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THE INSERTION OF REGULAR SETS IN POTENTIAL THEORY

Eva CerMAKOVA, Praha
(Received October 29, 1976)

Introduction. In 1924, N. WIENER [8] proposed a new construction of the gener-
alized solution of the Dirichlet problem for the Laplace equation. His method
essentially uses the following fact: Any couple (K, U) consisting of a compact set K
and an open set U with K < U is admissible in the sense that there is a set V regular
for the Dirichlet problem such that

KcVcVecU.

It is known that each couple (K, U) is also admissible for a wide class of more general
second order elliptic partial differential equations than the Laplace equation. In fact,
this follows from a result of R.-M. HERVE [4] (Proposition 7.1) established in the
context of Brelot harmonic spaces. A related question in the same context is also
investigated in [6]. On the other hand, a similar result is no longer valid e.g. for the
heat equation as observed by H. BAUER in [1], p. 147. Consequently, the original
Wiener’s procedure is not directly applicable. (Note that the Wiener type solution has
recently been investigated in [7] in the frame work of the axiomatic potential theory.)

The aim of this paper is to study in terms of Bauer’s axiomatics necessary and
sufficient conditions guaranteeing that a couple (K, U) is admissible. To this end,
a special hull r(K) of K is introduced in a suitable way so that the main result reads
then as follows: The couple (K, U) is admissible, if and only if 7(K) = U. For the
case of the heat equation, several characterizations of r(K) in terms of absorbent
sets and balayage are given.

1. Terminology and notation. In what follows, X will denote a strong harmonic
space in the sense of H. Bauer’s axiomatics. For all notions we refer to [1]. For any
set M we shall denote by M*, int M and ‘M its boundary, interior and closure,
respectively.

Let U be an open subset of X and K a compact subset of U. The couple (K, U)
is called admissible if there exists a regular set W such that K « W< W< U.Fora
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compact set K < X, we put
nK) = N{V; K = V < X; Vregular}.
If there is no regular set Vsuch that K < ¥, put r(K) = X.

2. Lemma. If r(K) + X, then
rK) = N{V; K = V < X; Vregular};
in particular, r(K) is compact.
Proof. According to Theorem 4.3.5 of [1] to eail regular set Wsuch that K = W,
there exists a regular set Wy suchthat K <« Wy, <« W, < W.

3. Theorem. The following statements are equivalent:
(i) a couple (K, U) is admissible;
(i) 7(K) * X, (K) = U.

Proof. Implication (i) = (ii) is obvious. Assume (ii) and let W be a regular set
such that K = W. We can limit ourselves to the case W (X \U) % 0. Then W
N (X\U) is compact and r(K)n (Wn (X\U)) =0, ie. [Wn(X\U)] <
c [X\N{V; K = V, Vreg.}], thus

WA(X\U)c U (X\7).
Vreg,
K<V

We can therefore choose regular sets Vj, ..., ¥, such that

W (X U) < [XN N 7]
i=1

By Corollary 4.2.7 of [1], N V; is a regular set. Obviously,
i=1

KeNv

i=1

and thus applying Theorem 4.3.5 of [1] we can find a regular set V,,
KeVoeVocenV,.
=1

Put Wy = Vo, n W. Then K < W,, W, is (according to Corollary 4.2.7 of [1] again)
regular. Moreover, W, < U.

4. Notation. For E c X, let A(E, X) be the smallest absorbent set in X con-
taining E. We shall write A(x, X) instead of A({x}, X).
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5. Lemma. The components of an absorbent set are absorbent sets.

Proof. For S connected, A(S, X) is always connected. (See Exercise 6.1.2 in [3].)
Let B be a c6mponent of 4. Then A(B, X) is a connected absorbent set containing B.
Consequently, B = A(B, X) and B is absorbent.

In what follows, X will denote the harmonic space corresponding to the heat
equation on a Euclidean space R**' (n 2 1) (see [1], Standard-Beispiel 2, p. 20).

6. Notation. Given a compact set K = X, the parabolic hull Mg of K is the union
of K and the set of all x € X \K for which A(x, X \ K) is relatively compact. Denote
by Tk the union of K and the set of all x € X \ K for which there exists no absorbent
set Bin X such that § + B = A(x, X \K).

Further put Ly = {x € X; R{(x) = 1}.

7. Theorem. For a compact subset K < X,
T(K) =MK= TK= LK'
Thus, together with Theorem 3 we obtained a characterization of admissible

couples (K, U) in terms of the parabolic hull of K.
The proof of this theorem will be divided into the following steps.

8. Proposition. Let Y be an open subset of X and A a closed set in Y. Then the
following assertions are equivalent:
(i) The set A is absorbent in the harmonic space Y.

(ii) For each x € A there exists a neighborhood U, and an absorbent set B in X
such that U, n A = U, n B.

Proof. Suppose (1) For x eint A, choose a neighborhood U, of x such that
U, A, and put B = X. If x € Y is a boundary point of 4, then we choose a > 0
in such a way that the set ’

Ux={yERn+1; Z(yi'_:x‘i)z_(a+xn+l —yn+1)2 <0;
i=1

Xp+1 = @ < Yny1 < Xpyy + a}

is contained in Y. (The sets of this form will be called standard cones. Recall that each
standard cone is a regular set — see [1], p. 21). For each y e U, n A(x, X), y * x,
there is a standard cone S such that xe S c § = U,, ye S*. Then yespt puS,
where 15 denotes the harmonic measure corresponding to x and the regular set S
(see [1], p. 21). Obviously, spt u3 = A and hence

U,nAx,X)c U, nA.
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Suppose now that there exists z € (U, n A)\ A(x, X). The supports of harmonic
measures i, corresponding to regular sets V, V < U, (consider e.g. standard cones)
for which z € ¥, cover the set [A(z, X) n U,] \{z}. Thus

xeint[U,nA(z,X)] cU,n A4,

which yields a contradiction with the assumption that x is a boundary point of A.
So we obtain U, n A(x, X) = U, n A and we can put B = A(x, X).

Now suppose (ii). By [2] absorbent sets in X are exactly those which are closed
and finely open. It follows that there is a fine neighborhood V, of x, contained in B.
Since U, n V, is a fine neighborhood of x contained in A, A4 is finely open, and
(using [2] again) 4 is an absorbent set in Y.

9. Corollary. Let Y be an open subset of X. For each component Q of the boundary
of an absorbent set in Y there exists c € R such that Q = {x € X; X4 = c}.

10. Lemma. For a compact K = X, Mg < r(K).

Proof. Assume that K # @ and choose x° e My\K. The standard cones are
regular, hence r(K) + X. Suppose that there is a regular neighborhood V of K, such
that x° ¢ V. Putting

L={xeX; x;=2x) forall 1L £ i Zm, %1 S %041},
there exists y € L such that
Yut1 = sup {X,41; X € LNA(X%, X NK)} .
According to Proposition 8, y,,; < x°, ;. Denote
Lo = {x€L; Xps1 > Vus1} -

By Proposition 8, y ¢ A(x° X \K). Simultaneously y e A(x°, X \K) and hence
y e K. It follows Ly N V* % @ and using the fact that L, = A(x°, X \K), we have

0% LonV* < Ax% X\K)n V*.
Let y° € A(x°, X \K) be chosen such that
¥oi1 = min {x,,; x€ A(x% X\K) n V*}.

First, consider the case when y° is a boundary point of A(x° X \ K) relatively to the
set X \ K. Using Proposition 8, there is a neighborhood U of y° such that

Upn(X\V)c{xeX; ypr1 < Xps1} -

It follows (cf. [1], Theorem 4.3.1. and p. 108) that y° is an irregular boundary
point of ¥, which is a contradiction. Using a similar argument, y° cannot be in the
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interior of A(x% X \K). Thus, Mg, \K < V and since V is an arbitrary regular set
containing K, we have Mx\ K < r(K). Obviously, K < r(K).
The proof gf the inclusion r(K) = My will be more complicated.
11. Lemma. For a compact set K in X, the set {x € X; R{(x) = 1} is bounded.
Proof. Obviously it is sufficient to prove that {x € X; Rf(x) = 1} is bounded for
K={xeX;|x|Sa,i=1..,n+1} (a20).
(a) If y € X is such that y,,; < —a,4,, then |
Ri(y) = Ri(y)=0.
We can take the superharmonic function (see [1], p. 34.)
"y {0 on A(y,X),
1 on X\A(yX).
(b) If y € X is such that lyi| Za;fori=1,..,n, y,.q > a,+, consider the set
D={xeX\K; |[x]|<a;+1 for i=1,..,m |x| <|vass| +1}.

Obviously, y e D. Choose z€ D, z; = —a; — }. Using (a), Rf(z) = 0. Applying
the maximum principle for the heat equation (e.g. Theorem 2.3 in [5] — note that R
is a harmonic function on D, Rf < 1) we obtain Rf(y) < 1.

(c) In the case that for yeX, y,;q = —a,4+, and there exists i (i = 1,...,n)
such that | y,[ > a; we can proceed analogously.

12. Notation. For a compact set § + K = X, we define a sequence {K,}:
K, = {xeX; dist (x,K) < 1/n}.

13. Lemma. Ly = M.

Proof. Let K # 0 and consider x° € X \ M. The set 4(x° X \ K) is unbounded,
thus using the preceding lemma and Proposition 8, there is y eint A(x% X \K)
such that Rf(y) < 1. The function 1 — R¥ is harmonic on X \ K. By the Harnack
inequality (see [1], Theorem 1.4.4) applied to X \K and to the Dirac measure at x°
there is & = 0 such that

0<1-Riy = ofl — R{(x9)).

It follows that Ri(x°) < 1.
Thus we proved that Ly = My. Let y° € Mg\ K, choose n, such that y°¢ K, .
Let n = n, be a natural number. According to Proposition 8 we obtain that the

360



“parabolic boundary” (see [5] Chap. 3) of int A(y°, X \K) in X is contained in K.
Using the fact that Rf"(y) = 1 for all y e K together with the minimum principle
for superharmonic functions for the heat equation (see Theorem 2.1 in [5]), we have

inf {R"(y); yeint A()°, X\K)} = 1.

Since y° ¢ K,, Rf" is continuous at y° (compare with Corollary 2.3.5 in [1]) and
Ri"(y°) = R{"(»°) = 1. Now, applying the assertion of Appendix 3.2.1 of [1]
we have
R¥ = inf R% |
neN
and hence R{(y°) = 1 (note that K, > K, for n < ny and R{" = R{"). This means
y° € Lg. Obviously, K < Ly.

14. Remark. In the course of the preceding proof we used the equality

RY = inf R¥".
neN
It is an easy consequence that

{xeX; Ri(x) =1} = F\ {xeX; RI"(x) = 1}.
n=1
Obviously, {x € X; Rf(x) = 1} UK = {xe X; Rf(x) = 1}, so that
a{xeX; Ri(x) =1} = a{xe}ﬂ Ri"(x) = 1} .
n=1 n=1

15. Lemma. For a compact K = X, r(K) = My.

Proof. Assume that K # . Consider x° ¢ My. Using Lemma 13 and the preceding
remark, there exists a natural number n such that Rf"(x°) < 1 for all m 2 n.
Simultaneously,

inf Rf(x) = 1.
xeMg
The set M is a closed subset of the compact set r(K). Hence, using Proposition 3.1.2

of [3] there is a fundamental system of regular neighborhoods of My not containing
the point x°. Thus, x° ¢ r(K).

16. Lemma. Ty = M.

Proof. Suppose first that x € Mg\ T. If B is an absorbent set in X such that
B < A(x, X \K), then B is a compact absorbent set and hence (see [1], p. 31) must
be empty. It follows that My = Tg. Suppose now that the set A(x, X \K) is un-
bounded. Let D > K be an (n + 1)-dimensional cube in X such that its faces are

361



	
	Article


