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(Received March 23, 1977)

We consider the following differential inequality

(1) {[r() Y= (O] + f(&, ¥(0), y[H(OT} sen y[R()] <0, nz2,

where

(2) r:[0, ) > (0,0); h:[0,0)—>R;
f:[0,0) x R* > R are continuous functions,

(3) h(t) <t, limh(f) =0 for t— o,

4) yf(t,x,y) >0 for (tx,y)€e[0,0)x R*, xy>0;

If(t’ X1s J’1)| = If(t, X25 J’2)| for lel = ‘x2| s |}’1| = l.V2| » X% >0,
Y12 >0, x99, >0.
Denote by W the set of all solutions y(f) of the differential inequality (1), which
exist on a ray [ty, 0] < [0, o) and satisfy
sup {|y(s)] :s = £} > 0
for every € [ty, o).

A solution y() € Wis said to be oscillatory if the set of zeros of y(t) is not bounded
from the right. Otherwise the solution y(t) € W is said to be nonoscillatory.

Definition 1. We shall say the that the inequality (1) has the property A if every
solution y(t) € W is oscillatory for n even, while for n odd is either oscillatory or
Y1) (i=0,1,...,n — 2) and r(t) y" V(1) tend monotonically to zero as t — co.

Definition 2. Let me {0, 1, ..., n — 1}. We shall say that the inequality (1) has
the property A, if every solution y(f)e W is either oscillatory or y(t) (i = m,

m + 1,...,n — 2) and r(f) y~")(t) tend monotonically to zero as t — co.

281



The oscillatory properties of solutions of differential equations of the n-th order
with the term [r(t) y*~V(t)] (n = 2, n 2 2, r(t) > 0) are studied, for example,
in [1,2,4,7,9=12]. In this paper we shall prove sufficient conditions for the ine-
quality (1) to have either the property 4 or 4,.

Finally, with the help of the inequality (1) we shall prove a sufficient condition for
the equation (7) to have the property 4,,, me {0, 1, ..., n — 1}. Our results generalize
some of those in the papers [1—3, 6, 9, 12].

Let us denote

Ft) =max {r(s): tf2<s < t},

b(r) = :8 by = inf {b(t) : 1 = 1} ,

R(1) = —-—dx, k=0,1,...,n -2, Tel0, ),

r (%)

R\(t,u) = (x—u) dx, k=0,1,...,n—-2, ust,

. 1)

= r[h(#)] 2t g .
o) = min {r(s) : h(t) < s < 1} , H(t) = 1) for h(tf)>0.

Let me {0, 1,...,n — 1}, t, € [0, c0). Put

D = {(t, X1, Y1, --0» Xn Y) €[0, 0) x R*": 85 < h(1),
(n=m—=1D by \"*t _ x;  (n—m+1)! m-J+l
(n =) (2 t) = Xpeq ) ( H ))

2/ (J=12...m+1), Xpr¥m+:1 >0, x,y;€R,
ym+l

A

IIA

IIA

(i=m+2,..,n)}.

Lemma 1. Let y(t), ..., y"~*)(t) be continuous functions of constant sign in the
interval [to, ) < [0, o). If

) YO [y DOF S0, W) +0 for 1210

(5" VW) Yy ()20 for t2t,,

where the function r satisfies (2), then there exlsts an integer ke {0,1,...,n — 1},
n + k odd, such that

(6 Yy y()20 (i=0,1,....,k), t21,

(7 (D) YD) ()20 (i=k+1,..,n=1), t21t,,
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(®) lyO()| = Ly b(t) #~ 1 2y™=D(r)|, where ke{1,2,..,n -1},

il
Li=—"———— (i=01..,k=1), t=2"%,,
(n—i—1) ( ) °

(9) |y(k)(t)| > okt b(zn—k—lt) Iy(n-l)(zn—k-lt)l , t2t,

J=i 4j=i
(10) i!(%) T < ithye 2 ()] (=0, Lisewks P=0,0, ) o
t=2t,.

Proof. Under the assumption (5'), assertions (6) and (7) follow from Kiguradze’s

lemma 14.2 in [5]. Further, we may suppose, without loss of generality, that y(f) > 0
for t = t,.

(a) Let k = n — 1. Then (6) implies
YW zo0, i=12,..,n—-1, t2t,.

Using Taylor’s theorem, the last inequality, and the monotonicity of [r(f) y®~1(1)],
we get

@y =g EBE [ T e
Jj=0 t/2

! i—2)
L[ oy (= 2 4 B0 (Y
[T a6

(i=01..,n-2), t=2.
From (11), we obtain (8) for k = n — 1.
The inequality (9) for k = n — 1 is evident.

(b) Let ke{0,1,...,n — 3} and let n + k be an odd integer. Then, in view of
Lemma 1 in [8], we get

(12) y("(t) = Eit"—i_3 y("‘3)(t) , 12 2n-k-2t0 ,
- 2-(n-2) )
Li=(n—-———i_-—3)-", (l=0,1,...,k—1),

and

(13) y(k)(t) = pok-3 y(n—3)(2n—k—3t) , 2.

With the help of (7) and (5), we get
t

(14) -y 2(1/2) gJ Yo B(s)ds 2 % b(t) Y V(r), t=2t,.

t/2
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For t 2 4t,, using (6), (7) and (14), we obtain

(15)  ye» (L) z ye-a (L) _ye-n (L) 5 L je-a (F >t—2-b(t) = 1()
4) ~ 4 2) = 4 2)=% 77 '

The inequalities (15), (12) and (13) imply (8) and (9).

If ke {0, 1, ..., n — 3}, then the inequality (10) follows from Kiguradze’s lemma
in [5]. It remains to prove (10) for k = n — 1.

Let k = n — 1. Using (6) we can show that

yOI2U0() 2 2 yn=i= 1)<;>, (i=12..,n-2), t22,.

Utilizing the last inequality and (6), we can easily verify the correctness of the
following relation

(16) (1 + i) y*=279(s) — f

t/2

t

[ (n=i=1)(g) — yo- ‘)(s)] ds =

v

> (1 — b) y™=2=(r) + o . 0 ¢ yr=i=1y(y) 4 20 > [y(n =g — 37 yomis 1)(t)]

2

2 >, Yoo, (i=1,2,..,n-2), t221.
Fori=n -2,

(17) Y1) 2 bgt) £y=1(t) 2 l; YOO, 2 2

follows from (11).
Further, (16) and (17) imply

1+ )y"29( = 2 Yo, t22, (i=0,1,..,n-2).

For k = n — 1, (10) follows from the last inequality.

This completes the proof of Lemma 1.
Lemma 1 is an extension of Lemma 2 in [9].

Lemma 2. Let (2)—(4) hold.
(a) If
(18) & ),
then conditions (5) and (5') are satisfied for every nonoscillatory solution y(t)e W

of (1).
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(b) If

(19) r (r(t)j |£(s. e, ¢)| ds) dt = o

for every ¢ + 0and T 2 0, then conditions (5) and (5') hold for every nonoscillatory
solution y(t) € W of (1) such that lim y(t) + 0.

t—co

Proof. We assume, without loss of generality, that y(f) > 0 for t 2 t,. Then, in
view of (3), there exists ¢, = t, such that y[h(t)] > 0 for ¢ 2 ¢,. From (1), with
regard to (4), we obtain

(20) [r(t) y= (O] = —f(t ¥(1), y[h(1)]) <O for t=t,.

(a) 1f (18) holds, then using the same method as in Lemma 1 in [9], we get
Y (1) > 0 for t = t,.

(b) Via contradiction we prove that y"~1)(t) > 0 for t = ¢,. We suppose that for
some t, 2 t; we have y®™ 1)(t,) < 0. Then (20) implies y"~(f) < 0 for t 2 t,.
If lim y(t) > 0, then there exist ¢ > 0 and t; 2 t, such that y(f) > ¢ and y[h(f)] 2

t— o0

2 ¢ hold for every t 2 t;. Thus (20), under the assumption (4), yields

[r(®) ¥y D)) = —f(t,e,e) <0 for t=1;.

Integrating the last inequality from T (T = t;) to t and using y"~(f) < 0 for
t =t, we have

Yo (1) < it jt f(s, & €)ds.

Integrating the last relation from T to t, with regard to (19) we get hm yOo (1) =
= — o which contradicts the positivity of y(t) for t 2 t,.
The proof of Lemma 2 is complete.

Theorem 1. Let r, h, f be functions satisfying conditions (2), (3), (4). Let K, a, &
be constants (K >0, 0= a <1, 6> 0) and g:[0, ) - [K, ©) a continuous
function such that

(21) |7(t. 9(t) x, 9(t) y)| = [9OT* |£(t, x, )|
holds for every t = 0 and |y| =0, |x| = 0.
(a) If (18) and

22) [l g7 e, s pl o) =
hold, then the inequality (1) has the property A.
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(b) When (19) and (22) hold, then the inequality (1) has the property A,.
Proof. Let y(t)e W be a nonoscillatory solution of (1) such that lim y() # 0.

We assume, witHout loss of generality, that 1
(23) lim y(¢) > 0.
t— oo

Then, in view of (3), we can choose 7, such that y[h(#)] > 0 for every ¢ = i,. Then (1),
with regard to (4), implies [#(¢) y*~)(f)]' < 0 for t = #,. If any of the conditions
(18) and (19) is satisfied, Lemma 2 implies y*"~')(f) > Ofor t = %,. Then by Lemma 1,
there exists t, = i, such that the inequalities (6)—(9) hold for t = t,.

Integrating (1) from ¢ (¢ 2 t,) to oo, we get
(24) T > r(f) y*U(n) 2 J.wf(s, W(s), y[h(s)])ds for t=1,,
t
and then, in view of the monotonicity of r(f) y~*)(t), we have
(24)  r[h(e)] Y P[A(1)] 2 on f(s, ¥(s), y[h(s)]) ds for t=1t, =1,.
t

I. Let ke{1,2,...,n — 1}. Then we obtain by (8) for i = 0
(25) W) Z Leb()) =t y®=b(p), t22"M, =1,,
(25)  y[K(O] 2 Lo b[A(O] ()™ " P[A(1)] for 1215,
where L, = 27"|(n — 1)! and t, is chosen such that
h(f) 2 max {t,, t,} for t2>t;.

Let us denote
a(i) = rf(s, 9(9) YTA]) ds -

From (25) or (25'), with regard to (24) or (24'), we get, respectively,

(26) W) 2 Ly~ ()"~ (1) for t2t,,
(26) y[h())] = Lo 7 [h(e)] (R(e))"~* ®(¢) for t2=1t;.

Because k = 1, there exists & > 0 such that ¥(t) = y[h()] = 6 for t = t;. Then,
in view of the monotonicity of the function £, (26), (26") and (21) we have

(27) £t 710 =2, P R] ()P Y) <
= £t 1(1) {Lo #(1)} 1, y[A()] {Lo 2(9)} ™) =
= {L, ®(t)} ~* f(t, ¥(1), y[h(t)]) for t=1t,.
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By integrating (27) from t, to t, (t; < t,) we have

(28)
j 70,70 7, O] () 0 s 2 [(j 765, 96) y[h(s)])ds) ]

From (28), in view of (24), we obtain

r S F2(0) #, FA[h(] ()P~ dt < w0,

which contradicts (22).
II. Let k = 0 (n is an odd integer). Then (9) with k = 0 implies in view of (23)

(29) 1) = My b(t) =1 y*=(r) for ¢ =2%,,

where

= it { (1) }2-0'"1)’ >0.

t=to y(21 nt)

Further, using an analogous method as in the case I, we get a contradiction with (22).

If (18) holds and ke {1, 2,...,n — 1}, then, with regard to (6), (36) is fulfilled.
In all other cases (i.e. either (18) holds and k = 0 or (19) holds and k€ {0, 1, ...
., n — 1}) we have to assume that (23) holds. But, as shown above, this leads to
a contradlctlon with (22). Then hm y(t) = 0 for every nonoscillatory solution y(f)

€ W. Hence it follows that lim y("(t) =0(i=0,1,...,n — 2)and lim r(f) y"~ (1) =
t— o

i 0 t— o0

The proof of Theorem 1 is complete.

Lemma 3. Let the assumptions of Lemma 1 be fulfilled. Let by, > 0 and let
h :[0, ©) - R be a function such that (3) holds. Then there exists T = 2t, such
that, for t = T, we have

(30) |¥(0)] < Colt) (H(D)"~* |y[M(1)]|, where C = (2[bo)*~*.

Proof. The case h(f) = t for t > 21, is trivial. Consider ¢ such that t > h(t) = 2t,.
Without loss of generality, we assume that y(t) > 0 for t = t,. Then, with regard
to (3), (5)—(7), there exists ¢, = t, such that for t > t, we have h(t) = t,, and either

(@) y?[(] 20 (i=0,1,...,n = 1), (r[A()] y*~ P [A(t)]) < O or
(b) yO[r()] 20 (i=0,1,...,k ke{0,1,...,n — 3}, n + k is odd) and
Y[ < 0
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Consider the case (a). Applying Taylor’s theorem and (5) we get

(31) »(» g”‘z y“[h(1)] (t — h(t)' + r[h()] y"~ P[] (¢ (¢ =572 ds
RS (n —2)! wo  1(9) -

TP LU0

Because of the assumptions of Lemma 1, (10) implies
(32) (bo/2)' (h(2))' yP[h(1)] < K(k — 1) ...(k — i + 1) y[h(?)]
(i=0,1,..,k), h(f)=2t,.
Usirig (31) and (32) we get

(Bof2"~ 3(1) < (1) y[h(t)]z (" - 1) (L#) _

t n—1
= o(t) y|h(t) | — for h(1) = 2¢,.
0001 (5) () 2 24
From the last inequality we get

(0) £ Co(t) y[h(D] (H(t))"™* for t= T2 2t,,

where C = (2/b,)" ™! and T'is chosen so that h(t) = 2t fort = T.
(b) Applying Taylor’s theorem and the fact that y**V[h(r)] < 0 for h(f) = t,
we have

) = 3 LHOL ey

i
Next, using the same method as in the case (a) we get

o) < YTAO] (O < € o) yTHO] (W™ for h(1) = 21, .

This completes the proof
Lemma 3 is an extension of Lemma 4 obtained by GRIMMER in [3].

Theorem 2. Suppose that (2)—(4) are satisfied and, in addition, suppose that
() () 2 ro > 0 for t 2 0 and b, > 0;

(i) there exist a positive continuous function ¢,(t) and positive nondecreasing
continuous functions ¢(t), @,(), Y() for t = a such that (1) = ¢,(t) @,(1),

(33) rﬂmo;

a o(t)
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(ii)) forx 2 y = a,t 2 b > 0, and for every constants «, f,y (where 0 < a < 1,
B> 1,y > 0) we have

(34) lim inf — Y@ /(6% 9) g Sr)
e 02(%) 0208 o)) (HOY™3) = oalel®) (HOY™)
(a) If (18) holds and
[ R,()f(t,7,7) _
) J 5 ety iy
then inequality (1) has the property A.
(b) If (19) and (35) hold, then inequality (1) has the property A,.

[\

bl

Proof. Let y(t)e W be a nonoscillatory solution of (1) such that hm y(t) #+ 0.
We assume, without loss of generality, that

(36) lim y(¢) > 0.
y—*to©
Further, exactly as in the proof of Theorem 2 we prove that the conditions of
Lemma 1 and Lemma 2 are satisfied and the inequalities (5)—(9) and (24) hold.
I Let ke{1,2,...,n — 1}. By virtue of (5)—(7) and the assumption r(f) =

> ro > 0, it is easy to show that there exist constants &, 7 (0 < & £ 1,7 > O)and ¢, =
= t, such that

(37) ay(t) e, y[(]=F for t2t.
In view of Lemma 3, the monotonicity of the function , (4), (34) and (37) we get
o 50 TD 5 wED)
o(¥(1) W) e (¥(1)
fe Y0¥k S, f(t.3,9)

02(C o(t) (HOY ™" y[h(®)]) — (") @2le(t) (HE)™)
for t=T, =t,.
I,. If ke{2,3,..", n — 1}, then (8) and the fact that b(t) = b, > 0 imply

(39) W) 2 Ly bot"" 2 y®=I(1) for t=2",.
Let k = 1 and lim y(¢) # 0. Then (9), with regard to b(t) = b, > 0, yields
1= o0

(40) J(t) = Libot" "2y~ Y1) for t2=1¢,,
where
L =inf {20 1o-n 50,
t2to }3(22_"1‘)
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Put B = min {L,b,, L,b,}. Using (24), (39) and (40) we get

. H)=B t:(‘t ) j " (s, ¥(6), yIA(5)]) ds

With regard to (38) and the monotonicity of y and ¢, after multiplying the last
inequality by {¢(y(f))} ~*, we obtain

) o 7 [ S0
1) o 28 [y e 2

T f(s, %, 7)
=4 () f e (") @a(e(s) (H(s))"™ l)

for t= T2 max {Ty, 2"} .

In view of (33), after integrating (41) from Ttot(t > T) we get

>J‘ y(t) j‘ n z(s, f(S )’, 'y) dS
- o) W(s"™") @a(els) (H(s))"™")
which contradicts (35).
I,. Let k = 1 and lim y(¢) = 0. Integrating (24) from t (¢ = ;) to o0 we obtain

t— oo

—y () 2 j“’xo(s, )£(5, ), yLH(E)]) ds

Repeating this procedure n — 3 times, we get

(42) (=1 ) 2 Jw I({':%(SB’)? f(s, ¥(s), y[h(s)]) ds for t2=¢,.

Multiplying (42) by {¢(»(t))} ~*, using the monotonicity of the functions y, ¢, (38),
and the fact that n is even (n + k is odd), we obtain

A) o 4 [T Raza(s: ) (s, ¥(5), y[H)D)
£ 0024, =0 00
Rn—a(sa t) f(S, '}’, '}’) or > .
25, e Gor B
Integrating (43) from T to ¢ (¢t = T) and using (33) we get a contradiction with (35).

IL Letk = 0(nis an odd number). In view of (36), (3) and (7), there exist constants
0,e(0 <o =<1,&>0)and t; = t, such that

cyt) s, yh(] = yt)=e for t=t,.
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By virtue of the monotonicity of ¥, ¢,, f, the last inequality and (30) we have

) et o) & M e EIE TN S0 TOD

- K f(t, ¢ ¢) tz 1,

2 V) eatel (HEY) ' E

where

= Y(ea) o, = g {20 >
K =le) 9:lGo)s Co = It {Y[h(‘)]} "

It is obvious that (42) holds also for k = 0. Then (42) with n odd, in view of (44),
implies

“5) 2 R,_5(s, 1) f(s, & €) ds

K
& (n - 3)!J e W) 9a(els) (H(s))'™)

Integrating the last inequality from T(g t;) to co we get

for t=>1t,.

— v n—2(8, T) f(s, &, €)
AT > ATy - ) 2 s | e e o

which contradicts (35).

If (18) holds and ke {1, 2, ..., n — 1}, then, with regard to (6), (36) is fulfilled.
In all other cases (i.e. either (18) holds and k = 0 or (19) holds and ke {0, 1, ...,
n — 1}) we have to assume that (36) holds. But, as shown above, this leads to a contra-
diction with (35). Then lim y(f) = 0 for every nonoscillatory solution y(f)e W.

t— o
Hence it follows that lim y(f) =0 (i = 0, 1, ..., n — 2) and lim r(¢) y"~ (1) = 0.
t— o0 t— o

The proof of Theorem 2 is complete.

Remark. If y(f) = 1, it is evident from the proof that Theorem 2 holds without
the assumption r(f) = r, > 0.
In the case that n = 2, r(f) = 1, we get Theorem 2.9 in [6].

Further, consider the following equation

(r) {r(t) y*= PO} + F(t, y(0), y[ho(9)], -, y"~2(8)s "~ P[ha-s(1)]) = O,
n=2,

where
(45) r :[0,0) > (0,0), h:[0,00)>R (i=0,1,...,n-1),

F:D(= [0, ©) x R*) - R are continuous functions ;
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(46) t2h(t) for t=20 and limh(t)=o00 (i=0,1,...,n—1);

t— o0

(47) Vi F(b Xy, Y1y oo Xy ¥n) > 0 for (8 Xy, Y1y o0y Xpy Yu) €D

and x,y, >0.

The next theorem follows directly from Theorem 1 and Theorem 2.

Theorem 3. Let equation (r) fulfil conditions (45)—(47), and in addition, let there
exist a function f which satisfies (2), (4) and

|F(t’ xl’ yls LAY ] xm yn)| é |f(t’ xl’ yl)l

for every point (t, Xy, Y1, ..., Xy, ¥n) € D). If inequality (1) has either the property A
or A, then equation (r) has the same property.

Corollary. Let the function h satisfy conditions (2), (3). Let p be a continuous
function and v, ¢ real numbers such that p:[0, ) — (0,0), v=0, ¢ > 1. If

=]
J (=D ()] 1) dt = a0 ,
then the equation

v + p(0) [y Y[R sen y[A(H] = 0, n =2

has the property A.

v

Proof. If we put F(t, Xy, Y1, ..0s Xp ¥a) = P(2) |%4|" |¥4]" sgn y1, ¥(x) = 1,
@4(x) = |x|", 92(y) = |y|°, then the assertion follows from Theorem 3 and Theorem 2.

Theorem 4. Let me {1,2,...,n — 1} and let the conditions (18), (45)—(47),
b, > 0 be fulfilled. Further, we suppose:

(@) hy,(t) < {min [ho(2), hy(2), ..., hp-y()]; t 2 0};
(b) there exists a function f which satisfies (2), (4), and

(48) IF(t’ X15> Vs ooes Xps yn)l ; lf(t’ Xm+1> ym+1)|

for every point (t, Xy, yy, ..., Xy, y,) € DI;

(c) the following inequality

(49) {Lr(®) y"= "0 + £(t, (2), y[ha(t)])} sen y[halt)] < 0

has the property A.
Then equation (r) has the property A,,
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Proof. Let y(t) € W be a nonoscillatory solution of (r) such that

lim inf y™(f) = C > 0

t— oo

(the case lim sup y™(f) = C < 0 is treated similarly).

t— o0

From (49), in view of (46), we get
(50) yP(t) >0, yI[h()] >0 (i=0,1,....m) for t=1t,>0.

Thus, with regard to (50), (47) and (18), it is obvious that the assumptions of
Lemma 1 and Lemma 2 are fulfilled and therefore (5)—(10) hold, where m < ke
€{0,1,...,n — 1}, n + kis odd. By (10) and the assumption (), it is easy to prove
that the following inequalities

- (rmm = 1)
(n—jr \2 ()
- - 1) m=j+1 G-1[p,.
(a1 = (B, 0y PR adiind LU PSR

(n—j)t \2 Y Lha(6)]

hold.
Evidently, u(t) = y™(t) satisfies
(52) liminfu(t) = C > 0
t— o0

and, fort > t,, u(t) is a solution of the following equation
(53) [ u® D] +
+ G(t, u(t, ulhn()], ., w00, w0y, ()]) = 0,

where

_ n1) y[ho(1)]
Glt; X5 Vo o0 Xn—is Frmm) = F({, (0 Xys S ha(0] Vis oo

Yo Y (0]
Ty T y™ha(1)]

In view of the last relation, (47), (48) and (51) we get

y13 X1s V15 ov0s Xp—mo> yn—m) L

(54) Y1 G(t’xh Yis oeos Xn—m> yn—m) > 0’

(55) IG(t, Xis Pis vns Kot y,,_,,,)| > [f(t, X5 )’1)l for x,y, >0,
x, y,€R (i=1,2,...,n—m).
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