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One can easily show that this is equivalent to the conditions a = b = c and a® = 1.
Thus we conclude that the element a € F must be a root of the polynomial x2+ x +
+ 1 different from 1.

Theorem 4. In an arbitrary desarguesian projective plane every six-fold homol-

ogy of two triangles with no common vertex is equivalent to the special six-fold
homology.

Proof. According to the proof of the preceding theorem each pair of six-fold
homologic triangles can be transformed by a certain automorphism of the plane onto
triangles T;, T, with the homogeneous coordinates described above. It is very easy
to verify that this pair of triangles has the required property (cf. [4], [5]).

Remark. By an analogous argument we can obtain that in the desarguesian plane
a six-fold perspectivity of two triangles with not common vertex implies their
six-fold homology. Theorems 1—4 imply immediately:

Theorem 5. A configuration (H-T) exists in a desarguesian projective plane
over a field F if and only if in F there exists a root of the polynomial x* + x + 1
different from 1.

Theorem 6. If an arbitrary desarguesian-Fano plane contains an (H-T) con-
figuration, then this plane has a finite subplane of order 4. In the case of finite
Fano planes, they are exactly the projective planes over the Galois field of order

n =22 (cf. [1], [2])
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