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ON THE EXISTENCE OF PERIODIC BOUNDARY
CONDITIONS FOR CERTAIN NONLINEAR VECTOR
DIFFERENTIAL EQUATIONS

G.G. HaMEDANI, Tehran

(Received January 26, 1977)

In [5], B. MEHRI uses a special case of a theorem about contractions given in [3]
(which, due to the finiteness of distance functions considered in [5], is in fact the
usual theorem about contractions; see, e.g. [6]), and a result reported by Durikovie
[1], to establish the existence and uniqueness of solution of the nonlinear differential
equation x” + Kx = f(t, x, x'), satisfying the periodic boundary conditions x(0) —
— x(w) = x'(0) — x’(w) = 0. Although Mehri’s Theorem 1 covers both cases
K > 0and K < 0, his Theorems 2 and 3 are restricted only to the case K > 0.

In this note, we first extend all the results in [5] to a system of nonlinear second
order differential equations. Then we establish two theorems whose scalar cases give
analogues of Theorems 2 and 3 of [5] for the case K < 0.

Consider the vector boundary value problem
(1) x" + Ax = f(t, x, x'),
(2 x(0) — x(w) = x'(0) — x'(w) =0,

where x = (Xy, ..., X,) is an n-dimensional vector; A is a constant diagonal n x n

matrix; and (1, X, ¥) = (f1(t: X155 - 0s X Y15 ooos Ya)s oo Sulls X 15 ooy Xy Y1, ooy V) S
a vector valued function, defined for (t,x, y)€ E = [0, w] x R" x R"
Throughout this paper, we take ”x" = Max lx,-l and [|A[| = Max Ia ikl respectively
. i ik

as the norm of x = (xy, ..., x,) and of 4 = (ay).
Theorem 1. Suppose that the matrix A = (a;04)] (6 is the Kronecker delta) is

such that all the a; are nonzero and have the same sign. Suppose further that the
vector function f(t, x, y) is continuous, bounded in E and satisfies the inequality

3) 17(t %1 1) = £(8, %2, }’2)" = C{Hx, - xz” +1/b]lys = ya|l}
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where b = Min \/Ia,-l, C > 0 is a constant such that
4) —=<1.
Then in [0, w] < [0, nla], where a = Max \/a; if

(5 a;,>0, i=1,...,n,
and in [0, ] < [0, + ), if
(6) a; <0, i=1,...,n,

the problem (1) (2) has a unique solution. Moreover, Picard’s sequence of successive
approximations defined by

(7 x(1) = f:G(t, $) S (55 Xy 1(5), x,',_.l(s)) ds, n=1,2,...

(where G(t, s) is Green’s matrix for the problem (1), (2)) for any vector function
xo(1) specified below, converges in distance to this unique solution.

Proof. If (5) holds, then problem (1), (2) is equivalent to the integral equation
(8) (1) = j 6(t, 5) £(t, x(s), x'(s)) s,
0

where G(t, s) is Green’s matrix for the problem (1), (2),

( ~ =5

271 /A LSin \/(A)-;—) Cos \/(A)( + s — t) for

o
IIA

t

A

S

IIA

(0]

©)  G(ts) =

2-1(JA)"! Lsm ) 2] cos (4) ("5’ . s) for

0ts=2o,

and the matrix functions Sin ,/(4) t and Cos /(4) t are defined by the matrix series

(2], p. 119),

Cos (4) 1 = % (-1 ‘{2")),
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If (6) holds, then problem (1), (2) is equivalent to (8) where
(10) .
2H(JJA) " [E — exp J|4] @] exp [—/]4] ¢ = )] exp (1]4] )
+exp [J]4|(t = 9)]} for s<t
271(J/|A4]) 7! [E — exp |4| @] " {exp [— V/|4] (s — 1)] exp (V] 4] w)

+exp []|4| (s = 0]} for t<5s,

G(t,s) =

and the matrix functions exp [/|4| f] and exp [ — /|4 ¢] are defined by the matrix
series

exp[ylal ] = § S, exp - g1 = 5 -1y WAl

Let S be the set of all continuous vector functions x(f) = (x,(?), ..., x,()) with
continuous first derivatives x'(¢f) = (x}(?), ..., x,()) on [0, ®], and define the distance

() dx) = Max (i — 5] + 5 1450 - 5Ol

for an arbitrary pair of elements x,(), x,(¢f) of S. Then X = (S, d) is a complete
metric space. We define an operator U on X by

(12) Ux(r) = J :G(t, $) £(s, x(s), x'(s)) ds .

The operator U maps the space X into itself.
Let x,(t), x,(f) be any two elements from X, then

1 C
[Ux4(t) — Ux,(1)]| < C d(xy, x,) Max m < T d(xy, x3),
i i

and

< gd(xl,xz) Max—l— =t
i

J]ai| = b

1d d
— l— Ux(t) — — Ux,(t d(xy, x,) .
 PRCRPAZ0 (510

Hence

d(Ux,, Ux,) < %g d(xy, x;) .

Now (4) and the fact that any two elements of X have a finite distance, complete the
proof of the theorem.

250



In the following two theorems we shall assume that (5) holds. Since w € [0, n/a],
it follows that ./(a;) (»/2) € [0, n/2] for each i, and hence Sin \/(a;)(®[2) 2
2 (2/n) \/(a;) (/2) for each i involving

l6(t, 9)] =

» 64 9)] =

2b2

Let S and U be as before, then US < S. Let (S*, d) be the completion of (US, d)
where d is given by (11).

Theorem 2. Let f(t, x, y) be a vector function defined and continuous on E, and
satisfying the following conditions

2
(13 exals e, 20, (bxy)eE,

b? 1 i
(14) ”f(t, X1, ¥1) = f(t, %2, .Vz)" = o {”xl - xzuq + [Z "J’l - Y2"]}
for (t,x;, y;)€E,i=1,2, whereq21,0<r <1,r=p(q — 1) and

R i 3 (p—i—l)q_l <1.

Then problem (1), (2) has a unique solution x(t) € S*, and the successive approxima-
tions defined by (7) for any x(t) € S, converge in distance to this unique solution.

Proof. The space X = (S*, d) is a complete metric space, and U, defined by (12),
maps X into itself. Let z,(t), z,(f) be any two elements of X, then from (12) and (13)

0 =501 57 [ 1670 8 gy

and

w?

F 150 - 5017 [Clo 9l as s
From (14) and (11) we obtain
. T ¥l o ol L d(zhzz)
o) - vl s 2 (S5) g e
1 1 d(z,, z,)

T2 (p+)Tt (1)

2(p +1)

II/\

and

"—,m S vz

' 1 d(zy, zz)
2 (p+1)" L a-n"
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From the last two inequalities, it follows that

. 1 1
- d(Uz,, Uz,) < T T rd(zl, z,)

which completes the proof.

Remark. In Theorem 2 it is assumed that f(t, x, y) is bounded on E. The following
theorem (whose proof is similar to that of Theorem 2) shows that this assumption
is not necessary.

Theorem 3. Let f(t, x, y) be continuous on E and satisfy the following conditions

2
15) - ”f(t,x,y)||§;—nt“", 0<p<1, (txy)€E,

19) 16039 = 1659l 5 e fpes =+ [ - i [

where q =2 1 and
1yt 1
. <1
(1- ) plg—1)+1

Then problem (1), (2) has a unique solution, and the successive approximations
defined by (7) for any x,(t) € S, converge in distance to this unique solution.
In the following two theorems we shall assume that (6) holds. Then we have

2 4+ bw
2020

2 + bw
G(t,s)| = .
l6t. 9 s 222

l6(e. s)] =

Theorem 4. Letf(t, X, y) be continuous on E, and let C > 0 be a constant such that

b’C ,
(17) Hf(t9x9y)" éTt s PgO, (t,X,,V)EE,

2 q
(9 16099 = 63 5 57 (b =l + [ =l [}

where ¢ 21, 0<r <1, r=p(qg — 1) and

1 1/q 1 q—1/q
(19) 2C <1.
1—-r p+1)

Then there exists an wy > 0 such that for every ©,0 < o £ w,, (1), (2) has a unique
solution x(t) € S*, and the successive approximations defined by (7) for any x(t) € S,
converge in distance to this unique solution.
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Proof. Let X = (S*, d), and let z,(t), z,(f) be any two elements of X, then from
(12) and (17)

ool < e [(lot s s < 2 D)0
l24) — =0 s 52 [ [t 9l s s G2
and

Lz - 5] s %° j 16, 5)] 7 ds % |

From (18) and (11), it follows that

P\a-1
[Uz,(t) — Uzy(1)|| < b2C. C(2 + bw) w .2 + bw ' d(zy, z,) ol " <
14 4+ 1 2b2a) 1—r

21 (C2+ b))y 1

T2 (p 1t FLGD)
and
1 4 L1 (C+ba)y 1
) Uzy(1) Uz(‘) =t = +)"‘.1—rd(l’ 2) -

From the last two inequalities we obtain

(C(2 + bw))? 1
P+t 11—

U is a contraction map provided that

(C2 + bw)* 1
(20) (p+ 1)1 -

d(Uz,, Uz,) <

d(zy, 23) -
v

<1.

Clearly (20) is satisfied if
(21) o< % {é (p+ 1)1 =)t -2,

Therefore, if @ > 0 is chosen so that (21) is satisfied, then problem (1), (2) has
a unique solution with the desired property.

Theorem 5. Let f(1, x, y) be continuous on E, and let C > 0 be a constant such
that

2
(22) ”f(t,x,y)ﬂgb—zc—t"‘, 0<p<1, (4xy)eE,

(23) £t x0s y1) = f(t. %3, 3)|| £ bZC‘p(q_l){{""x — X" + [% 2% J’2":|q}
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