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1. INTRODUCTION

A particularly interesting and simple class of Kahler manifolds is formed by those
with constant holomorphic sectional curvature. These manifolds are natural analogues
of Riemannian manifolds of constant sectional curvature.

There is a local classification of Kiahler manifolds with constant holomorphic
sectional curvature ([10], [13]): A Kahler manifold of constant holomorphic sectional
curvature y is locally isometric to a complex projective space CP"(u), a complex
hyperbolic space CD"(p), or to a complex Euclidean space C".

Of course, the definition of holomorphic sectional curvature (namely H(X) =
= ||X ||" Ry xxsx) makes sense for any almost Hermitian manifold. The purpose
of this paper is to consider almost Hermitian manifolds of constant holomorphic
sectional curvature which are not necessarily Kahlerian. The study of such manifolds
is much more complicated and interesting than in the Kéhler case. For example, one
has the six sphere S®(u) to contend with. We pose two questions for a given class L of
almost Hermitian manifolds:

(A) Does the theorem of Schur hold for L? More precisely, suppose M € L with
dimM 2 4 and assume M has constant holomorphic sectional curvature u(m)
at each point m € M. Must u be a constant function?

(B) Classify (either locally or globally) all M € L which have constant holomorphic
sectional curvature.

As mentioned above, the solution of (A) and (B) for the class K of Kéhler manifolds
is well-known. (See [10], [13], [24].) Moreover, for the class NK, (A) and (B) have
recently been solved ([7], [22]). See also [19]. The only non-Kéhler nearly Kahler
manifolds of constant holomorphic sectional curvature are locally isometric to a six
sphere SS(u).

Perhaps the next most interesting class to consider is the class H of Hermitian
manifolds. It is easy to see that there are many additional spaces of constant holo-
morphic sectional curvature in H, such as all of the simply connected spaces of
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constant sectional curvature. (Let M be a simply connected Riemannian manifold
with constant sectional curvature A # 0. Let ¢ be a conformal diffeomorphism
between M and a piece of Euclidean space. Then ¢ induces an almost complex
structure on M. It is easily checked that M is Hermitian but not Kahlerian. Since M
has constant sectional curvature a fortiori it has constant holomorphic sectional
curvature.) _

The interesting thing about the class H is that the answer to (A) is no. We prove
in§$s

Theorem. Let ds? be the usual metric on C" and f : C" — C any nonlinear holo-
morphic function. Then the metric (1 + Re f(z))~% ds® on C" does not satisfy (A).
Thus (C", (1 + (Re f(2))"?) ds?) is a Hermitian manifold with pointwise constant
holomorphic sectional curvature which is not globally constant.

Because the answer to (A) is no, it is hopeless to attempt a classification in the
class H. Instead we turn to other types of almost Hermitian manifolds. In § 3 and § 4
we consider a certain class QK, which contains both NK and K as subclasses. The
manifolds in QK, satisfy a certain natural curvature condition. The class QK, is
interesting because it contains many homogeneous almost Hermitian manifolds,
namely all 3-symmetric spaces (see [6]).

The answer to (A) for the class QK, is yes. Furthermore we are almost, but not
quite, able to solve (B). More precisely, we show that manifolds in QK, with nonzero
constant holomorphic sectional curvature pu consist of manifolds locally isometric
to CP"(u), CD"(u), or S®(u). The case when the holomorphic sectional curvature
vanishes remains in doubt. There are certainly flat almost Hermitian manifolds
other than the usual Kihler structure on C". (See for example [20], [21].) However,
whether or not there exist manifolds in QK, other than C" with zero holomorphic
sectional curvature remains an intriguing question.

2. CLASSES OF ALMOST HERMITIAN MANIFOLDS

We consider C* almost Hermitian manifolds and use the notation of [1], [2],
and [6]. In this paper we shall be concerned with five classes of almost Hermitian
manifolds: K, NK, AK, QK, H. For reference, the defining conditions for these classes
are as follows:

K:Vy(J)Y =0,
NK:Vy(J)X =0,
AK :dF =0,

QK :Vx(J) Y+ Vyu(J) JY =0,
H:Vy()) Y = Vyu()) JY =0, X, YeX(M).
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(T he condition defining H is equivalent to the vanishing of the Nijenhuis tensor.)

Curvature identities are a key to understanding the geometry of these classes of .
almost Hermitiad manifolds. In fact for each of the classes given above there exists
a curvature identity (see [8]). However in this paper we shall be concerned with the
following curvature identities:

(1) Rwxyz = Rwxisyiz s
(2) Rwxyz = Rywsxyz + Rywxsvz + Rowxviz s
(3) Ryxyz = Rywsxsvsz -

For a given class L of almost Hermitian manifolds let L; be the subclass of manifolds
whose curvature operator satisfies identity (i).

Certain equalities occur among the various classes. We summarize the known
results.

Theorem 2.1. We have

(2.1) Ky = Ky = Ky = K,
(2.2) K = NK,,

(2.3) NK, = NK; = NK,
(24) K = AK,,

(2.9) H, = H,.

Proof. (2.1) is well-known, and (2.2), (2.3), (2.4) are proved in [4]. For (2.3), (2.4)
see also [9], [15]. In [8] (2.5) is proved. )

In [8] inclusions between the various classes are treated more fully. Moreover,
in view of theorem (2.1) it suffices to consider the following classes: K, NK, AK,, AK;,
AK, QK;, QKy, QK3, QK, Hy, H, = H,, H.

3. SCHUR’S THEOREM FOR THE CLASS QK,

We say why QK is a reasonable class in which to consider problems (A) and (B).
In the first place we have K = NK = QK,. Thus our results generalize all the known
solutions to (A) and (B). Furthermore, although QK; = QK, and AK, = QK, our
techniques do not yield better results for these two classes. Our techniques appear
to be too weak to solve (A) and (B) for QK.

It will be convenient to define a tensor A by A(WXYZ) = Ryxyz — Ryxsrsz. We
begin by generalizing a well known formula for K#hler manifolds of constant holo-
morphic sectional curvature.
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Lemma 3.1. Let M be any almost Hermitian manifold which satisfies curvature
identity (2), and assume that M has pointwise constant holomorphic sectional
curvature u. Then

(3-1) Ryxrz= E {WY)X,Z) - WZYLX, Y) + IW, Y) X, Z) —
L= IW,ZY JX, Y)Y + 2IW, XY (JY, 2D} +
+ i{zz(wxyz) _ AWZXY) — (WYZX)} .

Proof. Using (2) it is easy to check that 1 satisfies the following identities:
(3.2 MWXYZ) = —AWXJIYJIZ) = \WIXYIZ) = (JWIXJYIZ).
Now by assumption
(33) Ryyxxsx = p|X[* for X eX(M).

Let X, Ye X(M) be such that at a point m e M we have | X| = |[Y]| = 1, (X, Y) =

= (JX, Y) = 0. We substitute aX + bY for X in (3.3). Equating coefficients and
using (2) we find

(3.4) Ryyxy = g + %a(xrxy).

More generally put U = aX + bJX + cY, where a® + b* + ¢* = 1. From (3.2),
(3:4) and (2) we find

(3.5 Ryuxu= g {IX]? |U]* = <X, Uy + 3<JX, Uy} + %A(XUXU).

In fact (3.4) also holds for X, U e X(M) of arbitrary norm. We linearize (3.5) and use
the first Bianchi identity; after some calculation we obtain (3.1).
Define a tensor P by

(3.6) P(YWXYZ) = & (~3V,(3) (WXY2) + & V() (WX 12},

for V, W, X, Y, Z e X(M). Here & denotes the cyclic sum. We shall compute the
expression P(JWWXWX) + P(JWWJXWJX) in two different ways.

Lemma 3.2. For M € QK, and W, X € X(M) we have
(3.7) P(JWWXWX) + P(JWWJX WJX) =0.
Proof. Using standard formulas, the covariant derivative of A is found to be

(3-8) VV(}') (WXYZ) = VV(R)WXYZ - VV(R)vxn.vz - waw(!)nz - wanvvu)z .
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From the second Bianchi identity and (3.8) we obtain

(39) S Vy(4) (WXYZ) = — & {Ryxvywyrsz + Rwxsrvy,wyz) -
YWX VWX

Substituting (3.9) into (3.6), we find

(3.10)

P (I WX YZ) =6 {(3 -8 )(wavvu)nz + wanv.,u)z) -6 VV(R)Wanz} =
VWX XYz XYz
=VSX{2RWXVV(J)YJZ — Ryzvyyxsy — Rwyvyyzix +
+ 2Ry xsyvyyz — Rwzixvewyy — Rwyizvynx "x?zVV(R)WXJYJZ} .

Let V= JW, Y = Wand Z = X in (3.10). Using the fact that M is quasi-Kihlerian
we get

(3.11) PUWWXWX) = — 2{Rpxsvpuywix + Riwxvpwywix} +
+ 3{Rwswvxyxsiw — Rwxswrvwyx — Rwswvwaywax} +
+ Ryxwvwnx — 2Riwxswvwyw +
+ Vo(R)xswixsw + Vw(R)xwaxsw -

In (3.11) we replace X by JX and add the resulting equation to (3.11). Again using
the fact that M e QK and (3), it follows that

(3.12) P(JmWX) + P(JWWJXWJX) = 3{RWXWVW'(-’)X - RWX-’W.’Vw(I)X -
- RWJXJWVW(J)X - RJWXIWVw(J)X} &

Now (3.7) is immediate from (3.12) and (2). -

Lemma 3.3. Suppose M € QK, and that M has pointwise constant holomorphic
sectional curvature u. Then we have

(3.13) P(JWWXWX) + P(JWWIXWJX) =
= 2w (W] [X|? + <, X0 + (I, X5 +
+ 4|W|| (KW, JX) Xp — W, X) JXp} —
— 6u{<W, X KVy(J) W, X> + (W, JX) (Vy(J) W, JXD} .
Proof. We write (3.1) in the form
(3.14)  4Ryxyz — MWXYZ) +8 AWXYZ) =
= p{(W, Y <X, Z) i W, Z) <X, Y) + (IW, Y)UX, Z) -
= IW, Z)KIX, Y) + 2{JW, X) {JY, Z)} .
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We take the covariant derivative of (3.14) and use the second Bianchi identity. The
result is

(3.15) P(VWXYZ) = © {(Vi) (KW, Y> (X, Z) — W, Z) (X, YD +
VWX

+ (W, YYIX, Z> — (IW, Z)> (IX, YD +
+ 2IW, XY <Y, Z) + u[<V(J) W, Y> (JX, Z) +
+ I, Y) V(D) X, Z) — V() W, Z) UX, YD —
~ IW, ZY V() X, Y> + 2V (J) W, XD JY, Z) +
+ 2IW, XY <V(J) Y, 2]} .
In (3.15) welet V= JW, Y = Wand Z = X to obtain

(3.16) P(JWWXWX) = (Jwu) {|W|? |X|* — <W, X>* + 3IW, X)?} —
— 4(Xp) W) <IW, X> + 4(Wu) (IW, XD (W, X) —
= YW, IX) (Vy(J) W, JX) +
+ 3uVw(J) W, XD (W, X + 3uVx(I) X, W) |W]2.

In (3.16) we replace X by JX and add the resulting equation to (3.16). The result is
(3.13). :

We can now prove the main result of this section.
Theorem 3.4. Suppose M e QK, with dim M = 4, and that M has pointwise
constant holomorphic sectional curvature y. Then u is a constant function.

Proof. Since dim M 2 4 for each me M and We X(M) there exists X € X(M)
such that W, JW, X, JX are mutually orthogonal at m. From lemmas 3.2 and 3.3
we find (W) |W|? | X||* = 0. Hence the result follows.

4. THE CLASSIFICATION

Now that we have proved the technical lemmas of § 3, we can effect a classification.

In particular we have the following theorem, the proof of which is surprisingly
simple.

Theorem 4.1. Let M € QK, have pointwise constant holomorphic sectional curva-
ture u = 0. Then M is nearly Kdhlerian.

Proof. If dim M = 2, then M is automatically Kéhlerian. Thus we may assume
dim M = 4. Then p is constant, and so from lemmas 3.2 and 3.3 we have

(4.1) #{CVwl(J) W, X (W, XD + KVy(J) W, JX) (W, XD} = 0.
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In (4.1) we replace X by W + Vy(J) W. Note that W, JW, Vy(J) Wand J Vy(J) W
are mutually perpendicular. Therefore (4.1) becomes

(4.2) u|Vw(J) W] |W]* = 0.

Hence we obtain the theorem.

In [7] nearly Kahler manifolds of constant holomorphic sectional curvature are
classified. Therefore combining [7] and theorem 4.1 we have the following classi-
fication for QK.

Theorem 4.2. Let M € QK, have pointwise constant holomorphic sectional curva-
ture pu = 0. Assume dim M = 4. Then M is locally isometric to one of the following
spaces:

(1) A complex hyperbolic space CD"(n);

(2) A complex projective space CP"(p);
(3) The sphere S%(p).

Furthermore from theorem 4.2 and [7] we have a global classification theorem.

Theorem 4.3. Let M € QK, have pointwise constant holomorphic sectional curva-
ture u £ 0. If dim M = 4 and M is complete, then M is isometric to one of the fol-
lowing spaces:

(1) CD"(w)[T" where I is a discrete group;

2) CP();

(3) s°(u).

The hypothesis in theorem 4.1 that 4 # 0 is very curious indeed. This hypothesis

is not needed for the classification of nearly Kihler manifolds of constant holo-
morphic sectional curvature. There are two unsolved questions here:

1. Do there exist flat quasi-Ké&hler manifolds which are not Kéhlerian?
2. Do there exist nonflat quasi-Kéhler manifolds with zero holomorphic sectional
curvature?

Note that (1) is false for the classes AK and NK, and (2) is false for the class NK.
Corollary 4.4. Let M be a 3-symmetric space with positive definite metric, and

suppose M has constant holomorphic sectional curvature u + 0. Then M is iso-
metric to one of the spaces listed in theorem 4.3.

5. HERMITIAN MANIFOLDS WITH POINTWISE CONSTANT HOLOMORPHIC
SECTIONAL CURVATURE

If M and M° are conformally equivalent almost Hermitian manifolds, then either
both M and M° are Hermitian, or neither is. This is obvious because the integrability
condition for an almost complex structure does not depend on a metric.
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Theorem 5.1. Let M be a contractible even dimensional Riemannian manifold
of constant sectional curvature K. Then M e H and has constant holomorphic
sectional curvature p = K. If dimM 2 4 and K + 0, then M ¢ QK (in fact M is
not semi-Kdhlerian, see [2]).

Proof. Everything is obvious, except perhaps for the last statement. This is proved
in [2].

Next we modify this technique to show that Schur’s theorem fails for the class H.

It will be necessary to recall some relations between the connections and curvature
tensors of conformally related metrics ¢,) and {,)»° on the same manifold M.
There exists a C* real valued function ¢ such that {, »° = ¢??¢, >. We define a vector
field grad o by {grad o, Z) = Zo for Ze X(M). Also define a symmetric tensor ¥, by

Yo(X, Y) = (VxY) o — XYo + (Xo) (Yo).

Well-known calculations yield relations between the connections V, V° and between
the curvature tensors R, R°. In our notation these are

VY = {VyY + (Xo) Y + (Yo) X — (X, Y) grad 6}°,
(5.1)  Ryxyz = € {Ryxyz — |grad o> (KW, YY) (X, Z) — (W, Z)<X, Y) +
+ ¥, (W, Y) (X, Z) — ¥ (W, Z) (X, Y) +
+ ¥ (X, Z) KW, Y — Y (X, Y)W, Z))} .

Now assume that {,) is almost Hermitian with respect to the almost complex
structure J. Then so is ¢, »°. The following lemma is a special case of (5.1).

Lemma 5.2. The holomorphic sectional curvatures Ky,x and K%,x are related by
(52) Kix = e *{Kyxsx — |grad o|* + | X| 72 (¥.(X, X) + ¥,(JX, X))},
for X € X(M).

Corollary 5.3. Suppose M = C"and {,) is the usual metric. Let o = —log (1 + s)
and assume ||X|| = 1, and that X is parallel. Then

(5.3 K%x = — |grad s|* + (1 + s) (X%s + (JX)?5).

Proof. We have Ky;x =0, e72" = (1 + s)?, |grad o> = (1 + 5)”2 ||grad s|%,
and —X?%¢ + (Xo)? = (1 + s)"! X?s. With these substitutions lemma 5.2 yields
corollary 5.3.

Now we can prove the main theorem of this section. .

Theorem 5.4. Let f: C"— C be any holomorphic function, and let {,) be the
usual metric on C". Then (1 + Re f(z))"2 {, ) has pointwise constant holomorphic
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