

Werk

Label: Article **Jahr:** 1978

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0103 | log97

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

THE INSERTION OF REGULAR SETS IN POTENTIAL THEORY

Eva Čermáková, Praha (Received October 29, 1976)

Introduction. In 1924, N. WIENER [8] proposed a new construction of the generalized solution of the Dirichlet problem for the Laplace equation. His method essentially uses the following fact: Any couple (K, U) consisting of a compact set K and an open set U with $K \subset U$ is admissible in the sense that there is a set V regular for the Dirichlet problem such that

$$K \subset V \subset \overline{V} \subset U$$
.

It is known that each couple (K, U) is also admissible for a wide class of more general second order elliptic partial differential equations than the Laplace equation. In fact, this follows from a result of R.-M. Hervé [4] (Proposition 7.1) established in the context of Brelot harmonic spaces. A related question in the same context is also investigated in [6]. On the other hand, a similar result is no longer valid e.g. for the heat equation as observed by H. Bauer in [1], p. 147. Consequently, the original Wiener's procedure is not directly applicable. (Note that the Wiener type solution has recently been investigated in [7] in the frame work of the axiomatic potential theory.)

The aim of this paper is to study in terms of Bauer's axiomatics necessary and sufficient conditions guaranteeing that a couple (K, U) is admissible. To this end, a special hull r(K) of K is introduced in a suitable way so that the main result reads then as follows: The couple (K, U) is admissible, if and only if $r(K) \subset U$. For the case of the heat equation, several characterizations of r(K) in terms of absorbent sets and balayage are given.

1. Terminology and notation. In what follows, X will denote a strong harmonic space in the sense of H. Bauer's axiomatics. For all notions we refer to [1]. For any set M we shall denote by M^* , int M and \overline{M} its boundary, interior and closure, respectively.

Let U be an open subset of X and K a compact subset of U. The couple (K, U) is called *admissible* if there exists a regular set W such that $K \subset W \subset \overline{W} \subset U$. For a

compact set $K \subset X$, we put

$$r(K) = \bigcap \{V; K \subset V \subset X; V \text{ regular} \}.$$

If there is no regular set V such that $K \subset V$, put r(K) = X.

2. Lemma. If $r(K) \neq X$, then

$$r(K) = \bigcap \{\overline{V}; K \subset V \subset X; V regular\};$$

in particular, r(K) is compact.

Proof. According to Theorem 4.3.5 of [1] to each regular set W such that $K \subset W$, there exists a regular set W_0 such that $K \subset W_0 \subset \overline{W_0} \subset W$.

- 3. Theorem. The following statements are equivalent:
- (i) a couple (K, U) is admissible;
- (ii) $r(K) \neq X$, $r(K) \subset U$.

Proof. Implication (i) \Rightarrow (ii) is obvious. Assume (ii) and let W be a regular set such that $K \subset W$. We can limit ourselves to the case $\overline{W} \cap (X \setminus U) \neq \emptyset$. Then $\overline{W} \cap (X \setminus U)$ is compact and $r(K) \cap (\overline{W} \cap (X \setminus U)) = \emptyset$, i.e. $[\overline{W} \cap (X \setminus U)] \subset [X \setminus \bigcap \{\overline{V}; K \subset V, V \text{reg.}\}]$, thus

$$\overline{W} \cap \left(X \smallsetminus U \right) \subset \bigcup_{\substack{V \text{reg}, \\ K \subset V}} \left(X \smallsetminus \overline{V} \right).$$

We can therefore choose regular sets $V_1, ..., V_n$ such that

$$\overline{W} \cap (X \setminus U) \subset \left[X \setminus \bigcap_{i=1}^n \overline{V}_i\right].$$

By Corollary 4.2.7 of [1], $\bigcap_{i=1}^{n} V_i$ is a regular set. Obviously,

$$K \subset \bigcap_{i=1}^n V_i$$

and thus applying Theorem 4.3.5 of [1] we can find a regular set V_0 ,

$$K \subset V_0 \subset \overline{V}_0 \subset \bigcap_{i=1}^n V_i$$
.

Put $W_0 = V_0 \cap W$. Then $K \subset W_0$, W_0 is (according to Corollary 4.2.7 of [1] again) regular. Moreover, $\overline{W_0} \subset U$.

4. Notation. For $E \subset X$, let A(E, X) be the smallest absorbent set in X containing E. We shall write A(x, X) instead of $A(\{x\}, X)$.

5. Lemma. The components of an absorbent set are absorbent sets.

Proof. For S connected, A(S, X) is always connected. (See Exercise 6.1.2 in [3].) Let B be a component of A. Then A(B, X) is a connected absorbent set containing B. Consequently, B = A(B, X) and B is absorbent.

In what follows, X will denote the harmonic space corresponding to the heat equation on a Euclidean space R^{n+1} ($n \ge 1$) (see [1], Standard-Beispiel 2, p. 20).

6. Notation. Given a compact set $K \subset X$, the parabolic hull M_K of K is the union of K and the set of all $x \in X \setminus K$ for which $A(x, X \setminus K)$ is relatively compact. Denote by T_K the union of K and the set of all $x \in X \setminus K$ for which there exists no absorbent set B in X such that $\emptyset \neq B \subset A(x, X \setminus K)$.

Further put $L_K = \{x \in X; R_1^K(x) = 1\}.$

7. Theorem. For a compact subset $K \subset X$,

$$r(K) = M_K = T_K = L_K.$$

Thus, together with Theorem 3 we obtained a characterization of admissible couples (K, U) in terms of the parabolic hull of K.

The proof of this theorem will be divided into the following steps.

- **8. Proposition.** Let Y be an open subset of X and A a closed set in Y. Then the following assertions are equivalent:
 - (i) The set A is absorbent in the harmonic space Y.
 - (ii) For each $x \in A$ there exists a neighborhood U_x and an absorbent set B in X such that $U_x \cap A = U_x \cap B$.

Proof. Suppose (i). For $x \in \text{int } A$, choose a neighborhood U_x of x such that $U_x \subset A$, and put B = X. If $x \in Y$ is a boundary point of A, then we choose a > 0 in such a way that the set

$$U_{x} = \left\{ y \in \mathbb{R}^{n+1}; \quad \sum_{i=1}^{n} (y_{i} - x_{i})^{2} - (a + x_{n+1} - y_{n+1})^{2} < 0 ; \right.$$
$$x_{n+1} - a < y_{n+1} < x_{n+1} + a \right\}$$

is contained in Y. (The sets of this form will be called standard cones. Recall that each standard cone is a regular set — see [1], p. 21). For each $y \in U_x \cap A(x, X)$, $y \neq x$, there is a standard cone S such that $x \in S \subset \overline{S} \subset U_x$, $y \in S^*$. Then $y \in \operatorname{spt} \mu_x^S$, where μ_x^S denotes the harmonic measure corresponding to x and the regular set S (see [1], p. 21). Obviously, spt $\mu_x^S \subset A$ and hence

$$U_{x} \cap A(x, X) \subset U_{x} \cap A$$
.

Suppose now that there exists $z \in (U_x \cap A) \setminus A(x, X)$. The supports of harmonic measures μ_z^V corresponding to regular sets $V, V \subset U_x$ (consider e.g. standard cones) for which $z \in V$, cover the set $[A(z, X) \cap U_x] \setminus \{z\}$. Thus

$$x \in \operatorname{int} [U_x \cap A(z, X)] \subset U_x \cap A$$
,

which yields a contradiction with the assumption that x is a boundary point of A. So we obtain $U_x \cap A(x, X) = U_x \cap A$ and we can put B = A(x, X).

Now suppose (ii). By [2] absorbent sets in X are exactly those which are closed and finely open. It follows that there is a fine neighborhood V_x of x, contained in B. Since $U_x \cap V_x$ is a fine neighborhood of x contained in A, A is finely open, and (using [2] again) A is an absorbent set in Y.

- **9. Corollary.** Let Y be an open subset of X. For each component Q of the boundary of an absorbent set in Y there exists $c \in R$ such that $Q \subset \{x \in X; x_{n+1} = c\}$.
 - 10. Lemma. For a compact $K \subset X$, $M_K \subset r(K)$.

Proof. Assume that $K \neq \emptyset$ and choose $x^0 \in M_K \setminus K$. The standard cones are regular, hence $r(K) \neq X$. Suppose that there is a regular neighborhood V of K, such that $x^0 \notin V$. Putting

$$L = \{ x \in X; \ x_i = x_i^0 \text{ for all } 1 \le i \le n, \ x_{n+1} \le x_{n+1}^0 \},$$

there exists $y \in L$ such that

$$y_{n+1} = \sup \left\{ x_{n+1}; \ x \in L \setminus A(x^0, X \setminus K) \right\}.$$

According to Proposition 8, $y_{n+1} < x_{n+1}^0$. Denote

$$L_0 = \{x \in L; x_{n+1} > y_{n+1}\}.$$

By Proposition 8, $y \notin A(x^0, X \setminus K)$. Simultaneously $y \in \overline{A(x^0, X \setminus K)}$ and hence $y \in K$. It follows $L_0 \cap V^* \neq \emptyset$ and using the fact that $L_0 \subset A(x^0, X \setminus K)$, we have

$$\emptyset + L_0 \cap V^* \subset A(x^0, X \setminus K) \cap V^*$$
.

Let $y^0 \in A(x^0, X \setminus K)$ be chosen such that

$$y_{n+1}^0 = \min \{x_{n+1}; x \in A(x^0, X \setminus K) \cap V^*\}.$$

First, consider the case when y^0 is a boundary point of $A(x^0, X \setminus K)$ relatively to the set $X \setminus K$. Using Proposition 8, there is a neighborhood U_{y^0} of y^0 such that

$$U_{y^0}\cap \left(X\smallsetminus V\right)\subset \left\{x\in X;\ y^0_{n+1}\leq x_{n+1}\right\}.$$

It follows (cf. [1], Theorem 4.3.1. and p. 108) that y^0 is an irregular boundary point of V, which is a contradiction. Using a similar argument, y^0 cannot be in the

interior of $A(x^0, X \setminus K)$. Thus, $M_K \setminus K \subset V$ and since V is an arbitrary regular set containing K, we have $M_K \setminus K \subset r(K)$. Obviously, $K \subset r(K)$.

The proof of the inclusion $r(K) \subset M_K$ will be more complicated.

11. Lemma. For a compact set K in X, the set $\{x \in X; \hat{R}_1^K(x) = 1\}$ is bounded. Proof. Obviously it is sufficient to prove that $\{x \in X; \hat{R}_1^K(x) = 1\}$ is bounded for

$$K = \{x \in X; |x_i| \le a_i, i = 1, ..., n + 1\} \quad (a_i \ge 0).$$

(a) If $y \in X$ is such that $y_{n+1} < -a_{n+1}$, then

$$\widehat{R}_1^K(y) = R_1^K(y) = 0.$$

We can take the superharmonic function (see [1], p. 34.)

$$u = \begin{cases} 0 & \text{on } A(y, X), \\ 1 & \text{on } X \setminus A(y, X). \end{cases}$$

(b) If $y \in X$ is such that $|y_i| \le a_i$ for $i = 1, ..., n, y_{n+1} > a_{n+1}$ consider the set

$$D = \{x \in X \setminus K; |x_i| < a_i + 1 \text{ for } i = 1, ..., n, |x_{n+1}| < |y_{n+1}| + 1\}.$$

Obviously, $y \in D$. Choose $z \in D$, $z_i = -a_i - \frac{1}{2}$. Using (a), $\widehat{R}_1^K(z) = 0$. Applying the maximum principle for the heat equation (e.g. Theorem 2.3 in [5] — note that \widehat{R}_1^K is a harmonic function on D, $\widehat{R}_1^K \leq 1$) we obtain $\widehat{R}_1^K(y) < 1$.

- (c) In the case that for $y \in X$, $y_{n+1} \ge -a_{n+1}$ and there exists $i \ (i = 1, ..., n)$ such that $|y_i| > a_i$ we can proceed analogously.
 - 12. Notation. For a compact set $\emptyset \neq K \subset X$, we define a sequence $\{K_n\}$:

$$K_n = \{x \in X; \operatorname{dist}(x, K) \leq 1/n\}.$$

13. Lemma. $L_K = M_K$.

Proof. Let $K \neq \emptyset$ and consider $x^0 \in X \setminus M_K$. The set $A(x^0, X \setminus K)$ is unbounded, thus using the preceding lemma and Proposition 8, there is $y \in \text{int } A(x^0, X \setminus K)$ such that $R_1^K(y) < 1$. The function $1 - R_1^K$ is harmonic on $X \setminus K$. By the Harnack inequality (see [1], Theorem 1.4.4) applied to $X \setminus K$ and to the Dirac measure at x^0 there is $\alpha \geq 0$ such that

$$0 < 1 - R_1^K(y) \le \alpha (1 - R_1^K(x^0)).$$

It follows that $R_1^{\mathbf{K}}(x^0) < 1$.

Thus we proved that $L_K \subset M_K$. Let $y^0 \in M_K \setminus K$, choose n_0 such that $y^0 \notin K_{n_0}$. Let $n \ge n_0$ be a natural number. According to Proposition 8 we obtain that the

"parabolic boundary" (see [5] Chap. 3) of int $A(y^0, X \setminus K)$ in X is contained in K. Using the fact that $\hat{R}_1^{K_n}(y) = 1$ for all $y \in K$ together with the minimum principle for superharmonic functions for the heat equation (see Theorem 2.1 in [5]), we have

$$\inf \left\{ \widehat{R}_{1}^{K_{n}}(y); \ y \in \operatorname{int} A(y^{0}, X \setminus K) \right\} = 1.$$

Since $y^0 \notin K_n$, $\hat{R}_1^{K_n}$ is continuous at y^0 (compare with Corollary 2.3.5 in [1]) and $\hat{R}_1^{K_n}(y^0) = R_1^{K_n}(y^0) = 1$. Now, applying the assertion of Appendix 3.2.1 of [1] we have

$$R_1^K = \inf_{n \in \mathbb{N}} R_1^{K_n},$$

and hence $R_1^K(y^0) = 1$ (note that $K_n \supset K_{n_0}$ for $n < n_0$ and $R_1^{K_n} \ge R_1^{K_{n_0}}$). This means $y^0 \in L_K$. Obviously, $K \subset L_K$.

14. Remark. In the course of the preceding proof we used the equality

$$R_1^K = \inf_{n \in N} R_1^{K_n}.$$

It is an easy consequence that

$$\{x \in X; \ R_1^{\kappa}(x) = 1\} = \bigcap_{n=1}^{\infty} \{x \in X; \ R_1^{\kappa_n}(x) = 1\}.$$

Obviously, $\{x \in X; \hat{R}_{1}^{K}(x) = 1\} \cup K = \{x \in X; R_{1}^{K}(x) = 1\}$, so that

$$\bigcap_{n=1}^{\infty} \left\{ x \in X; \ R_1^{K_n}(x) = 1 \right\} = \bigcap_{n=1}^{\infty} \left\{ x \in X; \ \widehat{R}_1^{K_n}(x) = 1 \right\}.$$

15. Lemma. For a compact $K \subset X$, $r(K) \subset M_K$.

Proof. Assume that $K \neq \emptyset$. Consider $x^0 \notin M_K$. Using Lemma 13 and the preceding remark, there exists a natural number n such that $\widehat{R}_1^{K_m}(x^0) < 1$ for all $m \geq n$. Simultaneously,

$$\inf_{x \in M_K} \widehat{R}_1^{K_m}(x) = 1.$$

The set M_K is a closed subset of the compact set r(K). Hence, using Proposition 3.1.2 of [3] there is a fundamental system of regular neighborhoods of M_K not containing the point x^0 . Thus, $x^0 \notin r(K)$.

16. Lemma. $T_K = M_K$.

Proof. Suppose first that $x \in M_K \setminus T_K$. If B is an absorbent set in X such that $B \subset A(x, X \setminus K)$, then B is a compact absorbent set and hence (see [1], p. 31) must be empty. It follows that $M_K \subset T_K$. Suppose now that the set $A(x, X \setminus K)$ is unbounded. Let $D \supset K$ be an (n + 1)-dimensional cube in X such that its faces are