

## Werk

Label: Article **Jahr:** 1979

**PURL:** https://resolver.sub.uni-goettingen.de/purl?31311157X\_0104|log54

## **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

## ON THE EXISTENCE OF PERIODIC BOUNDARY CONDITIONS FOR CERTAIN NONLINEAR VECTOR DIFFERENTIAL EQUATIONS

G.G. HAMEDANI, Tehran (Received January 26, 1977)

In [5], B. MEHRI uses a special case of a theorem about contractions given in [3] (which, due to the finiteness of distance functions considered in [5], is in fact the usual theorem about contractions; see, e.g. [6]), and a result reported by Ďurikovič [1], to establish the existence and uniqueness of solution of the nonlinear differential equation x'' + Kx = f(t, x, x'), satisfying the periodic boundary conditions  $x(0) - x(\omega) = x'(0) - x'(\omega) = 0$ . Although Mehri's Theorem 1 covers both cases K > 0 and K < 0, his Theorems 2 and 3 are restricted only to the case K > 0.

In this note, we first extend all the results in [5] to a system of nonlinear second order differential equations. Then we establish two theorems whose scalar cases give analogues of Theorems 2 and 3 of [5] for the case K < 0.

Consider the vector boundary value problem

$$(1) x'' + Ax = f(t, x, x'),$$

(2) 
$$x(0) - x(\omega) = x'(0) - x'(\omega) = 0,$$

where  $x = (x_1, ..., x_n)$  is an *n*-dimensional vector; A is a constant diagonal  $n \times n$  matrix; and  $f(t, x, y) = (f_1(t, x_1, ..., x_n, y_1, ..., y_n), ..., f_n(t, x_1, ..., x_n, y_1, ..., y_n))$  is a vector valued function, defined for  $(t, x, y) \in E = [0, \omega] \times R^n \times R^n$ .

Throughout this paper, we take  $||x|| = \max_{i} |x_i|$  and  $||A|| = \max_{i,k} |a_{ik}|$  respectively as the norm of  $x = (x_1, ..., x_n)$  and of  $A = (a_{ik})$ .

**Theorem 1.** Suppose that the matrix  $A = (a_i \delta_{ik})_1^n$  ( $\delta_{ik}$  is the Kronecker delta) is such that all the  $a_i$  are nonzero and have the same sign. Suppose further that the vector function f(t, x, y) is continuous, bounded in E and satisfies the inequality

(3) 
$$||f(t, x_1, y_1) - f(t, x_2, y_2)|| \le C\{||x_1 - x_2|| + 1/b||y_1 - y_2||\},$$

where  $b = \underset{i}{\text{Min}} \sqrt{|a_i|}$ , C > 0 is a constant such that

$$\frac{2C}{b^2} < 1.$$

Then in  $[0, \omega] \subseteq [0, \pi/a]$ , where  $a = \text{Max } \sqrt{a_i}$  if

(5) 
$$a_i > 0, \quad i = 1, ..., n,$$

and in  $[0, \omega] \subseteq [0, +\infty)$ , if

(6) 
$$a_i < 0, i = 1, ..., n,$$

the problem (1) (2) has a unique solution. Moreover, Picard's sequence of successive approximations defined by

(7) 
$$x_n(t) = \int_0^\infty G(t, s) f(s, x_{n-1}(s), x'_{n-1}(s)) ds, \quad n = 1, 2, \dots$$

(where G(t, s) is Green's matrix for the problem (1), (2)) for any vector function  $x_0(t)$  specified below, converges in distance to this unique solution.

Proof. If (5) holds, then problem (1), (2) is equivalent to the integral equation

(8) 
$$x(t) = \int_0^{\infty} G(t, s) f(t, x(s), x'(s)) ds,$$

where G(t, s) is Green's matrix for the problem (1), (2),

$$(9) G(t,s) = \begin{cases} 2^{-1}(\sqrt{A})^{-1} \left[ \sin \sqrt{A} \frac{\omega}{2} \right]^{-1} \cos \sqrt{A} \left( \frac{\omega}{2} + s - t \right) & \text{for} \\ 0 \le s \le t \le \omega \\ 2^{-1}(\sqrt{A})^{-1} \left[ \sin \sqrt{A} \frac{\omega}{2} \right]^{-1} \cos \sqrt{A} \left( \frac{\omega}{2} + t - s \right) & \text{for} \\ 0 \le t \le s \le \omega \end{cases}$$

and the matrix functions  $\sin \sqrt{A} t$  and  $\cos \sqrt{A} t$  are defined by the matrix series ([2], p. 118),

$$\operatorname{Sin} \sqrt{A} t = \sum_{p=0}^{\infty} (-1)^p \frac{(\sqrt{A})^{2p+1}}{(2p+1)!} t^{2p+1},$$

Cos 
$$\sqrt{(A)} t = \sum_{p=0}^{\infty} (-1)^p \frac{(\sqrt{A})^{2p}}{(2p)!} t^{2p}$$
.

If (6) holds, then problem (1), (2) is equivalent to (8) where

(10)

$$G(t,s) = \begin{cases} 2^{-1}(\sqrt{|A|})^{-1} \left[E - \exp\sqrt{|A|}\omega\right]^{-1} \left\{\exp\left[-\sqrt{|A|}(t-s)\right] \exp\left(\sqrt{|A|}\omega\right) + \exp\left[\sqrt{|A|}(t-s)\right]\right\} & \text{for } s \leq t \\ 2^{-1}(\sqrt{|A|})^{-1} \left[E - \exp\sqrt{|A|}\omega\right]^{-1} \left\{\exp\left[-\sqrt{|A|}(s-t)\right] \exp\left(\sqrt{|A|}\omega\right) + \exp\left[\sqrt{|A|}(s-t)\right]\right\} & \text{for } t \leq s \end{cases},$$

and the matrix functions  $\exp \left[ \sqrt{|A|} t \right]$  and  $\exp \left[ -\sqrt{|A|} t \right]$  are defined by the matrix series

$$\exp\left[\sqrt{\left|A\right|}\,t\right] = \sum_{p=0}^{\infty} \frac{\left(\sqrt{\left|A\right|}\right)^p}{p!}\,t^p\,,\quad \exp\left[-\sqrt{\left|A\right|}\,t\right] = \sum_{p=0}^{\infty} (-1)^p \frac{\left(\sqrt{\left|A\right|}\right)^p}{p!}\,t^p\,.$$

Let S be the set of all continuous vector functions  $x(t) = (x_1(t), ..., x_n(t))$  with continuous first derivatives  $x'(t) = (x'_1(t), ..., x'_n(t))$  on  $[0, \omega]$ , and define the distance

(11) 
$$d(x_1, x_2) = \max_{t \in [0, \omega]} \left\{ \|x_1(t) - x_2(t)\| + \frac{1}{b} \|x_1'(t) - x_2'(t)\| \right\},$$

for an arbitrary pair of elements  $x_1(t)$ ,  $x_2(t)$  of S. Then X = (S, d) is a complete metric space. We define an operator U on X by

(12) 
$$Ux(t) = \int_0^{\infty} G(t, s) f(s, x(s), x'(s)) ds.$$

The operator U maps the space X into itself.

Let  $x_1(t)$ ,  $x_2(t)$  be any two elements from X, then

$$||Ux_1(t) - Ux_2(t)|| \le C d(x_1, x_2) \max_i \frac{1}{|a_i|} \le \frac{C}{b^2} d(x_1, x_2),$$

and

$$\frac{1}{b} \left\| \frac{\mathrm{d}}{\mathrm{d}t} U x_1(t) - \frac{\mathrm{d}}{\mathrm{d}t} U x_2(t) \right\| \leq \frac{C}{b} d(x_1, x_2) \max_{i} \frac{1}{\sqrt{|a_i|}} \leq \frac{C}{b^2} d(x_1, x_2).$$

Hence

$$d(Ux_1, Ux_2) \leq \frac{2C}{b^2} d(x_1, x_2).$$

Now (4) and the fact that any two elements of X have a finite distance, complete the proof of the theorem.

In the following two theorems we shall assume that (5) holds. Since  $\omega \in [0, \pi/a]$ , it follows that  $\sqrt{(a_i)(\omega/2)} \in [0, \pi/2]$  for each i, and hence  $\sin \sqrt{(a_i)(\omega/2)} \ge (2/\pi) \sqrt{(a_i)(\omega/2)}$  for each i involving

$$\|G(t,s)\| \leq \frac{\pi}{2b^2\omega}, \quad \|G_t(t,s)\| \leq \frac{\pi}{2b\omega}.$$

Let S and U be as before, then  $US \subseteq S$ . Let  $(S^*, d)$  be the completion of (US, d) where d is given by (11).

**Theorem 2.** Let f(t, x, y) be a vector function defined and continuous on E, and satisfying the following conditions

(13) 
$$||f(t, x, y)|| \leq \frac{b^2}{2\pi} t^p, \quad p \geq 0, \quad (t, x, y) \in E,$$

$$(14) ||f(t, x_1, y_1) - f(t, x_2, y_2)|| \le \frac{b^2}{\pi t^r} \left\{ ||x_1 - x_2||^q + \left[ \frac{1}{b} ||y_1 - y_2|| \right]^q \right\}$$

for  $(t, x_i, y_i) \in E$ , i = 1, 2, where  $q \ge 1, 0 < r < 1$ , r = p(q - 1) and

$$\frac{1}{(1-r)}\left(\frac{1}{p+1}\right)^{q-1}<1.$$

Then problem (1), (2) has a unique solution  $x(t) \in S^*$ , and the successive approximations defined by (7) for any  $x_0(t) \in S$ , converge in distance to this unique solution.

Proof. The space  $X = (S^*, d)$  is a complete metric space, and U, defined by (12), maps X into itself. Let  $z_1(t)$ ,  $z_2(t)$  be any two elements of X, then from (12) and (13)

$$||z_1(t) - z_2(t)|| \le \frac{b^2}{\pi} \int_0^{\omega} ||G(t, s)|| \, s^p \, ds \le \frac{1}{2(p+1)} \omega^p$$

and

$$\frac{1}{b} \|z_1'(t) - z_2'(t)\| \le \frac{b^2}{\pi b} \int_0^{\omega} \|G_t(t,s)\| s^p ds \le \frac{1}{2(p+1)} \omega^p.$$

From (14) and (11) we obtain

$$\begin{aligned} \|Uz_1(t) - Uz_2(t)\| &\leq \frac{b^2}{\pi} \left(\frac{\omega^p}{p+1}\right)^{q-1} \cdot \frac{\pi}{2b^2 \omega} \cdot \frac{d(z_1, z_2)}{(1-r)} \omega^{1-r} \leq \\ &\leq \frac{1}{2} \cdot \frac{1}{(p+1)^{q-1}} \cdot \frac{d(z_1, z_2)}{(1-r)} \end{aligned}$$

and

$$\frac{1}{b} \left\| \frac{\mathrm{d}}{\mathrm{d}t} U z_1(t) - \frac{\mathrm{d}}{\mathrm{d}t} U z_2(t) \right\| \leq \frac{1}{2} \cdot \frac{1}{(p+1)^{q-1}} \cdot \frac{d(z_1, z_2)}{(1-r)}.$$

From the last two inequalities, it follows that

$$d(Uz_1, Uz_2) \leq \frac{1}{(p+1)^{q-1}} \cdot \frac{1}{1-r} d(z_1, z_2)$$

which completes the proof.

Remark. In Theorem 2 it is assumed that f(t, x, y) is bounded on E. The following theorem (whose proof is similar to that of Theorem 2) shows that this assumption is not necessary.

**Theorem 3.** Let f(t, x, y) be continuous on E and satisfy the following conditions

(15) 
$$||f(t, x, y)|| \leq \frac{b^2}{2\pi} t^{-p}, \quad 0$$

$$(16) \quad \|f(t,x_1,y_1)-f(t,x_2,y_2)\| \leq \frac{b^2}{\pi} t^{p(q-1)} \left\{ \|x_1-x_2\|^q + \left\lceil \frac{1}{b} \|y_1-y_2\| \right\rceil^q \right\},$$

where  $q \ge 1$  and

$$\left(\frac{1}{1-p}\right)^{q-1} \cdot \frac{1}{p(q-1)+1} < 1.$$

Then problem (1), (2) has a unique solution, and the successive approximations defined by (7) for any  $x_0(t) \in S$ , converge in distance to this unique solution.

In the following two theorems we shall assume that (6) holds. Then we have

$$\|G(t,s)\| \leq \frac{2+b\omega}{2b^2\omega}, \quad \|G_t(t,s)\| \leq \frac{2+b\omega}{2b\omega}.$$

**Theorem 4.** Let f(t, x, y) be continuous on E, and let C > 0 be a constant such that

(17) 
$$||f(t, x, y)|| \leq \frac{b^2C}{2} t^p, \quad p \geq 0, \quad (t, x, y) \in E,$$

(18) 
$$||f(t, x_1, y_1) - f(t, x_2, y_2)|| \le \frac{b^2 C}{t^r} \left\{ ||x_1 - x_2||^q + \left[ \frac{1}{b} ||y_1 - y_2|| \right]^q \right\},$$

where  $q \ge 1$ , 0 < r < 1, r = p(q - 1) and

(19) 
$$2C\left(\frac{1}{1-r}\right)^{1/q}\left(\frac{1}{p+1}\right)^{q-1/q} < 1.$$

Then there exists an  $\omega_0 > 0$  such that for every  $\omega$ ,  $0 < \omega \le \omega_0$ , (1), (2) has a unique solution  $x(t) \in S^*$ , and the successive approximations defined by (7) for any  $x_0(t) \in S$ , converge in distance to this unique solution.

Proof. Let  $X = (S^*, d)$ , and let  $z_1(t)$ ,  $z_2(t)$  be any two elements of X, then from (12) and (17)

$$||z_1(t) - z_2(t)|| \le b^2 C \int_0^{\omega} ||G(t, s)|| s^p ds \le \frac{C(2 + b\omega) \omega^p}{2(p+1)}$$

and

$$\frac{1}{b} \|z_1'(t) - z_2'(t)\| \le \frac{b^2 C}{b} \int_0^{\omega} \|G_t(t,s)\| s^p ds \le \frac{C(2 + b\omega) \omega^p}{2(p+1)}.$$

From (18) and (11), it follows that

$$||Uz_{1}(t) - Uz_{2}(t)|| \leq b^{2}C \cdot \left(\frac{C(2 + b\omega)\omega^{p}}{p + 1}\right)^{q - 1} \cdot \frac{2 + b\omega}{2b^{2}\omega} \cdot \frac{d(z_{1}, z_{2})}{1 - r}\omega^{1 - r} \leq$$

$$\leq \frac{1}{2} \cdot \frac{(C(2 + b\omega))^{q}}{(p + 1)^{q - 1}} \cdot \frac{1}{1 - r}d(z_{1}, z_{2})$$

and

$$\frac{1}{b} \left\| \frac{\mathrm{d}}{\mathrm{d}t} U z_1(t) - \frac{\mathrm{d}}{\mathrm{d}t} U z_2(t) \right\| \leq \frac{1}{2} \cdot \frac{(C(2+b\omega))^q}{(p+1)^{q-1}} \cdot \frac{1}{1-r} d(z_1, z_2) .$$

From the last two inequalities we obtain

$$d(Uz_1, Uz_2) \le \frac{(C(2+b\omega))^q}{(p+1)^{q-1}} \cdot \frac{1}{1-r} d(z_1, z_2).$$

U is a contraction map provided that

(20) 
$$\frac{(C(2+b\omega))^q}{(p+1)^{q-1}} \cdot \frac{1}{1-r} < 1.$$

Clearly (20) is satisfied if

(21) 
$$\omega < \frac{1}{b} \left\{ \frac{1}{C} (p+1)^{q-1/q} (1-r)^{1/q} - 2 \right\}.$$

Therefore, if  $\omega > 0$  is chosen so that (21) is satisfied, then problem (1), (2) has a unique solution with the desired property.

**Theorem 5.** Let f(t, x, y) be continuous on E, and let C > 0 be a constant such that

(22) 
$$||f(t, x, y)|| \le \frac{b^2C}{2}t^{-p}, \quad 0$$

$$(23) ||f(t, x_1, y_1) - f(t, x_2, y_2)|| \le b^2 C t^{p(q-1)} \left\{ \{ ||x_1 - x_2||^q + \left[ \frac{1}{b} ||y_1 - y_2|| \right]^q \right\}$$