on F such that $z_i = ap_i, z_{i+1} = bp_i$ (i = 1, ..., n - 1).

Theorem 1.11. Let $\mathfrak{A} = (A, F)$ be an algebra, $a, b, x, y \in A$. Then $xQ_{a,b}y$ if and only if there exist elements $x = z_0, z_1, ..., z_n = y$ of A and translations $p_0, ..., p_{n-1}$ such that $z_i = ap_i, z_{i+1} = bp_i$ (i = 1, ..., n-1).

Proof. Let us show that $(R^{U'})^T = (R^U)^T$. If $(u, v) \in R^U$, then there exist $(a, b) \in R$ and an appropriate unary algebraic function p such that u = ap, v = bp. Therefore, translations t_1, \ldots, t_n and a word w of A such that $w(t_1, \ldots, t_n) = p$ must exist. Thus

$$xF_i = w(bt_1, ..., bt_{i-1}, xt_i, at_{i+1}, ..., at_n)$$

is a translation such that

$$bF_i = aF_{i+1}$$
 $(i = 1, ..., n-1)$, $aF_1 = ap = u$, $bF_n = bp = v$,

i.e. $(u, v) \in (R^{U'})^T$. Therefore $R^U \subseteq (R^{U'})^T$ and so $(R^U)^T \subseteq (R^{U'})^T$. Finally, since $R^{U'} \subseteq R^U$, it holds $(R^U)^T = (R^{U'})^T$.

Now we shall describe the set $\mathcal{Q}(\mathfrak{A})^*$ of all compact elements in the lattice $\mathcal{Q}(\mathfrak{A})$ of a partial algebra $\mathfrak{A} = (A, F)$.

Theorem 1.12. Let Q be a quasi-order of a partial algebra $\mathfrak{A} = (A, F)$. Then $Q \in \mathcal{Q}(\mathfrak{A})^*$ if and only if there exists a finite binary relation R on A such that $Q = Q_R$.

Proof. Let $Q \in \mathcal{Q}(\mathfrak{A})$. Then $\Delta_A \subseteq Q$. For $R \subseteq A \times A$ it is $R \subseteq Q_R$ and thus $R \cup \Delta_A \subseteq Q_R$. Therefore $Q_{R \cup \Delta_A} \subseteq Q_R$, and so $Q_{R \cup \Delta_A} = Q_R$.

By Lemma 1.6, the closure operator $R\lambda = Q_R$ on the lattice $\mathcal{R}_0(A)$ of all reflexive relations on A is algebraic. Thus, by [2, Lemma 4.3], $R' \in \mathcal{Q}(\mathfrak{A})$ is compact in $\mathcal{Q}(\mathfrak{A})$ if and only if $R'' = R' \cup \Delta_A$ is a compact element in $\mathcal{R}_0(A)$. But this is satisfied (by [2, p. 33]) if and only if there exists a finite relation $R \subseteq A \times A$ such that $R' \cup \Delta_A = R \cup \Delta_A$.

Theorem 1.13. Let $\mathfrak{A} = (A, F)$ be a partial algebra. Then the lattice of all ideals in $\mathfrak{L}(\mathfrak{A})^*$ is isomorphic to $\mathfrak{L}(\mathfrak{A})$.

Proof follows from [2, proof of Lemma 3.9].

2. THE LATTICE OF ALL QUASI-ORDERS OF A GROUP

Let $\mathfrak{G} = (G, +)$ be a group, $R \in \mathcal{Q}(\mathfrak{G})$. Then the pair \mathfrak{G} , R is called a *quasi-ordered* group (qo-group). This qo-group will be denoted by $\mathfrak{G} = (G, +, R) = (G, R)$. Let us denote $P_R = \{x \in G; 0Rx\}$, where 0 is the zero-element of the group (G, +). P_R is called the positive cone of the qo-group (G, R).

For a system $R_{\alpha} \in \mathcal{Q}(\mathfrak{G})$ $(\alpha \in A)$, we shall often denote the corresponding positive cones by P_{α} instead of $P_{R_{\alpha}}$ $(\alpha \in A)$.

Lemma 2.1. Let $\mathfrak{G} = (G, R)$ be a qo-group. Then P_R is an invariant subsemigroup with 0 of \mathfrak{G} .

Lemma 2.2. Let S be an invariant subsemigroup with 0 of a group $\mathfrak{G} = (G, +)$. The the binary relation R defined by

$$aRb$$
 iff $-a + b \in S$ (iff $b - a \in S$) for all $a, b \in G$

is a quasi-order of the group G.

Supplement. $S = P_R$.

Proof. If aRb, $x \in G$, then $-x - a + b + x \in S$, $-a - x + x + b \in S$, therefore $-(a + x) + (b + x) \in S$, $-(x + a) + (x + b) \in S$, and so (a + x) R(b + x), (x+a)R(x+b).

Proof of Supplement. 1. If $x \in S$, then $-0 + x \in S$. Thus 0Rx, i.e. $x \in P_R$. 2. Let $y \in P_R$, i.e. 0Ry. Therefore $-0 + y = y \in S$.

Let us denote by $\mathcal{P}(\mathfrak{G})$ the set of all invariant subsemigroups with 0 of G. It is clear that the correspondence $R \mapsto P_R$ (for each $R \in \mathcal{Q}(\mathfrak{G})$) is a one-to-one mapping between $\mathcal{Q}(\mathfrak{G})$ and $\mathcal{P}(\mathfrak{G})$.

Further, for $R_1, R_2 \in \mathcal{Q}(\mathfrak{G})$ it is $R_1 \subseteq R_2$ iff $P_{R_1} \subseteq P_{R_2}$. Therefore the ordered sets $(\mathcal{Q}(\mathfrak{G}), \subseteq)$ and $(\mathcal{P}(\mathfrak{G}), \subseteq)$ are isomorphic.

Theorem 2.3. $\mathcal{P}(\mathfrak{G})$ ordered by inclusion is an algebraic lattice.

Supplement. Let $P_{\alpha} \in \mathcal{P}(\mathfrak{G})$, $\alpha \in A$. Then

- a) $\bigwedge_{\alpha \in A} P_{\alpha} = \bigcap_{\alpha \in A} P_{\alpha};$ b) $\bigvee_{\alpha \in A} P_{\alpha} = \sum_{\alpha \in A} P_{\alpha};$

in particular,

c)
$$P_{\alpha_1} \vee P_{\alpha_2} = P_{\alpha_1} + P_{\alpha_2} = P_{\alpha_2} + P_{\alpha_1}$$
.

Proof. Since $\mathcal{P}(\mathfrak{G})$ is isomorphic to $\mathcal{Q}(\mathfrak{G})$, $\mathcal{P}(\mathfrak{G})$ is (by Corollary 1.6.1) an algebraic

- a) Let $P_{\alpha} \in \mathscr{P}(\mathfrak{G})$ $(\alpha \in A)$, $P = \bigcap_{\alpha \in A} P_{\alpha}$. It is evident that $P \in \mathscr{P}(\mathfrak{G})$.
- b) It is clear that $\bar{P} = \sum_{\alpha \in A} P_{\alpha}$ is the smallest subsemigroup with 0 containing P_{α} $(\alpha \in A)$. Let us show that \overline{P} is invariant. If $x = a_{\alpha_1} + a_{\alpha_2} + \ldots + a_{\alpha_n} \in \overline{P}$ $(a_{\alpha_i} \in P_{\alpha_i}, a_{\alpha_i})$ i = 1, 2, ..., n, $z \in G$, then

$$-z + x + z = (-z + a_{\alpha_1} + z) + (-z + a_{\alpha_2} + z) + \dots + (-z + a_{\alpha_n} + z) \in \overline{P}.$$

c) If A is an invariant subsemigroup of \mathfrak{G} , then for each $z \in G$ it holds -z + A + $+z\subseteq A$, thus $A+z\subseteq z+A$. Therefore also $A+(-z)\subseteq (-z)+A$, i.e. z+A $+A+(-z)\subseteq A$, then $z+A\subseteq A+z$, and so A+z=z+A. If now

$$x = a_1 + b_1 + a_2 + b_2 + \dots + a_n + b_n$$

$$(a_i \in P_1, b_i \in P_2, i = 1, 2, \dots, n),$$

then

$$x = (a_1 + a_2) + (b'_1 + b_2) + a_3 + b_3 + \dots + a_n + b_n =$$

$$= a'_1 + b'_2 + a_3 + b_3 + \dots + a_n + b_n = \dots = a + b,$$

where $a \in P_1$, $b \in P_2$.

Corollary 2.3.1. For the infimum and the supremum in the algebraic lattice $\mathcal{Q}(\mathfrak{G})$ it holds: Let $R_{\alpha} \in \mathcal{Q}(\mathfrak{G})$ ($\alpha \in A$). Then

- a) $\bigwedge_{\alpha\in A} R_{\alpha} = \bigcap_{\alpha\in A} R_{\alpha};$
- b) if $a(\bigvee_{\alpha \in A} R_{\alpha})$ b, then for each $i \in A$ there exist $x, x' \in \bigvee_{\alpha \in A} P_{\alpha}$ such that (a + x). $R_i(b x')$;
- c) if there exist $x, x' \in \bigvee_{\alpha \in A} P_{\alpha}$ and $i \in A$ such that $(a + x) R_i(b x')$, then $a(\bigvee_{\alpha \in A} R_{\alpha}) b$.

Proof. a) The assertion a) follows from Lemma 1.1.

- b) Let us denote $R = \bigvee_{\alpha \in A} \mathscr{D}(\mathfrak{g}) R_{\alpha}$, $P = \bigvee_{\alpha \in A} \mathscr{D}(\mathfrak{g}) P_{\alpha}$. Further, let aRb. Then $-a + b \in P$, thus $-a + b = x_{i_1} + \ldots + x_{i_r} + x_i + x_{j_s} + \ldots + x_{j_1}$, where $x_{i_m} \in P_{i_m}$, $x_{j_n} \in P_{j_n}$, $x_i \in P_i$, i_1, \ldots, i_r , j_1, \ldots, j_s , $i \in A$. (If in the partition there is no element of P_i , we can add $x_i = 0$.) Let us denote $x_{i_1} + \ldots + x_{i_r} = x$, $(-x_{j_1}) + \ldots + (-x_{j_s}) = -x'$. Then $-(a + x) + (b x') \in P_i$, therefore $(a + x) R_i(b x')$.
- c) Let now $x, x' \in P$, $i \in A$, $(a + x) R_i(b x')$. Then $-(a + x) + (b x') = x_i$, $x_i \in P_i$, and so $-a + b = x + x_i + x'$. If $x = x_{i_1} + \ldots + x_{i_k}$, $x' = x_{j_1} + \ldots + x_{j_l}$, then $-a + b = x_{i_1} + \ldots + x_{i_k} + x_i + x_{j_1} + \ldots + x_{j_l}$. This means $-a + b \in P$, and thus aRb.

Theorem 2.4. The set $\mathcal{P}_1(\mathfrak{G})$ of all invariant subsemigroups P with 0 of a group G such that $P \cap -P = \{0\}$ is a closed \wedge -subsemilattice of the lattice $\mathcal{P}(\mathfrak{G})$.

Proof. In $\mathcal{P}_1(\mathfrak{G})$ it holds

$$\bigcap_{\alpha\in\mathcal{A}}P_{\alpha}\cap-\bigcap_{\beta\in\mathcal{A}}P_{\beta}=\bigcap_{\alpha,\beta\in\mathcal{A}}(P_{\alpha}\cap-P_{\beta})=\left\{0\right\},\,$$

thus $\bigwedge_{\alpha \in A} \mathscr{P}(\mathfrak{G}) P_{\alpha} \in \mathscr{P}_{1}(\mathfrak{G})$.

Corollary 2.4.1. The set $\mathcal{L}_1(\mathfrak{G})$ of all orders of a group \mathfrak{G} is a closed \wedge -subsemilattice of the lattice $\mathcal{L}(\mathfrak{G})$.

Theorem 2.5. Let $\mathcal{Q}_d(\mathfrak{G})$ be the set of all directed orders of a group \mathfrak{G} and let $\mathcal{Q}_d(\mathfrak{G}) \neq \emptyset$. Then the following conditions are equivalent:

- (a) $\mathfrak{G} = \{0\}.$
- (b) $2_d(\mathfrak{G})$ is a sublattice of the lattice $2(\mathfrak{G})$.
- (c) $2_d(\mathfrak{G})$ is an \wedge -subsemilattice of the lattice $2(\mathfrak{G})$.
- (d) $\mathcal{Q}_d(\mathfrak{G})$ is a \vee -subsemilattice of the lattice $\mathcal{Q}(\mathfrak{G})$.

Proof. (c) \Rightarrow (a): Let $R \in \mathcal{Q}_d(\mathfrak{G})$ and let P be the positive cone of R. Then -P is the positive cone of the dual order of the group \mathfrak{G} and $P \cap -P = \{0\}$. Thus $\{0\}$ is the positive cone of a directed order of \mathfrak{G} , and so $\mathfrak{G} = \{0\}$.

(d) \Rightarrow (a): If P is the positive cone of a directed order of \mathfrak{G} , then

$$P \vee -P = P + (-P) = P - P = G$$
 and $G \cap -G = G$.

Therefore $\mathfrak{G} = \{0\}.$

 $(a) \Rightarrow (b) \Rightarrow (c)$ and $(a) \Rightarrow (d)$ are evident.

Similarly, we have

Theorem 2.6. Let $\mathcal{Q}_1(\mathfrak{G})$ be the set of all lattice orders of a group \mathfrak{G} and let $\mathcal{Q}_1(\mathfrak{G}) \neq \emptyset$. Then the following conditions are equivalent:

- (a) $\mathfrak{G} = \{0\}.$
- (b) $\mathcal{Q}_{l}(\mathfrak{G})$ is a sublattice of the lattice $\mathcal{Q}(\mathfrak{G})$.
- (c) $\mathcal{Q}_{l}(\mathfrak{G})$ is an \wedge -subsemilattice of the lattice $\mathcal{Q}(\mathfrak{G})$.
- (d) $2_{l}(\mathfrak{G})$ is a \vee -subsemilattice of the lattice $2(\mathfrak{G})$.

Theorem 2.7. a) If R is a directed order of a group \mathfrak{G} , then R has complements in the lattices $\mathfrak{L}(\mathfrak{G})$ and $\mathfrak{L}_0(G)$.

b) If R is an order of a group \mathfrak{G} , then its dual order is complement of R in $\mathfrak{L}(\mathfrak{G})$ (in $\mathfrak{L}_0(G)$) if and only if R is directed.

Proof. Part a) is a consequence of part b).

b) Let us denote the positive cone of R by P. Then

$$P \cap -P = \{0\}, P \bigvee_{\mathscr{P}(\S)} -P = P + (-P) = P - P,$$

and P - P = G if and only if R is directed. Thus, in this case, the dual order is a complement of R in $\mathcal{Q}(\mathfrak{G})$ and, by Corollary 1.2.2, in $\mathcal{Q}_0(G)$ as well.

Note. If $\mathfrak{G} \neq \{0\}$ is a group and if $R \in \mathcal{Z}_1(\mathfrak{G})$ has a complement in $\mathcal{Z}(\mathfrak{G})$, then there need not exist an element of $\mathcal{Z}_1(\mathfrak{G})$ among complements of R. Namely, if we can order \mathfrak{G} only trivially, then $\{0\} \cap G = \{0\}$, $\{0\} + G = G$, thus G is a complement of $\{0\}$ in $\mathcal{P}(\mathfrak{G})$ and there exists no complement of $\{0\}$ that belongs to $\mathcal{P}_1(\mathfrak{G})$.

Theorem 2.8. In general, the lattice $\mathcal{Q}(\mathfrak{G})$ is not modular.