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OF ANALYTIC VECTOR-VALUED FUNCTIONS
(COMPLEX CONDITIONS)
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In this paper, we deal with the problem of characteristic properties of the Laplace
transform of vector-valued exponentially bounded functions on the positive halfaxis
which are analytic in that sense that they are, roughly speaking, developable in power
series about the points of the positive halfaxis with linearly increasing radii of con-
vergence. These properties can be described in the following way: the functions in
question are infinitely differentiable on the positive halfaxis R* and their derivatives
satisfy the inequalities B(I) in Theorem 8 with certain constants M = 0, v = 0,
ez0.

We give necessary and sufficient representability conditions of complex type in
terms of the existence of a certain analytic continuation of the Laplace image to
a fan-shaped domain symmetric around a real halfline (with the angle greater than )
as shown in Theorem 8.

On the other hand, the class of analytic functions in the positive halfaxis, which
are considered as originals of the Laplace transformation and which are roughly
described above, is characterized by the existence of a certain analytic continuation
to a wedge-shaped domain around the positive halfaxis (with the angle less than )
as shown in Theorem 10.

The above described problems were studied in the special case of the so called
analytic or holomorphic or parabolic semigroups, but in the proof of representability,
very special properties of the resolvent were exploited, which is not possible in the
general case of the Laplace transform (cf. [1], [2], [3]).

The advantage of complex representability conditions lies in the fact that the
behaviour of derivatives of the Laplace image need not be examined.

1. In the sequel, C will denote the complex number field, R the real number field
and R™ the set of all positive numbers. If M,, M, are arbitrary sets,then M, - M,
will denote the set of all mappings of the whole set M, into the set M,.

2. By E we denote a general Banach space over C with the norm
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3. Proposition. Let f€ R* — E and let M, o, ¢ be nonnegative constants. If
(o) the function f is infinitely differentiable on R™,

B |ro@)| = Me®(q! ¢*|t%) for every te R* and q€{0,1, ...},
then there exists a function ® € {z; Rez + 1/2(1 + @) IIm z| > w} — E such that

(a) @ is analytic in the domain {z : Re z + 1/2(1 + @) |Im z| > w},

(b) |#(2)]| < 2M/(Re z + (1 + @)~ |Im z| — w) for every zeC,
Rez + ¥1 + ¢)”! [Imz| > o,

(¢) ®(z) = [& e * f(r) dt for every ze C, Rez > w.
Proof. First of all, it follows from (o) and (p) that

3 (1) S erta - e =

q
= Me*' q' Y <;1) 0777 = Me” q!(1 + @) for any te R* and q€{0,1,...}.
ji=0
Let us now write
(2 () = J‘ e f(t)dr for Rez > w.
0

Then by («), (B) and (2)
(3) @, is an analytic function in the domain {z : Re z > w}.

It follows from (1) and (2) that

<

@ |09 = \l(—l)ﬂ 2 j e de

©
'[ e-Rezr
0

M
Rez —w

- [ e s o

IIA

d‘l
L @s0)

dr §.[ e kT Me" gl(1 + o)f dr =
0

q'(1 +¢)* forany Rez>w and qe{0,1,...}.

Now we shall prove that there exists a function -
de{z:Rez + 41 + ¢)”" [Im z| > w} - E such that
(5) @ is analytic in its domain,

(6) @(z) = Po(z) forany Rez > w,
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1) ) = i PP(z + H(1 + o)~* |Im ZD (31 + o)? |Im qu for any

=0 q!
Rez + (1 + ¢)7! [Im z| > w.
To this aim let us first fix z € C so that
(8) Rez+ ¥l +¢0) '|Imz| > .
In examining the series (7), we denote for the sake of simplicity
(9) zo=z+ ¥l +e) "|mz|

Using the notation (9), we can write (7) in the form

19) o) = 5 25C c — 2y

=0

Since Re z, > w by (8) and (9), the series (10) represents the analytic extension
of @, in its domain of convergence. Hence we need only to prove that z lies in this
domain. We have by (4)

o0 (2) o (q)
Z P ZO) (z _ Zo)q < Z ”&LZO_)“ Iz _ zo'“ <
q=0 q' q=0 q'

. M i ((1 +o)lz - z0|)4.

“ Rezy — wq=0 Zo

Consequently, it suffices to prove that

(11) |z =z < =l

1+ Q.
We have by (8) and (9)
|z = 20| = {1 + ¢)"* [Im 2| < (1 + ¢)™* [@* + (Im 2)*]"/* <
<31+ 0 " [(Rez + X1 + @)~ ! [Im 2|)* + (Im 2)*]*/* =
=41+ |Rez+ ¥l +¢) ! |Imz| +ilmz| =
=31+ |z+¥1+0 M Imz|| =31 + )" |z0o] < (1 + @)™ |20]

which verifies (11).
The above considerations prove (5)—(7).
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Finally, we estimate by means of (4) and (7)

(12) ”cb(z)” é‘”qi DYz + (1 ;;! 0)~! [Im z|) (4(1 + @)~ tm 2|1 <
< M = ( (1 + o)t |Im z| )“
~ Rez+ ¥l +0)7? [Im z| — @ 4=0 \|z + ¥(1 + @)™ [Im z||

forany Rez + ¥(1 +¢)7'|Imz| > .

For the series in (12) we obtain further the estimate

(13) i( L + o) ! [Img| >‘1=

a=o \|z + 1 + @)* |Im z||

_< %(1+Q)'1|Imz| ‘. —1y _
il J = Lu0+am

=0 \[(Re z + 3(1 + 0)* |Im z|)? + (Im z)*]*/
1 _At+e) _,

T 1—41+e ' 142

It follows from (12) and (13) that

2M
(14) [o(z)] = Rez + (1 + ¢)™* [Im z| - @

for any

Rez + ¥1 + ¢)! |Imz| > w.

The statement of Proposition 3 follows from (5), (6) and (14).

4. Remark. The extension constructed in Proposition 3 is not the largest generally
accessible. Nonetheless, the construction of a larger extension calls for a more
sofisticated technique and hence we restrict ourselves to the above result which is
sufficient for our purposes.

5. Proposition. Let N, x be two nonnegative constants, u a positive constant and
®e{z:Rez + plmz| > x} - E.If

(«) the function @ is analytic in the domain {z : Re z + p|Im z| > x},

® |o@] s

‘N
ez + pllmz| — x

forany zeC, Rez + ulIm z| > x,

then there exists an infinitely differentiable function fe€ R* — E such that

Neé*(4 + p?)'? q! p\2x+6+ 17
@|(n)l < e L[ (g L H\e¥ O+ 1
© Do) s ML ot ) 222 20 1)
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for every teR*, qe{0,1,...} and & >0,
(b) (4 =J e % f(t)dr for every A > x.
(1]

Proof. By means of Cauchy’s formula we can write (a figure helps)

/2 +arctg(pu/2) ip
W o n [T e
2n —n/2—arctg(n/2) & + re'® — 1

1 O (i — dp) Bl — i’“lﬁlj‘ iB) B -
+ 2ri ‘[“F(” 2 — 3p| + i — A df (where o(r) = r(1 + }u?)~1?)

forany ®x <a<Ai and r> 41— a.

By simple estimates based on () we obtain easily that

n/2 +arctg(n/2)
@) LJ‘ B + re'’) )

5 €?dp - 0(r—» ) forany 4> a> x
T

—n/2—arctg(n/2) o« + re
It follows from (1) and (2) that
£ fim j O x — 4ulf] + if)
4ni row ) oo = IplB| +if — 4

B2 r” o« — $u[p| + IB
= m
Ani rew ) A — @ + 3|l —

forany A > a > x.

(3 om="2

g =

dﬂ (where ¢(r) = (1 + $u2)~12)

By our assumption (B), we can write for any A > a > x

[#(x — 48] +iB)] N
A=+ 3ulf] = i8] = (a = %+ SAD G — % + 3uBF + BT

o N
T (A= %+ 3B (2 — a + 3u/f))

which guarantees

(4) forany A>a>x, thefunction ®(x — 3u|B| + iB)[(A — « + 3ulp| + iB)
is absolutely integrable on —o0 < f < 0.

Now it follows from (3) and (4) that

_p—2i [ & — 3ulB| + iB)
(5) o4 poe I_ml—a+%u|ﬂl—iﬂdﬁ forany A > a > x.
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On the other hand, it follows easily from the assumption (B) that

(6) |e“ MO — 4u|B| + i) Do — du|B| + iB)| <

< Ne* e—ulﬂlt/2[(a - %“IﬁDz 4 ﬁ]q/Z
- «—x + dulf|

forany teR*, a>x and

qe{0,1,...}.
Further, it is easy to see that

(7) forany TeR*, a>x and qe€{0,1,...}, the function

e-nlﬂITIZ[(a - %ulﬂl)l 4 B2]q/2
' o« — x + 3ulB|

It follows from (6) and (7) that

(8) ”e(a—ulﬂll2+iﬁ)r(a - %HM + iﬂ)" d)(a — %ﬂlﬂl + 1ﬂ)” <

< NI e—ulﬂIT/‘*[(a _ %“lﬂl)z + B2]q/2
- o — % + 4p|f|
|t—T|<%T, a>x and qe{0,1,..}.

is integrable over — o0 < f < c0.

forany t, TeR* such that

Owing to (6) and (7) we define

9 f@= 51;1 r e FLTHIBIZEID (o + 1 — u|B| + iB) (i — u sign B) dB
for teR™.

By means of Cauchy’s formula, we obtain form (7) and (9) and from the assumption

(B) that
(10) f(r) = ilni r e HIPIZHD! @l — Jpu|B| + iB) (i — b sign B) dB

forany teR* and a > x.
It follows easily from (7), (8) and (10) by induction on g that
(11) the function f is infinitely differentiable on R*,

(12) f9) =

L[ e("““’v"“”"(a — 3 |B| + iB)* (x — 31 |B| + iB) (i — $u sign B) dB

2mi ) _ o

forevery teR*, a>x and qe{0,1,...}.
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Using the assumption (f), we can estimate by (12) as follows:

. N(4 A4 #2)1/2 © e(a—ulﬂllz)t((a _ %uJﬂ)z £ lﬁlz)qlz
R v R

N(4 i ”2)1/2 eat r

= 2n(a — %)

“’e—u‘"’z[(rx _ %# ﬂ)z + ﬁz]q/z dﬁ -

J O

2\1/2 jat
- N——————(‘;;za“ )x) E [Fe il — 20 3up + 42 + p10 ap <
- J O

2\1/2 jat oo
< N(4 + p?)'/? ¢ e"""/z[a + (1 + $u?)"/2 Bledp =
2n(a — %) Jo

MO VT (% ua 5 (4) i 4 ypt)e D pretap
2n(a — %) Jo j=o \Jj

J
(2) aj j Copt ap -
J (] ‘

— N(4 + p?)'/2 e iz (4 (g -J)
e 35 () e

2\1/2 at
N(4 + u?)'%e (1 4 iuz)q/z
2n(o — %) i

IIA

q

o

forany teR*, a>x and qe{0,1,...}.

Now we take & = (1 + xt)[t in (13) which yields

ol < N+ (1) (g =) _
(14) @@ = T (1 + 3w j;o (l) ¢ ()it -
(57
2

Ne(4 + 2)1/2 gt | 1 1 q—j+1
_ Ne( 2“) (t+ 3 L% Ly (—) <
7./ Tt j=o j! u

2\1/2 xt q 1 J
< Ne(4 + p?)'/? e (1 + 3u2)s2 27 q! 5 (1 + xt)
U ul tj=o !

forany teR* and qe{0,1,...}.
By (14),
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15) || =

IIA

t? j=o é j!
Ne(4 + u2)1/2 xt

Ne(4 2)1/2 m[l 4 e ] q! i (x + l)f (x f— 1)’(1 + th.)j
[

1+}u2)1/2 :| .

[x * (i xt)]j )

q_! ®x+ 6+ 1\?
a P o j!

é.Ne(4 + p2)iz gt [(1 § 1 2) 2%+ 06+ 1] : SR/ 341) <

DM

q7] 5
5M (x+a):‘1 l:(l_i_i z)gx+5+1:|a
= = ;

forany teR*, g¢e{0,1,...} and &> 0.

Now we need to prove
(16) &(2) = jwe"‘ f(r)dt forevery 1> w.
0
Indeed, by (10), (11) and (12),
(17) J‘we_;" f(‘t) de = 2i—pu J‘we—h (on @ HlBl/2+ipy 45((1 _ %#Iﬁl + Iﬂ) dﬂ) dr
0 0 -®

forany A > a> x%.

To justify the change of order of integration we estimate by the assumption () as
follows:

[~ HeHBU+18% @y — 3u[| + if)] < &= @D N

o —x+3up

Since the last function is integrable in (r, B) over (0, ©) x (-0, ), we obtain
from (17) by interchanging the order of integration that

(18) Jme"’f(t) dr = A—g = #JwD (J.me""e(“"‘"’”“")' d’t) P(oc — 3u|B| +iB) dB=
) 4ni  J_o\Jo .

Jou(t e blfl i) o
4ni J_o A —a+ 3B —ip

forevery A > a > x.
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The relation (16) follows from (5) and (18).
The statements (a) and (b) are contained in (15) and (16) and the proof is complete.

6. Lemma, Let a 2 0 and b > 0. Then for every £&,n€ R and 6 > 0 such that
&+ -}blr]| > a + 0, the following inequality holds:

4(1+1+l)
1 < d b

E+bln| —a ™ 1+ (8 + A2

Proof. Let us choose &, 7€ R and 6 > 0 so that
(1) &+4bjn >a+s.
First, we have by (1)
(2 &+0bnl—a=¢&+14bln| —a+4bn| >3+ 4bn|

Further, we obtain from (1) if £ = a, then & + b|t1| —-—a>
then |[¢ —a|=a—&<4bly| which implies |¢ — a| =2
< b|n| +¢é—-—a=¢+ b|rp| — a. Summing up we get

E—a
tE—a

and if € < a,

+(C—a)<

(3) §+b|n|—a>|é—a|.
On the other hand,

(4) lf|=|f-a+a|§|§—a|+a§l£—a|+a+§6g
§<1+%§)(I€—a|+%5).

It follows from (3) and (4) that

0
(8) &+t -a>—— -1z~

By (2) and (S) we conclude
(6) &+ bln| —a > 4[5 + 3 bln| + |¢] — 48] = 4[5 + [¢[ + blnl]
On the other hand,
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which implies
1 1\
(7) a+mtbwz(l+5+ﬁ (L +[¢[ + ) 2

-1
2 (1 L l) (1 + (& + ).
6 b
Finally, (6) and (7) give the desired inequality.
7. Lemma. Let a = 0, b > 0. Then for every & n € R such that £ + by > a the
following inequality holds:
' 1 c 2(1 + b) .
1+ (& +n)2 " &+ bn|—a
Proof. We have
E+bn| —a <o +bln| —a <]+ bln| < (1+B)(I¢] + [n]) =
S21 + b)(E2 + nH)2 < 2(1 + b) (1 + (€% + n?)'/3).

8. Fundamental theorem (complex form). Let y = 0 and let F be a function defined
on a subset of C containing (y, ) with values in E. Then the following two state-
ments (A) and (B) are equivalent:

(A) for every x > x there exist N 2 0 such that
(I {z:Rez + p|Im 'z| > x} lies in the domain of F,
(IT) the function F is analytic in the domain {z : Re z + uIIm z| > x},
(Im) “F(z)” SN/ + |z|) for every zeC satisfying Rez + uIIm z| > x;
(B) there exists an infinitely differentiable function fe R* — E such that
(I) for every w > y, there exists M = 0 and ¢ > 0 so that

o] s e L

for every te R* and q€{0,1,...},
(I1) F(4) = [Fe™* f(7) dz for every A > y.

Proof. An easy consequence of Propositions 3 and 5 and Lemmas 6 and 7.

9. Remark. In the preceding part of this paper, we studied characteristic properties
of the Laplace transform of infinitely differentiable functions whose derivatives satisfy
certain growth conditions. In the subsequent Theorem we shall give an equivalent
property in terms of the analytic continuation to a wedge-shaped domain symmetric
around the real axis and satisfying a certain growth condition.
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10. Theorem. Let fe R* — E. The following two properties (A), (B) are equi.
valent:

(A) the function f is infinitely differentiable and there exist three nonnegative
constants M, w, ¢ so that

o) < Merate’

for any teR* and q€{0,1,...};

(B) there exist nonnegative constants N, x, a positive constant u and a function
@ €{z:|Imz| < pRe z} > Esothat ¢ is analytic in the domain {z : |Im z| <

< pRez}, ¢(t) = f(t) for any teR* and ”(p(z)H < Ne*l*l for any zeC,
|Im z| < puRez.

Proof. (A) = (B): We shall suppose ¢ > 1 which is always admissible without
loss of generality.

Using Taylor’s theorem we get from (A) that
= f9) + : ‘
(1) f(=% —~(z— 1) forevery t,zeR" for which |t — 1| < te.
qg=0 (q:
Let us now denote Q = {z : there exists t € R* so that |z - t[ < tfg}. Clearly
(20 R*cQ

Using elementary properties of analytic functions we get easily from (1) and ()
that there exists a (unique) function ¢ € @ — E such that

(3) ¢ is analytic in 2,
(4)  o(r) = f(t) forevery teR™.

Let us denote #(z) = Re z + (1/\/(¢* — 1)) |[Im z| for arbitrary z € C.
First

(5) tHz)eR* forevery zeC with Rez >0,

< [Rez mz ——1— z| forevery zeC,
@ 1) 5 Real + ez hmel & (14 )l forevry e

]UZ

() |z -42)| =

1
Rez +ilmz — Rez+—lmz)
( «/(e’--l)I |

= |iImz— |Tm z|

= [(Im z)? +

1
Jie* = 1)
- & [Im z| forevery zeC.

V@ = 1)
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Further, by (7) we have

2

@ L=—dle__ J@-1 i <
() Rez + :/(Qz;—ls |Im |
_ @ \mg
. N i »
4 mz S m z

for every zeC satisfying |Imz| < 1/{/(e* — 1) Rez.
It follows easily from (1)—(4) and (8) that

)] {z :Jim 2| <

Rez}gﬂ,

N S
Ve -1)

(10) o(2) =q§of%:(z)) (z — #(z))? forevery zeC such that

1
Imz] < ——— Rez.
Further we get
2
@ iy
(11) |z - z)|9= Je* - 1) oy
H2) Rez + 1 ]Im z|
2
Vet - 1)
QZ
———|Im z
< Je* - 1)| | __¢e
1 20 -1
2J@*-1)|mz| + ———|Im z
: 1 1
forevery zeC suchthat [Imz| <-————Rez.
fom 2@ -1)

Now we get from (5), (6), (10) and (11)

12) ()| é,i,Memw (E:(T‘()Z)I_?)q < Mem(z)i ( e )' <

q=0 292 -1
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< Me®(+1/V@ = 1)z I =M 2 - 1 2 +1/V(e*=1))z]
— 2 2
0 - —1
20% -1

for every zeC suchthat |Imz| < -

1
2J(e* - 1)
But (2), (3), (4), (9) and (12) prove the assertion (B) if we take
20* — 1 ( 1 > 1 1
, ¥=0(l+———) and p=-——.
¢~ 1 J@ -1 2@ - 1)

(B) = (A): First we prove the inequality

N=M

(13) |Imz| £ 4u Re z forevery z e C for which thereis t € R* suchthat|z — f| =
= tf(p + 2).

Indeed, we have

2
(Rez—f)> + (Imz2 =2 —F

(w + 2
and consequently
|lm zl <t ad .
u+2
On the other hand,
b 2

Rez=>t—1t t

u+2— u+2'

Concluding we have

u+2Rez L =ERez

[Im 2| <
p+2 2

N

which proves (13).
Now (13) enables us to apply Cauchy’s integral theorem and we can write

2n
@ t H elt
q! k+2 H
(19 o) =L it
4

= 2e dr
(r I en) ©+
o \ B+2

forevery teR* and qe{0,1,...}.
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