

Werk

Label: Article **Jahr:** 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0104|log60

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON OSCILLATION OF SOLUTIONS OF DIFFERENTIAL INEQUALITIES WITH RETARDED ARGUMENT

PAVOL MARUŠIAK, Žilina (Received March 23, 1977)

We consider the following differential inequality

(1)
$$\{[r(t) y^{(n-1)}(t)]' + f(t, y(t), y[h(t)]\} \operatorname{sgn} y[h(t)] \leq 0, \quad n \geq 2,$$

where

(2)
$$r:[0,\infty)\to(0,\infty); h:[0,\infty)\to R;$$

$$f:[0,\infty)\times R^2\to R \text{ are continuous functions,}$$

(3)
$$h(t) \le t$$
, $\lim h(t) = \infty$ for $t \to \infty$,

(4)
$$y f(t, x, y) > 0$$
 for $(t, x, y) \in [0, \infty) \times R^2$, $xy > 0$;
 $|f(t, x_1, y_1)| \le |f(t, x_2, y_2)|$ for $|x_1| \le |x_2|$, $|y_1| \le |y_2|$, $x_1x_2 > 0$,
 $y_1y_2 > 0$, $x_1y_1 > 0$.

Denote by W the set of all solutions y(t) of the differential inequality (1), which exist on a ray $[t_0, \infty] \subset [0, \infty)$ and satisfy

$$\sup \{|y(s)| : s \ge t\} > 0$$

for every $t \in [t_0, \infty)$.

A solution $y(t) \in W$ is said to be oscillatory if the set of zeros of y(t) is not bounded from the right. Otherwise the solution $y(t) \in W$ is said to be nonoscillatory.

Definition 1. We shall say the that the inequality (1) has the property A if every solution $y(t) \in W$ is oscillatory for n even, while for n odd is either oscillatory or $y^{(i)}(t)$ (i = 0, 1, ..., n - 2) and r(t) $y^{(n-1)}(t)$ tend monotonically to zero as $t \to \infty$.

Definition 2. Let $m \in \{0, 1, ..., n-1\}$. We shall say that the inequality (1) has the property A_m if every solution $y(t) \in W$ is either oscillatory or $y^{(i)}(t)$ (i = m, m+1, ..., n-2) and r(t) $y^{(n-1)}(t)$ tend monotonically to zero as $t \to \infty$.

The oscillatory properties of solutions of differential equations of the *n*-th order with the term $[r(t) \ y^{(n-1)}(t)]'$ $(n=2, n \ge 2, r(t) > 0)$ are studied, for example, in [1, 2, 4, 7, 9-12]. In this paper we shall prove sufficient conditions for the inequality (1) to have either the property A or A_0 .

Finally, with the help of the inequality (1) we shall prove a sufficient condition for the equation (r) to have the property A_m , $m \in \{0, 1, ..., n-1\}$. Our results generalize some of those in the papers [1-3, 6, 9, 12].

Let us denote

$$\bar{r}(t) = \max \{r(s) : t/2 \le s \le t\},$$

$$b(t) = \frac{r(t)}{\bar{r}(t)}, \quad b_0 = \inf \{b(t) : t \ge t_0\},$$

$$R_k(t) = \int_T^t \frac{x^k}{r(x)} dx, \quad k = 0, 1, ..., n - 2, \quad T \in [0, \infty),$$

$$R_k(t, u) = \int_u^t \frac{(x - u)^k}{r(x)} dx, \quad k = 0, 1, ..., n - 2, \quad u \le t,$$

$$\varrho(t) = \frac{r[h(t)]}{\min \{r(s) : h(t) \le s \le t\}}, \quad H(t) = \frac{t}{h(t)} \quad \text{for} \quad h(t) > 0.$$

Let $m \in \{0, 1, ..., n - 1\}$, $t_0 \in [0, \infty)$. Put

$$D_{t_0}^{(m)} = \left\{ \left(t, x_1, y_1, \dots, x_n, y_n \right) \in \left[0, \infty \right) \times R^{2n} : t_0 \leq h(t), \right.$$

$$\frac{\left(n - m - 1 \right)!}{\left(n - j \right)!} \left(\frac{b_0}{2} t \right)^{m - j + 1} \leq \frac{x_j}{x_{m+1}}, \quad \frac{\left(n - m + 1 \right)!}{\left(n - j \right)!} \left(\frac{b_0}{2} h(t) \right)^{m - j + 1} \leq \frac{y_j}{y_{m+1}}, \quad \left(j = 1, 2, \dots, m + 1 \right), \quad x_{m+1} y_{m+1} > 0, \quad x_i, y_i \in R,$$

$$\left(i = m + 2, \dots, n \right) \right\}.$$

Lemma 1. Let $y(t), ..., y^{(n-1)}(t)$ be continuous functions of constant sign in the interval $[t_0, \infty) \subset [0, \infty)$. If

(5)
$$y(t) [r(t) y^{(n-1)}(t)]' \le 0, \quad y(t) \ne 0 \quad for \quad t \ge t_0;$$

(5')
$$y(t) y^{(n-1)}(t) \ge 0 \text{ for } t \ge t_0$$
,

where the function r satisfies (2), then there exists an integer $k \in \{0, 1, ..., n-1\}$, n + k odd, such that

(6)
$$y^{(i)}(t) y(t) \ge 0 \quad (i = 0, 1, ..., k), \quad t \ge t_0$$

(7)
$$(-1)^{k+i} y^{(i)}(t) y(t) \ge 0 \quad (i = k+1, ..., n-1), \quad t \ge t_0,$$

(8)
$$|y^{(i)}(t)| \ge L_i b(t) t^{n-i-1} |y^{(n-1)}(t)|, \text{ where } k \in \{1, 2, ..., n-1\},$$

$$L_i = \frac{2^{-n^2}}{(n-i-1)!} \quad (i=0, 1, ..., k-1), \quad t \ge 2^{n-k} t_0,$$

(9)
$$|y^{(k)}(t)| \ge t^{n-k-1} b(2^{n-k-1}t) |y^{(n-1)}(2^{n-k-1}t)|, \quad t \ge t_0,$$

(10)
$$i! \left(\frac{b_0}{2}\right)^{j-i} t^{j-i} \left| y^{(k-i)}(t) \right| \leq j! \left| y^{(k-j)}(t) \right| \quad (j=0,1,...,k,\ i=0,1,...,j),$$

$$t \geq 2t_0.$$

Proof. Under the assumption (5'), assertions (6) and (7) follow from Kiguradze's lemma 14.2 in [5]. Further, we may suppose, without loss of generality, that y(t) > 0 for $t \ge t_0$.

(a) Let k = n - 1. Then (6) implies

$$y^{(i)}(t) \ge 0$$
, $i = 1, 2, ..., n - 1$, $t \ge t_0$.

Using Taylor's theorem, the last inequality, and the monotonicity of $[r(t) y^{(n-1)}(t)]$, we get

(11)
$$y^{(i)}(t) = \sum_{j=0}^{n-i-2} \frac{y^{(i+j)}(t/2)}{j!} \left(\frac{t}{2}\right)^j + \int_{t/2}^t y^{(n-1)}(s) \frac{(t-s)^{n-i-2}}{(n-i-2)!} ds \ge$$

$$\ge \int_{t/2}^t y^{(n-1)}(s) \frac{(t-s)^{n-i-2}}{(n-i-2)!} ds \ge \frac{b(t) y^{(n-1)}(t)}{(n-i-1)!} \left(\frac{t}{2}\right)^{n-i-1}$$

$$(i=0,1,...,n-2), \quad t \ge 2t_0.$$

From (11), we obtain (8) for k = n - 1.

The inequality (9) for k = n - 1 is evident.

(b) Let $k \in \{0, 1, ..., n-3\}$ and let n + k be an odd integer. Then, in view of Lemma 1 in [8], we get

(12)
$$y^{(i)}(t) \ge \overline{L}_i t^{n-i-3} y^{(n-3)}(t), \quad t \ge 2^{n-k-2} t_0,$$

$$\overline{L}_i = \frac{2^{-(n-2)^2}}{(n-i-3)!}, \quad (i=0,1,...,k-1),$$

and

(13)
$$y^{(k)}(t) \geq t^{n-k-3} y^{(n-3)}(2^{n-k-3}t), \quad t \geq t_0.$$

With the help of (7) and (5), we get

$$(14) -y^{(n-2)}(t/2) \ge \int_{t/2}^t y^{(n-1)}(s) ds \ge \frac{t}{2} b(t) y^{(n-1)}(t), \quad t \ge 2t_0.$$

For $t \ge 4t_0$, using (6), (7) and (14), we obtain

$$(15) y^{(n-3)}\left(\frac{t}{4}\right) \ge y^{(n-3)}\left(\frac{t}{4}\right) - y^{(n-3)}\left(\frac{t}{2}\right) \ge -\frac{t}{4}y^{(n-2)}\left(\frac{t}{2}\right) \ge \frac{t^2}{8}b(t)y^{(n-1)}(t).$$

The inequalities (15), (12) and (13) imply (8) and (9).

If $k \in \{0, 1, ..., n-3\}$, then the inequality (10) follows from Kiguradze's lemma in [5]. It remains to prove (10) for k = n - 1.

Let k = n - 1. Using (6) we can show that

$$y^{(n-2-i)}(t) \ge \frac{t}{2} y^{(n-i-1)}(\frac{t}{2}), \quad (i = 1, 2, ..., n-2), \quad t \ge 2t_0.$$

Utilizing the last inequality and (6), we can easily verify the correctness of the following relation

$$(16) \qquad (1+i) \ y^{(n-2-i)}(t) - \int_{t/2}^{t} \left[i \ y^{(n-i-1)}(s) - \frac{b_0}{2} s \ y^{(n-i)}(s) \right] ds \ge$$

$$\ge (1-b_0) \ y^{(n-2-i)}(t) + \frac{b_0}{2} t \ y^{(n-i-1)}(t) + \frac{b_0}{2} \left[y^{(n-i-2)}(t) - \frac{t}{2} y^{(n-i-1)} \left(\frac{t}{2} \right) \right] \ge$$

$$\ge \frac{b_0}{2} t \ y^{(n-i-1)}(t), \quad (i=1,2,...,n-2), \quad t \ge 2t_0.$$

For i = n - 2,

(17)
$$y^{(n-2)}(t) \ge \frac{b(t)}{2} t y^{(n-1)}(t) \ge \frac{b_0}{2} t y^{(n-1)}(t), \quad t \ge 2t_0$$

follows from (11).

Further, (16) and (17) imply

$$(1+i) y^{(n-2-i)}(t) \ge \frac{b_0}{2} t y^{(n-i-1)}(t), \quad t \ge 2t_0, \quad (i=0,1,...,n-2).$$

For k = n - 1, (10) follows from the last inequality.

This completes the proof of Lemma 1.

Lemma 1 is an extension of Lemma 2 in [9].

Lemma 2. Let (2)-(4) hold.

(a) If

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}s}{r(s)} = \infty ,$$

then conditions (5) and (5') are satisfied for every nonoscillatory solution $y(t) \in W$ of (1).

(19)
$$\int_{-\infty}^{\infty} \left(\frac{1}{r(t)} \int_{-T}^{t} |f(s, c, c)| \, \mathrm{d}s \right) \mathrm{d}t = \infty$$

for every $c \neq 0$ and $T \geq 0$, then conditions (5) and (5') hold for every nonoscillatory solution $y(t) \in W$ of (1) such that $\lim_{t \to \infty} y(t) \neq 0$.

Proof. We assume, without loss of generality, that y(t) > 0 for $t \ge t_0$. Then, in view of (3), there exists $t_1 \ge t_0$ such that y[h(t)] > 0 for $t \ge t_1$. From (1), with regard to (4), we obtain

(20)
$$\lceil r(t) y^{(n-1)}(t) \rceil' \leq -f(t, y(t), y \lceil h(t) \rceil) < 0 \text{ for } t \geq t_1.$$

- (a) If (18) holds, then using the same method as in Lemma 1 in [9], we get $y^{(n-1)}(t) > 0$ for $t \ge t_1$.
- (b) Via contradiction we prove that $y^{(n-1)}(t) > 0$ for $t \ge t_1$. We suppose that for some $t_2 \ge t_1$ we have $y^{(n-1)}(t_2) \le 0$. Then (20) implies $y^{(n-1)}(t) < 0$ for $t \ge t_2$. If $\lim_{t \to \infty} y(t) > 0$, then there exist $\varepsilon > 0$ and $t_3 \ge t_2$ such that $y(t) \ge \varepsilon$ and $y[h(t)] \ge \varepsilon$ hold for every $t \ge t_3$. Thus (20), under the assumption (4), yields

$$\lceil r(t) y^{(n-1)}(t) \rceil' \le -f(t, \varepsilon, \varepsilon) < 0 \text{ for } t \ge t_3.$$

Integrating the last inequality from $T(T \ge t_3)$ to t and using $y^{(n-1)}(t) \le 0$ for $t \ge t_2$ we have

$$y^{(n-1)}(t) \leq \frac{1}{r(t)} \int_{T}^{t} f(s, \varepsilon, \varepsilon) ds$$
.

Integrating the last relation from T to t, with regard to (19) we get $\lim_{t\to\infty} y^{(n-2)}(t) = -\infty$ which contradicts the positivity of y(t) for $t \ge t_0$.

The proof of Lemma 2 is complete.

Theorem 1. Let r, h, f be functions satisfying conditions (2), (3), (4). Let K, α, δ be constants $(K > 0, 0 \le \alpha < 1, \delta > 0)$ and $g : [0, \infty) \to [K, \infty)$ a continuous function such that

(21)
$$|f(t, g(t) x, g(t) y)| = [g(t)]^{\alpha} |f(t, x, y)|$$

holds for every $t \ge 0$ and $|y| \ge \delta$, $|x| \ge \delta$.

(a) If (18) and

(22)
$$\int_{-\infty}^{\infty} \left| f(t, \pm \bar{r}^{-1}(t) t^{n-1}, \pm \bar{r}^{-1}[h(t)] (h(t))^{n-1}) \right| dt = \infty$$

hold, then the inequality (1) has the property A.

(b) When (19) and (22) hold, then the inequality (1) has the property A_0 .

Proof. Let $y(t) \in W$ be a nonoscillatory solution of (1) such that $\lim_{t \to \infty} y(t) \neq 0$. We assume, without loss of generality, that

$$\lim_{t\to\infty}y(t)>0.$$

Then, in view of (3), we can choose \bar{t}_0 such that y[h(t)] > 0 for every $t \ge \bar{t}_0$. Then (1), with regard to (4), implies $[r(t) \ y^{(n-1)}(t)]' < 0$ for $t \ge \bar{t}_0$. If any of the conditions (18) and (19) is satisfied, Lemma 2 implies $y^{(n-1)}(t) > 0$ for $t \ge \bar{t}_0$. Then by Lemma 1, there exists $t_0 \ge \bar{t}_0$ such that the inequalities (6)–(9) hold for $t \ge t_0$.

Integrating (1) from t ($t \ge t_0$) to ∞ , we get

(24)
$$\qquad \infty > r(t) \ y^{(n-1)}(t) \ge \int_{t}^{\infty} f(s, y(s), y[h(s)]) \ ds \quad \text{for} \quad t \ge t_0,$$

and then, in view of the monotonicity of r(t) $y^{(n-1)}(t)$, we have

(24')
$$r[h(t)] y^{(n-1)}[h(t)] \ge \int_{t}^{\infty} f(s, y(s), y[h(s)]) ds$$
 for $t \ge t_1 \ge t_0$.

I. Let $k \in \{1, 2, ..., n - 1\}$. Then we obtain by (8) for i = 0

(25)
$$y(t) \ge L_0 b(t) t^{n-1} y^{(n-1)}(t), \quad t \ge 2^{n-k} t_0 = t_2,$$

(25')
$$y[h(t)] \ge L_0 b[h(t)] (h(t))^{n-1} y^{(n-1)} [h(t)]$$
 for $t \ge t_3$, where $L_0 = 2^{-n^2} / (n-1)!$ and t_3 is chosen such that $h(t) \ge \max\{t_2, t_1\}$ for $t \ge t_3$.

Let us denote

$$\Phi(t) = \int_{t}^{\infty} f(s, y(s), y[h(s)]) ds.$$

From (25) or (25'), with regard to (24) or (24'), we get, respectively,

(26)
$$y(t) \ge L_0 \bar{r}^{-1}(t) t^{n-1} \Phi(t)$$
 for $t \ge t_3$,

or

(26')
$$y[h(t)] \ge L_0 \bar{r}^{-1}[h(t)] (h(t))^{n-1} \Phi(t)$$
 for $t \ge t_3$.

Because $k \ge 1$, there exists $\delta > 0$ such that $y(t) \ge y[h(t)] \ge \delta$ for $t \ge t_3$. Then, in view of the monotonicity of the function f, (26), (26') and (21) we have

(27)
$$f(t, \bar{r}^{-1}(t) t^{n-1}, \bar{r}^{-1}[h(t)] (h(t))^{n-1}) \leq$$

$$\leq f(t, y(t) \{L_0 \Phi(t)\}^{-1}, y[h(t)] \{L_0 \Phi(t)\}^{-1}) =$$

$$= \{L_0 \Phi(t)\}^{-\alpha} f(t, y(t), y[h(t)]) \text{ for } t \geq t_3.$$

By integrating (27) from t_3 to t_4 ($t_3 < t_4$) we have

(28)

$$\int_{t_3}^{t_4} f(t, \, \bar{r}^{-1}(t) \, t^{n-1}, \, \bar{r}^{-1}[h(t)] \, (h(t))^{n-1}) \, \mathrm{d}t \leq \frac{L_0^{-\alpha}}{1-\alpha} \left[\left(\int_t^{\infty} f(s, \, y(s), \, y[h(s)]) \, \mathrm{d}s \right)^{1-\alpha} \right]_{t_4}^{t_3}.$$

From (28), in view of (24), we obtain

$$\int_{t_1}^{\infty} f(t, \bar{r}^{-1}(t) t^{n-1}, \bar{r}^{-1}[h(t)] (h(t))^{n-1}) dt < \infty,$$

which contradicts (22).

II. Let k = 0 (n is an odd integer). Then (9) with k = 0 implies in view of (23)

(29)
$$y(t) \ge M_0 b(t) t^{n-1} y^{(n-1)}(t) \text{ for } t \ge 2^n t_0$$
,

where

$$M_0 = \inf_{t \ge t_0} \left\{ \frac{y(t)}{y(2^{1-n}t)} \right\} 2^{-(n-1)^2} > 0.$$

Further, using an analogous method as in the case I, we get a contradiction with (22). If (18) holds and $k \in \{1, 2, ..., n-1\}$, then, with regard to (6), (36) is fulfilled. In all other cases (i.e. either (18) holds and k = 0 or (19) holds and $k \in \{0, 1, ..., n-1\}$) we have to assume that (23) holds. But, as shown above, this leads to a contradiction with (22). Then $\lim_{t\to\infty} y(t) = 0$ for every nonoscillatory solution $y(t) \in W$. Hence it follows that $\lim_{t\to\infty} y^{(i)}(t) = 0$ (i = 0, 1, ..., n-2) and $\lim_{t\to\infty} r(t) y^{(n-1)}(t) = 0$.

The proof of Theorem 1 is complete.

Lemma 3. Let the assumptions of Lemma 1 be fulfilled. Let $b_0 > 0$ and let $h: [0, \infty) \to R$ be a function such that (3) holds. Then there exists $T \ge 2t_0$ such that, for $t \ge T$, we have

(30)
$$|y(t)| \le C \varrho(t) (H(t))^{n-1} |y[h(t)]|, \text{ where } C \ge (2/b_0)^{n-1}.$$

Proof. The case h(t) = t for $t > 2t_0$ is trivial. Consider t such that $t > h(t) \ge 2t_0$. Without loss of generality, we assume that y(t) > 0 for $t \ge t_0$. Then, with regard to (3), (5)–(7), there exists $t_1 \ge t_0$ such that for $t \ge t_1$ we have $h(t) \ge t_0$, and either

(a)
$$y^{(i)} \lceil h(t) \rceil \ge 0$$
 $(i = 0, 1, ..., n - 1), (r \lceil h(t) \rceil) y^{(n-1)} \lceil h(t) \rceil)' \le 0$ or

(b)
$$y^{(i)}[h(t)] \ge 0$$
 $(i = 0, 1, ..., k, k \in \{0, 1, ..., n - 3\}, n + k \text{ is odd})$ and $y^{(k+1)}[h(t)] \le 0$.

Consider the case (a). Applying Taylor's theorem and (5) we get

(31)
$$y(t) \leq \sum_{i=0}^{n-2} \frac{y^{(i)} [h(t)]}{i!} (t - h(t))^{i} + \frac{r[h(t)] y^{(n-1)} [h(t)]}{(n-2)!} \int_{h(t)}^{t} \frac{(t-s)^{n-2}}{r(s)} ds \leq e(t) \sum_{i=0}^{n-1} \frac{y^{(i)} [h(t)]}{i!} (t - h(t))^{i}.$$

Because of the assumptions of Lemma 1, (10) implies

(32)
$$(b_0/2)^i (h(t))^i y^{(i)} [h(t)] \leq k(k-1) \dots (k-i+1) y [h(t)]$$

$$(i=0,1,\dots,k), \quad h(t) \geq 2t_0.$$

Using (31) and (32) we get

$$(b_0/2)^{n-1} y(t) \le \varrho(t) y [h(t)] \sum_{i=0}^{n-1} {n-1 \choose i} \left(\frac{t-h(t)}{h(t)}\right)^i =$$

$$= \varrho(t) y [h(t)] \left(\frac{t}{h(t)}\right)^{n-1} \text{ for } h(t) \ge 2t_0.$$

From the last inequality we get

$$y(t) \le C \varrho(t) y[h(t)] (H(t))^{n-1}$$
 for $t \ge T \ge 2t_0$,

where $C \ge (2/b_0)^{n-1}$ and T is chosen so that $h(t) \ge 2t_0$ for $t \ge T$.

(b) Applying Taylor's theorem and the fact that $y^{(k+1)}[h(t)] \leq 0$ for $h(t) \geq t_0$ we have

$$y(t) \leq \sum_{i=0}^{k-1} \frac{y^{(i)}[h(t)]}{i!} (t - h(t))^{i}$$
.

Next, using the same method as in the case (a) we get

$$y(t) \le y[h(t)] (H(t))^k \le C \varrho(t) y[h(t)] (H(t))^{n-1}$$
 for $h(t) \ge 2t_0$.

This completes the proof

Lemma 3 is an extension of Lemma 4 obtained by GRIMMER in [3].

Theorem 2. Suppose that (2)-(4) are satisfied and, in addition, suppose that

- (i) $r(t) \ge r_0 > 0$ for $t \ge 0$ and $b_0 > 0$;
- (ii) there exist a positive continuous function $\varphi_1(t)$ and positive nondecreasing continuous functions $\varphi(t)$, $\varphi_2(t)$, $\psi(t)$ for $t \ge a$ such that $\varphi(t) = \varphi_1(t) \varphi_2(t)$,

$$\int_a^\infty \frac{\mathrm{d}t}{\varphi(t)} < \infty \; ;$$

(iii) for $x \ge y \ge a$, $t \ge b > 0$, and for every constants α , β , γ (where $0 < \alpha \le 1$, $\beta > 1$, $\gamma > 0$) we have

(34)
$$\lim_{y \to \infty} \inf \frac{\psi(\alpha x) f(t, x, y)}{\varphi_1(x) \varphi_2(\beta \varrho(t) (H(t))^{n-1} y)} \ge d \frac{f(t, \gamma, \gamma)}{\varphi_2(\varrho(t) (H(t))^{n-1})} > 0.$$

(a) If (18) holds and

(35)
$$\int^{\infty} \frac{R_{n-2}(t) f(t, \gamma, \gamma)}{\psi(t^{n-1}) \varphi_2(\varrho(t) (H(t))^{n-1})} dt = \infty,$$

then inequality (1) has the property A.

(b) If (19) and (35) hold, then inequality (1) has the property A_0 .

Proof. Let $y(t) \in W$ be a nonoscillatory solution of (1) such that $\lim_{t \to \infty} y(t) \neq 0$. We assume, without loss of generality, that

$$\lim_{y\to\infty}y(t)>0.$$

Further, exactly as in the proof of Theorem 2 we prove that the conditions of Lemma 1 and Lemma 2 are satisfied and the inequalities (5)-(9) and (24) hold.

I. Let $k \in \{1, 2, ..., n-1\}$. By virtue of (5)-(7) and the assumption $r(t) \ge r_0 > 0$, it is easy to show that there exist constants $\bar{\alpha}$, $\bar{\gamma} (0 < \bar{\alpha} \le 1, \bar{\gamma} > 0)$ and $t_1 \ge t_0$ such that

(37)
$$\bar{\alpha} y(t) \leq t^{n-1}, \quad y[h(t)] \geq \bar{\gamma} \quad \text{for} \quad t \geq t_0.$$

In view of Lemma 3, the monotonicity of the function ψ , (4), (34) and (37) we get

(38)
$$\frac{f(t, y(t), y[h(t)])}{\varphi(y(t))} \ge \frac{\psi(\bar{\alpha} y(t))}{\psi(t^{n-1}) \varphi_1(y(t))},$$
$$\frac{f(t, y(t), y[h(t)])}{\varphi_2(C \varrho(t) (H(t))^{n-1} y[h(t)])} \ge d \frac{f(t, \bar{\gamma}, \bar{\gamma})}{\psi(t^{n-1}) \varphi_2(\varrho(t) (H(t))^{n-1})}$$

for $t \ge T_1 \ge t_1$.

 I_a . If $k \in \{2, 3, ..., n-1\}$, then (8) and the fact that $b(t) \ge b_0 > 0$ imply

(39)
$$\dot{y}(t) \ge L_1 b_0 t^{n-2} y^{(n-1)}(t) \text{ for } t \ge 2^n t_0.$$

Let k = 1 and $\lim_{t \to \infty} \dot{y}(t) \neq 0$. Then (9), with regard to $b(t) \geq b_0 > 0$, yields

(40)
$$\dot{y}(t) \ge \bar{L}_1 b_0 t^{n-2} y^{(n-1)}(t) \text{ for } t \ge t_1$$
,

where

$$\bar{L}_1 = \inf_{t \ge t_0} \left\{ \frac{\dot{y}(t)}{\dot{y}(2^{2-n}t)} \right\} 2^{-n^2} > 0.$$

Put $B = \min \{L_1 b_0, \overline{L}_1 b_0\}$. Using (24), (39) and (40) we get

$$\dot{y}(t) \ge B \frac{t^{n-2}}{r(t)} \int_{t}^{\infty} f(s, y(s), y[h(s)]) ds.$$

With regard to (38) and the monotonicity of y and φ , after multiplying the last inequality by $\{\varphi(y(t))\}^{-1}$, we obtain

(41)
$$\frac{\dot{y}(t)}{\varphi(y(t))} \ge B \frac{t^{n-2}}{r(t)} \int_{t}^{\infty} \frac{f(s, y(s), y[h(s)])}{\varphi(y(s))} ds \ge$$

$$\ge dB \frac{t^{n-2}}{r(t)} \int_{t}^{\infty} \frac{f(s, \bar{\gamma}, \bar{\gamma})}{\psi(s^{n-1}) \varphi_{2}(\varrho(s) (H(s))^{n-1})} ds$$
for $t \ge T \ge \max\{T_{1}, 2^{n}t_{0}\}$.

In view of (33), after integrating (41) from T to t (t > T) we get

$$\infty > \int_T^\infty \frac{\dot{y}(t)}{\varphi(y(t))} dt \ge dB \int_T^t \frac{R_{n-2}(s, T) f(s, \bar{\gamma}, \bar{\gamma})}{\psi(s^{n-1}) \varphi_2(\varrho(s) (H(s))^{n-1})} ds,$$

which contradicts (35).

I_b. Let k = 1 and $\lim_{t \to \infty} \dot{y}(t) = 0$. Integrating (24) from t ($t \ge t_0$) to ∞ we obtain

$$-y^{(n-2)}(t) \ge \int_{-\infty}^{\infty} R_0(s, t) f(s, y(s), y[h(s)]) ds.$$

Repeating this procedure n-3 times, we get

(42)
$$(-1)^n \dot{y}(t) \ge \int_t^\infty \frac{R_{n-3}(s,t)}{(n-3)!} f(s,y(s),y[h(s)]) ds \quad \text{for} \quad t \ge t_0.$$

Multiplying (42) by $\{\varphi(y(t))\}^{-1}$, using the monotonicity of the functions y, φ , (38), and the fact that n is even (n + k) is odd), we obtain

(43)
$$\frac{\dot{y}(t)}{\varphi(y(t))} \ge d \int_{t}^{\infty} \frac{R_{n-3}(s, t) f(s, y(s), y[h(s)])}{(n-3)! \varphi(y(s))} ds \ge \frac{d}{(n-3)!} \int_{t}^{\infty} \frac{R_{n-3}(s, t) f(s, \bar{\gamma}, \bar{\gamma})}{\psi(s^{n-1}) \varphi_{2}(\varrho(s) (H(s))^{n-1})} ds \quad \text{for} \quad t \ge T.$$

Integrating (43) from T to t ($t \ge T$) and using (33) we get a contradiction with (35).

II. Let k = 0 (n is an odd number). In view of (36), (3) and (7), there exist constants σ , ε (0 < $\sigma \le 1$, $\varepsilon > 0$) and $t_3 \ge t_0$ such that

$$\sigma y(t) \le t^{n-1}$$
, $y[h(t)] \ge y(t) \ge \varepsilon$ for $t \ge t_3$.

By virtue of the monotonicity of ψ , φ_2 , f, the last inequality and (30) we have

where

$$K=\psi(\varepsilon\sigma)\;\varphi_2(C_0)\;,\quad C_0=\frac{1}{C}\inf_{t\geq t_3}\left\{\frac{y(t)}{y[h(t)]}\right\}>0\;.$$

It is obvious that (42) holds also for k = 0. Then (42) with n odd, in view of (44), implies

$$-\dot{y}(t) \ge \frac{K}{(n-3)!} \int_{t}^{\infty} \frac{R_{n-3}(s,t) f(s,\varepsilon,\varepsilon)}{\psi(s^{n-1}) \varphi_{2}(\varrho(s) (H(s))^{n-1})} ds \quad \text{for} \quad t \ge t_{3}.$$

Integrating the last inequality from $T(\geq t_3)$ to ∞ we get

$$y(T) > y(T) - y(\infty) \ge \frac{K}{(n-2)!} \int_{T}^{\infty} \frac{R_{n-2}(s, T) f(s, \varepsilon, \varepsilon)}{\psi(s^{n-1}) \varphi_{2}(\varrho(s) (H(s))^{n-1})} ds,$$

which contradicts (35).

If (18) holds and $k \in \{1, 2, ..., n-1\}$, then, with regard to (6), (36) is fulfilled. In all other cases (i.e. either (18) holds and k = 0 or (19) holds and $k \in \{0, 1, ..., n-1\}$) we have to assume that (36) holds. But, as shown above, this leads to a contradiction with (35). Then $\lim_{t \to \infty} y(t) = 0$ for every nonoscillatory solution $y(t) \in W$. Hence it follows that $\lim_{t \to \infty} y^{(i)}(t) = 0$ (i = 0, 1, ..., n-2) and $\lim_{t \to \infty} r(t) y^{(n-1)}(t) = 0$.

The proof of Theorem 2 is complete.

Remark. If $\psi(t) \equiv 1$, it is evident from the proof that Theorem 2 holds without the assumption $r(t) \ge r_0 > 0$.

In the case that n = 2, $r(t) \equiv 1$, we get Theorem 2.9 in [6].

Further, consider the following equation

(r)
$$\{r(t) \ y^{(n-1)}(t)\}' + F(t, y(t), y[h_0(t)], ..., y^{(n-1)}(t), y^{(n-1)}[h_{n-1}(t)]) = 0,$$

$$n \ge 2.$$

where

(45)
$$r:[0,\infty)\to(0,\infty), h_i:[0,\infty)\to R \quad (i=0,1,...,n-1),$$

 $F:D(\equiv [0,\infty)\times R^{2n})\to R \quad \text{are continuous functions};$

(46)
$$t \ge h_i(t)$$
 for $t \ge 0$ and $\lim_{t \to \infty} h_i(t) = \infty$ $(i = 0, 1, ..., n - 1)$;

(47)
$$y_1 F(t, x_1, y_1, ..., x_n, y_n) > 0$$
 for $(t, x_1, y_1, ..., x_n, y_n) \in D$
and $x_1 y_1 > 0$.

The next theorem follows directly from Theorem 1 and Theorem 2.

Theorem 3. Let equation (r) fulfil conditions (45)-(47), and in addition, let there exist a function f which satisfies (2), (4) and

$$|F(t, x_1, y_1, ..., x_n, y_n)| \ge |f(t, x_1, y_1)|$$

for every point $(t, x_1, y_1, ..., x_n, y_n) \in D_{t_0}^{(0)}$. If inequality (1) has either the property A or A_0 then equation (r) has the same property.

Corollary. Let the function h satisfy conditions (2), (3). Let p be a continuous function and v, σ real numbers such that $p: [0, \infty) \to (0, \infty), v \ge 0, \sigma > 1$. If

$$\int_{-\infty}^{\infty} t^{(n-1)(1-\sigma)} [h(t)]^{(n-1)\sigma} p(t) dt = \infty,$$

then the equation

$$y^{(n)}(t) + p(t) |y(t)|^{\nu} |y[h(t)]|^{\sigma} \operatorname{sgn} y[h(t)] = 0, \quad n \ge 2$$

has the property A.

Proof. If we put $F(t, x_1, y_1, ..., x_n, y_n) = p(t) |x_1|^{\nu} |y_1|^{\sigma} \operatorname{sgn} y_1$, $\psi(x) \equiv 1$, $\varphi_1(x) = |x|^{\nu}$, $\varphi_2(y) = |y|^{\sigma}$, then the assertion follows from Theorem 3 and Theorem 2.

Theorem 4. Let $m \in \{1, 2, ..., n-1\}$ and let the conditions (18), (45)-(47), $b_0 > 0$ be fulfilled. Further, we suppose:

- (a) $h_m(t) \leq \{\min [h_0(t), h_1(t), ..., h_{m-1}(t)]; t \geq 0\};$
- (b) there exists a function f which satisfies (2), (4), and

(48)
$$|F(t, x_1, y_1, ..., x_n, y_n)| \ge |f(t, x_{m+1}, y_{m+1})|$$

for every point $(t, x_1, y_1, ..., x_n, y_n) \in D_{t_0}^{(m)}$;

(c) the following inequality

(49)
$$\{ [r(t) \ y^{(n-m-1}(t)]' + f(t, y(t), y[h_m(t)]) \} \operatorname{sgn} y[h_m(t)] \le 0$$

has the property A.

Then equation (r) has the property A_m .

Proof. Let $y(t) \in W$ be a nonoscillatory solution of (r) such that

$$\liminf_{t\to\infty}y^{(m)}(t)=C>0$$

(the case $\limsup y^{(m)}(t) = C < 0$ is treated similarly).

From (49), in view of (46), we get

(50)
$$y^{(i)}(t) > 0$$
, $y^{(i)}[h_i(t)] > 0$ $(i = 0, 1, ..., m)$ for $t \ge t_0 > 0$.

Thus, with regard to (50), (47) and (18), it is obvious that the assumptions of Lemma 1 and Lemma 2 are fulfilled and therefore (5)-(10) hold, where $m \le k \in \{0, 1, ..., n-1\}$, n+k is odd. By (10) and the assumption (a), it is easy to prove that the following inequalities

(51)
$$\frac{(n-m-1)!}{(n-j)!} \left(\frac{b_0 t}{2}\right)^{m-j+1} \leq \frac{y^{(j-1)}(t)}{y^{(m)}(t)},$$

$$\frac{(n-m-1)!}{(n-j)!} \left(\frac{b_0}{2} h_m(t)\right)^{m-j+1} \leq \frac{y^{(j-1)}[h_{j-1}(t)]}{y^{(m)}[h_m(t)]} \quad \text{for} \quad t \geq t_1 \geq 2t_0$$

hold.

Evidently, $u(t) = y^{(m)}(t)$ satisfies

$$\lim_{t\to\infty}\inf u(t)=C>0$$

and, for $t \ge t_1$, u(t) is a solution of the following equation

(53)
$$[r(t) u^{(n-m-1)}(t)]' +$$

$$+ G(t, u(t), u[h_m(t)], ..., u^{(n-m-1)}(t), u^{(n-m-1)}[h_{n-1}(t)]) = 0,$$

where

$$G(t, x_{1}, y_{1}, ..., x_{n-m}, y_{n-m}) = F\left(t, \frac{y(t)}{y^{(m)}(t)} x_{1}, \frac{y[h_{0}(t)]}{y^{(m)}[h_{m}(t)]} y_{1}, ...\right)$$

$$..., \frac{y^{(m-1)}(t)}{y^{(m)}(t)} x_{1}, \frac{y^{(m-1)}[h_{m-1}(t)]}{y^{(m)}[h_{m}(t)]} y_{1}, x_{1}, y_{1}, ..., x_{n-m}, y_{n-m}\right).$$

In view of the last relation, (47), (48) and (51) we get

(54)
$$y_1 G(t, x_1, y_1, ..., x_{n-m}, y_{n-m}) > 0$$
,

(55)
$$|G(t, x_1, y_1, ..., x_{n-m}, y_{n-m})| \ge |f(t, x_1, y_1)| \text{ for } x_1 y_1 > 0,$$

 $x_i, y_i \in R \quad (i = 1, 2, ..., n - m).$