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(REAL CONDITIONS)

MIRrROSLAV Sova, Praha

(Received February 28, 1978)

This paper is concerned with the problem of characteristic properties of the Laplace
transform of vector-valued exponentially bounded functions on positive half-axis
which are analytic in the sense that they are, roughly speaking, developable in power
series at the points of positive half-axis with a linearly increasing radius of con-
vergence. The properties can be described in a simple way: the functions in question
are infinitely differentiable on the positive half-axis R* and their derivatives satisfy
the inequalities (B) (I) in Theorem 5 with certain constants M 2 0, @ = 0 and ¢ = 0.

We give necessary and sufficient representability conditions of purely real
(Widder’s) type in terms of the behavior of derivatives of the Laplace image on the
real half-axis as shown in Theorem 5.

The proof of Theorem 5 is mainly based on the representability theorems for
Lipschitzian functions [1], [2]. In a reflexive space, the representability theorems
from [3], [4] may be used, in the numerical case, the original representability
theorem of Widder [5] is sufficient (see Remark 7).

The analyticity of semigroups is examined in Theorem 9.

It seems that the results presented are new even in the simplest, i.e. the numerical
case.

1. In the sequel, R will denote the real number field and R™ the set of all positive
numbers. If M,, M, are arbitrary sets, then M, - M, will denote the set of all
mappings of the whole set M, into the set M,.

2. By E we denote a Banach space over R with the norm |- |.

3. The notions of differentiability, measurability and integrability of functions
with values in E are used in the strong (norm) sense.

4. Lemma. (p + 1)!/A?*2 < p!/(A — 1P*! for any A > 1 and pe {0, 1, ...}.
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5. Fundamental theorem (real form). Let M, , ¢ be nonnegative constants and
let F € (w, 0) — E. Then the following two conditions (A) and (B) are equivalent:

(A) (1) the function F is infinitely differentiable in (0, o),

() [ s (z»[ Mpliie

Sa-opt

(B) there exists an infinitely differentiable function f e R* — E such that

forany A> wand p,qe {0,1,...},

O |rom| = M forany teR* and q€{0,1,....},

(I1) F(%) =I e % f(r)dr for any i > w.
0
Proof. (A) = (B): Let us first denote
G(%) =

forany A > wand g€ {0, 1,...}.
It follows easily from (A) by means of Lemma 4 that

0 F@)

dlq+l

0 o~ [o o s mse e
forany o> + 1 and p, g€{0,1,...},
@ || Cwe) = |&[1sm e F(‘))]N

G ORERECHO) E

dp+q+l

S e )] +

. Mp! (g + 1)! g**!

U(q £ F(z»“

Mp! q! o*

S ey TV S
< Mp!(a + 1)!e’(1 + o) _ Mp!(q + 1)!e"(1 + o)
I R0 - (-oe-1pY

forany A > o + 1 and p,qe {0, 1,...}.
With regard to (1) and (2), we obtain from Theorem 4 in [2] (*) that there exists
(*) Let us remark that the property (4) serves only to deduce the properties (6) and (7). Hence
only the properties (3), (5), (6), (7) are needed and used in the sequel. But these properties can be

also obtained from Proposition 4.17 in [1] since it is-easy to see from its proof that the function f
has also the property that f(04) exists, though this fact is not explicitly stated.
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a sequence Y, € R* - E, g€{0, 1, ...} such that

3 v ()l £ Mq! g%®*V* forany teR* and q€{0,1,...},
¢ j

(4) "'pa(tl) - Wq(tl)" s M(q + 1)! g'(l + Q)J‘he("” 1t 4z

forany t,,t1,eR*, t; <t, and qe{0,1,...},

dq+l

(%) I ey (r)dr = — FFrs) (A2F(2) forany A>w+1 and ¢q€e{0,1,...}.
0

It follows from (4) that

(6) the function y, is continuous on R* forany q¢€{0,1,...},
(7 ¥, (0,) existsforany qe{0,1,...}.
Now we shall prove that
() /IJ' e Y (r)dr — Y (0,) 5> 0 forany ge{0,1,...}.
/]

Indeed, let g € {0, 1, ...} be fixed. By (3), we have

Nz j Cem ) de - v 0.)

©
0

- Na J e~ (Y (1) — ¥,0.)) dr

= |a j "o @) — 40, e + 4 j "o (Y e) — 940,)) di =
0 T
rT @
< 2[ e#ar sup o) = 0] + 4 j e x) — ¥40,)] de =
‘o <1< T

(*© @®
S A| e *dr sup [y (t) — ¥ (04)] + AJ‘ e *(2Mq! @%@t V) dr =
0<t<T T

J 0
= sup (IV4(s) — 0] + 2Mat o' f e-me=ir gy =
<t< T

-(A=~0~-1)T

= sup (IVe(e) - W0)]) + 2Mat 15— —

forany T>0 and A>w+ 1.

‘Let now & > 0. By (7), we choose T' > 0 so small that sup [|y(z) — ¥(0,)] S 4e
; 0<t<T

190



and for this T, we choose A > w + 1 so large that

Then we obtain immediéte]y from the preceding formula that |4 5 e™** y (7) dr —
— ¥,0,)[ < e for sufficiently large A which proves (8).
On the other hand, by (A) we have

1 (e F (1))||

dl“"'l - (/1

and consequently

dq+ 1
) y) T (A F(2)) 5=z> 0 forany ge{0,1,...}.
It follows from (5), (8) and (9) that
(10) ¥, (0,)=0 forany qe{0,1,...}.

Further, by (4) and (10) we find that
(11) | ()] = M(g + 1)! ¢*(1 + @) te*V* forany teR* and ge{0,1,...}.

Let us now take ¢, = (1/¢) y(f) for any te R* and g € {0, 1, ...}.
1t follows from (6) and (11) that

(12) the function ¢, is continuous for any ¢e€{0,1,...},
(13) |le 0l = M(g + 1)1 ¢%(1 + @) e“*V* forany teR* and qe{0,1,...}.
Now (12) and (13) give easily

©
(14) J; e " @ (r)dt 4> 0 forany qe{0,1,...}.

On the other hand, we get easily from (3) and (13) by means of Proposition 4.4
in [1] that

(15) J.we"‘ Y (t)de = Iwe‘*'t @ (1) dr = — =l Ime"‘ o (t)dr
0 0 di Jo

forany A>w+1 and qe{0,1,...}.
By (5) and (15) we have |

(16) J‘ g i m S
q u+l

(A2 F(4)) forany A>w+1 and qe{0,1,...}.
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Using (9), (14) and (16) we conclude finally that
® q
(17) J' e Mo lr)dr = (—g} (A2F(2)) forany A>w+1 and 4q€{0,1,...}.
]

Using Propositions 4.4, 4.6 and 4.12 in [1] we get from (A) and from (17) that

(18) e t)] = Me®'q! ¢* forany teR* and qe{0,1,...}.
Now let us denote ‘
(19) f=9o.
We shall prove that
(20) . the function f is g-times differentiable for any ¢€{0,1,...},
(21) 1 fOt) = (—1) @ (t) forany teR* and qe{0,1,...}.

To this goal we proceed by induction on q.

Clearly, for g = 0, the statements (20) and (21) are true by (19).

Now we shall suppose the validity of (20), (21) for a fixed g € {0, 1, ...} and prove
it for q + 1.

According to the induction hypothesis just made, and according to (12), (13) and
(17) we can establish the following identities for any 4 > o + 1:

(22) J-we“'r"“f(“’(t) dr =J e
0

0

(e f (7)) dr = — 4 Jwe""t" f@(3)dr =

= (-1 2 j e g (1) dt = (— 1)1+ "“(v F(3),

(23) J:Oe ( f ot f“”(a)da)dt—( 1)44[0 - ( L(p,,(a)da) de =

_ @‘_’L ¥ g o) di = (=1) @ < (9 F(),

A dAf
(24) j j Oerilo) do dr = - j en(e) e = 3 S e R,
Further, a simple calculation shows that
" 1 dq+1 q+'1 i -
(25) T gl & ) = 1 = (u F(2)) =
1 det . i
i 2 SR + @+ ) )] =

q +1 d*
d)“l ( MF() + =—— (’-’ F(3)) forany i>w+1.
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Using now the uniqueness theorem for the Laplace transform, see 4.11 in [1], we
get from (22)—(25) that

(26) #%1 FO(1).= (q + 1) f () dr 4 (= 1) f 0 e Toraay reRE.
0

0

Now (26) implies that
(27) the function "' f9(s), teR*, is differentiable,
(28) ('O =(q + 1) fO1t) + (1) @ 44(t) forall teR*.
But we see from (27) that the function f@ itself is differentiable and consequently
(29) fis (g + 1)-times differentiable .
On the other hand, (28) and (29) imply
(30) (9t f@EDE) = (—1)* @ 44(t) forevery teR*.

By (29) and (30), the induction step for the properties (20) and (21) is verified
and consequently (20) and (21) hold for g € {0, 1, 2, ...}.

The desired property (B) follows from (18), (20) and (21).

(B) = (A): Let f be a fixed function satisfying the condition (B). .

1t follows at once from this property that

(1) the function F is infinitely differentiable on (w, o).

Now we will prove by induction on g that
© q
() j e 4l fW(7) dr = (—1)* %(A" F(%)) forany 1> w and ge€{0,1,...}.
0 ;

The identity (2) is evidently true by the assumption (B) for g = 0.

Now let us suppose its validity for a fixed g € {0, 1, ...} and proceed to prove it
for g + 1. We have clearly (##*! f@(r)) = 2! f@* (1) + (g + 1) 2 f9(t) for
any te R*.

Using this identity, we can write by (1), (2) and (B) that

J e *at! f@ D) dr=—(g+ l)j e %1 f@(z) de +'[
0

0 0

o]

e d (i1 ;0 () dr =
de
= —(q + I)Jwe"‘r'f“’(r) dr + AJe"‘t““f""(t) dt =
0
- e ) ) - 2. [T as -
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=(-1)"'(a+ 1)—(/1"F(1))—( 1) 2 q“(l"F(l)) =

— rE)

d q+l.

= = e [(q + 1)—('1"F(ﬂ)) + '1 = ()“F(i))] = (- S

which verifies the induction step.
Now, using (2), we obtain from (B) that

O Jgss P = | e rroa

Jme—h( —r)p”f(“(‘c) dr

d1p+q
- ® Mp! q! o*
< | e (1 fO>))dr £ | e *tPMe“ql ! = —— =
s [Cenelemhes | et = IS,
forany teR* and p,qe{0,1,...}.
But (1) and (3) give (A).

6. Remark. The preceding theorem has the advantage that the chatacteristic
growth constants (M, w, g) are preserved in the course of the transformation in both
directions. Nevertheless, technically it is difficult to verify the determining prop-
erty (A).

7. Remark. Some words about the proof of the implication (A) = (B) in the pre-
ceding theorem. The first part of this proof deals with the existence of a sequence of
functions ¢, € R* — E with the properties (12), (17) and (18). In the case of a reflexive
space E, these propertics can be obtained directly from Corollary 9 in [3] or from
Theorem 4 in [4], in the numerical case, E = R, from Theorems 16a and 16b in [5],
if we replace in (12) “continuous” by ‘“measurable”. In the remaining part of the
proof we must replace “‘differentiable” by ““feebly differentiable” in the following
sense: a function fe R* — E is feebly differentiable if there exists a function g €
€ R* > E such that for any 0 < a < p, g is integrable over («, f) and f(B) — f() =
= [5 g(c) do. Moreover, some identities are valid not for all 7€ R* but only for
almost all t € R*. All these technicalities do not influence the final result.

8. Remark. The infinitely differentiable functions satisfying the inequality
1
) o @l s Mer TR

forevery te R* and g € {0, 1, ...} with some nonnegative constants M, w, ¢ represent
a special class of functions analytic on the positive half-axis. It is clear from Taylor’s
theorem that (1) implies

® =50y
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for every t, 7€ R* such that |t — t| < t[o (supposing ¢ > 0 because the case ¢ = 0
is uninteresting). We see from (2) that the radius of convergence of the power series
in (2) depends linearly on the value t € R* (more precisely, it is not less than a positive
linear function of f). This is a remarkable property of the class of functions considered
but not characteristic because it does not imply the exponential growth of derivatives.

9. A function 7 defined on R* with values in the Banach space of bounded
linear operators on E into E will be called a semigroup of linear operators in E if
(Ty) 7(t, + 1) = T(t,) T(t,) for any t;,t,€R",

(T,) 7(f) x > x (t - 0,) for any x from a dense subset of E.

10. Theorem. Let J be a semigroup of linear operators in E. Then the following
two statements (A), (B) are equivalent:

(A) there exist M 2 0, @ = 0 and ¢ = 0 so that for every x € E for which the
function I (+) x is infinitely differentiable on R*, we have

d4 - q!Qq
g 7O x| = Me™ =5 ]

for every te R* and q€{0,1,...};

(B) there exist 6 > 0 and K 2 0 so that |7 (t)| £ K for euerjz 0<t=<d and
l7() - 7(t)] < Kllog ty — log t2|f0" every 0 < t;,t, < 6.

Proof. It follows easily from (Tl), (T,) (see the proof of Theorem 10.3.4 in [8])
that there is a subset D < E such that

(1) D is dense in E ,
(2 the function () x is infinitely differentiable for every xe D .

For xeE and ge{0,1,...}, we shall write simply J@(f)x instead of
(d9/de%) 7 (¢) x, if this derivative exists. Instead of 7 M)(f) x we write 7'(¢) x.
(A) = (B): It follows from (A) and (2) that

(3 |77 (1) x| < Me®*|x|| for every xeD,

@ 7 x - T()x] = |

t; t2
j :.7’(1:) xdt g.[ |77(z) x| d= =
171 ty

t2 Q 12 1
< J' Me € de|x| < Mae“’"j Laelx| <
o T T

131

< Mge®(logt; — logt,) |x| forevery xeD and 0<t <t,.
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But (1), (3) and (4) imply immediately (B) if we take, for example, § = 1, K =
= M + Mpge".

(B) = (A): Let us first fix a d > 0 and a K = 0 so that (B) holds.

It is easy to see that for any t € R*, there is a positive integer n, such that

(5) (n,—1)6<t=<nd forany teR*.

Since (5) yields 0 <t — (n,— 1)6 <6 and n, <1t[6 + 1, we get from (T,)
and (B)

(6) I70] = 17(n - Do+t = (n - 1) 9] =
— |7 T~ (n,— 1)3)] S K"K =
= K™ < K***1 = K(K'%)* = Ke'™¥X"* for every teR*.
Let us now take » = log K'/°. Then (6) implies
(7 [Z(t)| < Ke* forevery teR*.
On the other hand, it is easy to see from (T,) and (B) that
(8) | T'(s+)x=T()T'()x=T()T'(s) x
for every t,seR* and xeD.
Further, by (5) we can write
9) n,<té+1 and tn, <6 forevery teR™.
It follows from (B) and (2) that

(10) |7() x| = <

lim -1 (7(t = h)x — T() x
0. —h

< lim % |77t - B)x — 7(f) x| < K lim Lh (log (t — h) — log 1) x| = % I«
h—-04 —

h—0 4

forevery xeD and 0<t=<4.

Using (T,), (2) and (7)—(10) we get

1 |70 = ”9’ (z - ni) T (i) x

t n!

< Km0 K o] <
t

< K2 :1 (:; + l) [x]| < K2exe'’® %"x" of SO ;1 Il

forevery xeD and teR*.
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It follows from (1) and (11) by virtue of the theorem on differentiation of limit
that

(12)  the function J(-) x is continuously differentiable for every x € E,
(13) |77(t) x| = Kze("'“’_‘)tl |x|| forevery xeE and teR™.
t

We see from (T,) and (12) that
(14) T(t+s)x=T()T'()x=T(t)T'(s) x
forevery xeE and t,seR*.

We shall now prove that

(15) the function J7(+) x is n-times differentiable for every
xeE and nef{l,2,..},
(16) T™(t)x = (7" (t/n))"x forevery xeE, teR* and ne{l,2,..}.

We proceed by induction. The case n = 1 is true by (12). Let now (15) and (16)
hold for a fixed n e {1, 2,...}. Then we see from (14) that, for every x € E, the func-
tion 7 () x is (n + 1)-t1mes differentiable and

Tz + 0)x = d_ [7(x) 7'(6) x] = 7™(r) 7'(c) x forevery T,0€R".
T ‘

Hence (15) holds with n + 1 instead of n and moreover, taking t = tn/(n + 1) and
o = t/(n + 1) in the preceding formula, we get immediately (16) with n + 1 instead
of n again.

Making use of (13) and (16) we get

()

= Kometrtom L 1) < gangoeromie Ly g o g M I
" n! t" #

(17) |70 | =}

[KZ (x+6 Ht/n ]"x" K2ne(x+6 ')t "x"

forevery xeE, teR* and ne{l,2,..}.

Let us now take M = max (1, K), o = x + 6! and ¢ = K?e. Then we get from
(7) and (17) that

(18) |7 x| = Me“"-q%g-q- |x| forevery xeE, teR* and qe{0,1,...}.

But (15) and (18) prove (A).
The proof is complete.
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11. Remark. The proof of the implication (B) = (A) in the preceding theorem
uses an idea of Yosida [6] — see the beginning of the proof of his Theorem 1.

12. Proposition. Let 9 be a semigroup of linear operators in E. Further, let
M, o, ¢ be nonnegative constants. Then the following two statements (A) and (B)
are equivalent:

(A) for every x € E for which the function 7 () x is infinitely differentiable on
R* we have

d'l
— 7 (t) x
Hdﬂ (©

!o?
SMe""qT =l

for every te R* and q€{0,1,...},

(B) the function T is infinitely differentiable on R* (as a function on R* into the
Banach space of bounded linear operators on E into E) and

7o) = Me L
t
for every te R* and q€{0,1,...}.

Proof. The implication (B) = (A) is trivial. In the proof of (A) = (B) we use the
properties (1), (2) from the proof of Theorem 9.

13. Remark. The semigroups satisfying the condition 12 (B) are usually called
holomorphic or analytic. Mizohata [9] calls them parabolic which name seems to
be the most specific and adequate as an abstract extension of the meaning of this
term in the theory of partial differential equations. See also Remark 8.

The usual essentially equivalent approach to the parabolic semigroups consists
in their characterization by means of an analytic continuation into a wedge-shaped
domain around the positive half-axis (cf., e.g., [7] and [8]).

14. Theorem. Let A be a linear operator from E into E. Then the following two
statements (A), (B) are equivalent:

(A) the operator A is the generator 'of a semigroup I of linear operators in E
(i.e., x belongs to the domain of A if and only if there is y € E such that
=04

%(.7'(!)x—x)———> ¥

in that case Ax = y), satisfying the condition (A) from Theorem 9,
(B) there exist nonnegative constants M, w, ¢ such that

(I) (w, ) = ¢(A4) (the resolvent set of A),
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