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The main goal of the present paper is the proof of certain theorems concerning
extensions of meromorphic and conformal mappings which are stronger than the
well known ones (cf. [1], [2], [3], [5], [6], [7])- We prove the existence of extensions
across more general parts V of the boundary of the definition domain of the cor-
responding mapping, instead of holomorphic functions we consider the meromorphic
ones. While, as a rule, the results concern only local conformness of the extension
at points of the corresponding part ¥ of the boundary, we establish, among others,
sufficient conditions for conformness on a region containing the whole V.

As for definitions, conventions, and notation we refer the reader to [8] In addition
we shall use the following definitions and notation:

E; will stand for the set of all finite real numbers. Further, we put *E; = E, U
v {oo} By a real number we understand any number z € *E;. The open upper
(lower) half-plane will be denoted by E*(E™).

1. Definition 1. Let Q be a region and let V = 0Q. We saythat Vis a free part of 02,
iff there is a one-one continuous mapping A of an interval (o, B) (where —o0 <
S a < B =X +) onto V such that for each te(a, B) there are points ¢’ e(cx 1),
t" €(t, ) and a Jordan region G such that

(1) A<, "y isacutin G;
(2)  one component of G — A((¢, t")) is contained in @, the other one in § — Q.

Remark 1. If Vis a free part of 02, then each one-one continuous mapping A
of (a, B) onto V satisfies the above mentioned conditions.

Notation. For each continuous mapping 4 : (o, f) — S denote

(3:) (1) = A(=x B).
(32) () = {z €S; there are t, € (a, p) with t, - «, A(t,) = z},
(33) (1) = {z €$S; there are t, € («, f) with t, — B, At,) - z}.
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Remark 2. Obviously, we have
@ . 2() = 0 1w ) = s 2(o )

for any decreasing sequence of points a, € (a, f), o, — .

This implies 2(1) is a non-empty continuum. The equality #(1) = {a} (where
a € ) holds iff the limit A(«+) exists and equals a.

Similarly for o(4).

Lemma 1. Let Q be a region, V a free part of 0Q. Then the following two assertions
hold:

(5) For each zeV and for each sequence of points z, € Q with z, — z there is
a curve @ from the point z into Q such that z, € (@) for all n.
(6) For each z € V there is one and only one bundle &, € &(Q) with o(¥,) = z.

Proof. Let A be the same as in Definition 1. If z € ¥, then there is a t € (a, f)
such that A(t) = z. Let G be a Jordan region satisfying (1) and (2).

If z, € Q, z, = z, then there is an n, such that z, € G for all n > n,. Obviously,
for the unit circle U the following assertion holds:
(7) If w,eU, w, > wedU, then there is a curve ¥ from the point w into U such

that w, € <y for all n.

By a well known theorem (see [4]), a homeomorphism of G onto U exists. This,
obviously, implies that an assertion similar to (7) holds for the region G. Hence
there is a curve ¢* : {a, f) — S from z into G such that z, € {p*) for each n > n,.
As Q is a region, there is an extension ¢ :<{a,y> = S of ¢* with (¢)> = Q and
z, € {p) for all n. This proves (5).

Obviously,
(8) if w e AU, then there is one and only one bundle & € &(U) with o(¥) = w.
Consequently, an analogous assertion holds for each Jordan region. Since for each
curve ¢ : {a, B> — S from z into Q there is a y € («, f) such that ¢ | {a, ) is a curve
from z into G, all curves from z into Q belong to the same bundle of &(2). This
proves (6).

Lemma 2. Suppose that Q is a region, A : (¢, f) > 02 a one-one continuous map-
ping, (1) a free part of 0. Then for each t € (a, f) and for each 6 > O there are
numbers t', t" € (¢, B).and a Jordan region G satisfying conditions (1) and (2) such
that

)] t—d<t<t<t"<t+9é,

(10) ‘ diam* G < §,

(11) 3G = @) U {@3), where ¢; (j = 1, 2) are simple curves with i.p. ¢; = A(t’),
ep. ¢;=At"), (¢1) = Q, (p;) =S — Q.
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Proof. Let te(a, f) and & > 0 be fixed. Then there are numbers T’ € (a, ¢),
T" €(t, B) and a Jordan region G, such that
(12) A|<T', T") is a cut in Gy, Go — A(T", T")) = G, U G,, where G; = Q and
G, = § — @ are components of G, — A(T", T")).
Let h; (j = 1, 2) be a homeomorphic mapping of G; onto U which maps G; con-
formally onto U *). Obviously, there exist linear curves y; such that

(13,) i.p. l//,,’e.p. y,edl, (y;)cU,

(13,) i.p.¥; * hi(A1) * ep. ¥y,

(13;)  t =0 < (h)-1(i-p-¥y) = (h2)=1 (i-p-¥3) <t < (hy)-1(e-p-¥y) =
= (hy)-,(ep-¥3) <t + 9,

(13,) if M, (j = 1, 2) is the component of U — (;) containing h;((f)) on its bound-
ary, then diam* (h;)-, (M) < 4.

Take ¢; = (h)) -y o ¥, t' = (h;)=y (i-p-¥;), " = (h;)-1 (e-p- ¥;), and let G be the

component of § — ({@;> U {(@,)) containing A(t). Then all conditions required

above are fulfilled.

Theorem 1,1. Let F be a conformal mapping of Q onto U and let V = 0Q be a free
part of the boundary of a region Q, < Q.

Then there is a mapping F* of Q, U V such that the following conditions hold:
(14) F* = Fon Q;
(15) F* is continuous and one-one on Q, U V;
(16) C, = FX(V) is either an open arc of the circumference C = 0U or a set of the

form € — {a} where a € C;
(17) the function
o — sF_, on U,
\N(F*)_;y on C,

is continuous and one-one on U L C,.

Proof. Let 4 be a continuous and one-one mapping of (rx, B) onto V. By Lemma 1
and by our assumptions, for each point z € V there is one and only one bundle
&1 e §(Q,) with o(#}) = z. Let &, € &(Q) be the bundle containing &;. Take
7 F(z) for zeQ,,

\WH&,) for zeV.

Then (14) holds and F* is continuous on 2,. Let ze ¥, z, € ,, z, - z. By Lemma
1 there is a curve ¢ € {0, 1> — S from z into Q, with z, € (@) for all n. Then ¢ € &,
and, obviously,

(18) - F¥(2) =

lim F(z,) = (F - 0) (0+) = WiZ.) = F*(z).

1y The existence of such a mapping is proved e.g. in [9], p. 538.
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This proves that for each z € V, the function F* is continuous at z with respect to
Q, U {z}. By a well known theorem (cf. [9], p. 516), this implies the continuity of F*
on QU

Now, F* | Q,=F | 2, is one-one, Wj is one-one on &(Q) 2) (which implies that
F* I V is one-one), and the sets F¥(Q,) = U, F¥(V) < U are disjoint. Thus F*
is one-one.

Since, by (15), F* o 1 is one-one and continuous, the assertion (16) holds.

It remains to prove (17). The continuity of ®* on U is obvious, as the inverse of
a conformal mapping is conformal. By proving that

(19) w,elU, w,>w=F_ (w,) > (F*)_, (w)

for each w € C, the proof of continuity of ®* on U u C, will be completed.

Thus let w,e U, w, > we Cy. Let t (o, f) be the point with F*(A(f)) = w. By
Lemma 2, there are points ' €(a, ), t" € (t, f) and a Jordan region G satisfying (1)
and (2) such that

(20) 0G = <@,) U {@,), where @; (j = 1,2) are simple curves with i.p. @; =
= At), ep. ;= At"), (¢1) = @y, (¢,) = § — Q.

Then

(21) G- At 1) = G, uG,,

where G; (j = 1, 2) are Jordan regions such that

(22) 9G; = A<, 1)) v (9)),

(23) Giu(p) =, Gu(p,)c=S—2Q.

Denote by ¥/, the F-image of ¢,. Then
(24) u — (lﬁl) = Ul |9 Uz ’

where U,, U, are disjoint Jordan regions. As ¢, is a cut in Q, G, is obviously a com-
ponent of 2 — (¢;). Choose the notation so that

(25) U, = F(Gy).

Then, obviously, w e U, — U,, and the conditions w, € U, w, - w imply w, e U,
for all n sufficiently large. Further, it follows that z, = F_,(w,) € G, for such n.
Suppose z, — (F*)_; (w) is not true. Then there is a subsequence {z,} with z, —
- z' % (F*)_; (w). As obviously z' € A({t’, t")), we have by (15) w,, = F(z,,) —
- F“‘(z’) # w. This contradiction proves our assertion.

2y See [9], p. 535.
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Obviously, @* is one-one. This completes the proof of Theorem 1,1.

2. Definition 2. Let A:(x, f) > S (where —o0 < & < f < +0). Suppose there
exists a function 4 meromorphic on a region X containing (a, B) and conformal
at each point®) z € (a, B) such that A | (a, B) = 4. Then we say the mapping 1 is
analytic. We say the mapping 4 : (o, f) — S is strictly analytic iff there is a con-
formal extension A of 4 to a region X containing (o, ).

Remark 1. Obviously, any strictly analytic mapping is analytic’and one-one.
As the following example shows, the converse assertion is false.
Take

At) = " —ie" — 1 for te<0, 5{)

Then 4 is analytic: The meromorphic extension
A(z) = &% — ie” — 1 (z€E)

is conformal at each point z € E with A'(z) = 2ie*” + e % 0, i.e. at each point
z € E with e % }i; none of the points z with e’ = }i, however, lies in (0, 7).

A is one-one: If F(z) = z2 — iz — 1 and F(z,) = F(z,), z; * z,, then z; + z, =
= i. If 1, t, € (0, §m), t; * t,, then, as we easily see, ' + e’ % i. This implies
that A(t,) & A(t,) for each two distinct numbers t,, t, € (0, §n).

A is not strictly analytic: Since A(4n) = A(§n), we have A(U(3n)) N A(X*) + 0
for any U(4n) and for any region X* containing (4, §m). Hence it follows easily
that the mapping 4 is not one-one in any region X containing (0, §7).

Theorem 2,1. Let A : («, f) — S be a one-one analytic mapping. Then the following
conditions are equivalent to each other:

1. A is strictly analytic.
IL. (P(2) v H(A) " (4) = 0.
III. For each t €(a, B) and for each & > 0 there are points t', t" € (a, ) and an
open set G such thatt — 6 <t <t <t"<t+dand Gn (1) = M, 1")).

Proof. First we prove the implication I = II. If condition I holds, there is a con-
formal mapping 4 of a region X containing («, f) such that A | (o, B) = A. We may
suppose that X n *E; = («, B). Then a, f€0X and for each sequence of points
t, € (o, B) with either ¢, — a or t, — B we have Is A(t,) = 0A(X) (see [8], (3)). This
proves the inclusion (1) U H(A) = dA(X). As (4) = A((«, f)) = AX) = § —
— 0A(X), condition II holds.

3) We say a meromorphic function is conformal at a point z iff it is locally one-one at z.
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Now we prove the implication III = I. It is easy to see that the following general
assertion holds:

(26) If F is meromorphic on an open set £, one-one on a compact subset K < @,
and conformal at each point z € K, then there is a 4 > 0 such that F is con-
formal on U(K, 8) *). '

Suppose now that condition I1I holds and let A be a meromorphic extension of 4
to a region X containing (a, ). We have to prove that there is a region X* such
that (a, f) € X* = X and 4 |X* is one-one.

First we prove

(27) for each interval <o, B’> < (o, B) there is a & > 0 such that A is one-one on
the rectangle M = {z € E; Rez e (d, B>, |Im z] < 6} and A(M) 0 (o, o) U
Y (B.B) =0

Choose points o* € (a, o), p* € (f’, f); by (26) there is a 6* > 0 such that A is

one-one on the rectangle M* = {z; Re z € {a*, p*), |Im z[ < 6*}. Let us show that

(28) dist* (A<, B), M(a a*> L (B, B))) > 0.%)
Suppose (28) does not hold. Then there are points 1, € {a’, B>, 1y € (x, a*> U {B*, B)
with o*(A(t,), A(ty)) = 0. Since <&, B> is compact, we may suppose lim ¢, =t
exists. Then 1 e o, B> and, as 4 is continuous, A(t,) = A(f), A(fy) - A(¢). By 111,
there are points ¢, t” with a* < t' <t < 1" < f* and an open set G with A()e G
G N M, "y U 1", B)) = 0. This, however, is impossible, since A(ty) € G for all n
sufficiently large.

This completes the proof of (28). By (28), and since <{«’, ) is compact and A
continuous, there is a é € (0, 6*) with

(29) AM) 0 A(or, a*) U <B*, B)) = 0
(where M is the same as in (27)). M and («*, o) U (B’, B*) are disjoint subsets of M*,
A is one-one on M*, This implies
(30) AM) A M(o*, o) U (B, B*) =0.
By (29) and (30), we have
AM) 0 i(o, &)V (B, B) = 0.

This completes the proof of (27).
Choose numbers o, (Where # is an integer) such that «,, < «, for each pair m < n,
and lima_, = a, lim &, = B. For each pair of integers m < n and for each 6 > 0

n—+ o n— o

we set
(31)  A(m, n; 0) = {z; Re z € (o, ), Ilm Zl <6}, Ly = #Mo a)) »
4) By definition, U(K, ) = |J U(z, 9).

zeK
5) By dist* we denote the distance measured with the aid of the metric g*.

344



We shall say a set M has the property W(m, n) (where m < n are integers) iff the
following four conditions hold:

1. M is a compact subset of X;
2. A | M is one-one;

3. M (o, f) = <y 2,3

4. AM) A (2) = Ly e

It is easy to see that the following two assertions hold:

(32) If M has the property W(m, n), if m < m; < n; < n, and if N is a compact
subset of M with N n («, ) = <a,,,, «,,>, then N has the property W(m,, n,).

(33) If M has the property W(m, n) and if either p < g < m or n < p < g, then
there is a 6 > 0 such that A(M) n A(A(p, g; 5)) = 0.
By (27) it also follows that

(34) for any two integers m < n there is a 8 > 0 such that the rectangle A(m, n; 6)
has the property W(m, n).

Now we shall construct (by induction) rectangles Ao, Ay, A_y, ..., 4,, A
such that

—ny e

+ o0
(35) . X* =int( U A4,) is a subregion of X,
(36) (o B) = X*,
+ o0
(37) A| U A, is one-one.

Rectangles A4 which occur in the construction have auxiliary significance only.

By (34), there is a 65 > 0 such that the rectangle Ay = A(—1, 2; J,) has the prop-
erty W(—1,2); set Ay = A(0, 1;J,). By (32), the rectangle A, has the property
W(0, 1), whence, by (33), there is a 6; > 0 such that

(38) A(Ag) N A(A(2,3;6,)) = 0.
By (34) and (32), we may obviously suppose that 6, € (0, §) and that
(39) therectangle AT = A(1, 3; d,) has the property W(1, 3).
Let us prove that
(40) the set A, U A} has the property W(0, 3).

If z,,z,€ Ay U A}, then either z,, z, € A§ or z,, z, € A%, or one of the points
24, Z, lies in Ay, the other one in A(2, 3; d,). The mapping 4 is one-one on A, one-one
on AT, and ( 38) holds. This implies A is one-one on A, U A}. All the other conditions
which together yield (40) are obvious.
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Set A; = A(1, 2; d,). By (32)—(34), there is a 6_, € (0, &) such that
(41) A(Ao U A¥) ~ A(A(=2, —1;5_,)) = 0
and that
(42) the rectangle A%, = A(—2,0; 6_,) has the property W(—2, 0).
Again, it is easy to see that
(43) theset A*; U A, U AT has the property W(—2, 3):

If z,,z,€ A* |, U Ay U A}, then either z,,z, € A} or z,,z,€ Ag U AT or z,,2, €
€ A%, or one of the points z,, z, belongs to 4, U AT, the other one to A(—2, —1;
5_4). Ais one-one on A3, Ay U AT, A%, and (41) holds.

Set A_; = A(—1,0;6_,). Suppose that for a certain ne N, positive numbers
Oy < O0py < .. <8y <8gy 6_py <O8_pyy1 <...<08_, <&, and rectangles A) =
= A(n,n + 2;6,), AX, = A(—n — 1, —n + 1;6_,), A, = A(k, k + 1; §;), where
—n =< k £ n are already constructed, and that
(44) the set A%, U U A, U A} has the property W(—n — 1, n + 2).

|k| <m
Then the rectangles AY,;, An+q, A%, 1, A_,_; will be constructed as follows:
By (44) and (32), the set 4%, U U A, has the property W(—n — 1, n + 1).

|k|<n
Hence by (32)—(34), there is a 6, , € (0, J,) such that
(45) A4, 0 U A)nAA(m +2,n + 3;6,4,) =0
k=—-n+1
and
(46) therectangle Ay, = A(n + 1, n + 3; 6,4,) has the property W(n + 1, n + 3).
As above, it is easy to prove that
(47) theset A%, U U A, U A4}, has the property W(—n — 1, n + 3).
k=-n+1
Denote A,4; = A(n + 1, n + 2; 8,4,). By (47) and (32), the set U 4, U 45,

k=-n

has the property W(—n, n + 3). Hence by (32)—(34), there is a number 6_,_, €
€(0, 6_,) such that

(48) AU Ao A% ) A AA(=n =2, —n = 16_,_)) = 0
k=-n
and '

(49) the rectangle A*,_; = A(—n — 2, —n,6_,_,) has the property
W(=n — 2, —n).
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Again, it follows easily that

(50) theset A*,_; U U A4, U Ay, has the property W(—n — 2, n + 3).
|kl <n+1
Putting A_,_, = A(—n — 1, —n; 6_,_,) we complete the induction step.
Now, for each integer n we have sets A4, A, satisfying (44). By (44) and (32),

(51) theset U A, has the property W(—n, n + 1)

k=-n

n
(for each natural number n). This implies the function A is one-one on ) A, for

k=-n
+ o0

any natural number n; as a consequence, it is one-one on |J A,. Obviously, con-
k=—oo
ditions (35), (36) hold as well. This completes the proof of the implication III = T.
It remains to prove the implication II = III. Let A be a meromorphic extension
of 4 to a region X containing (, §). Choose a, as in the proof of IIT = I and use the
same notation. By (26), for each n e N there is a number 4, > 0 such that A is
one-one on A(—n, n; 4,). By II and since 4 is one-one, the compact set 2(1) U
U (o, —p=1> U sy, B)) UAH(2) is disjoint with A(<a_,, @,»). Thus we may
suppose that 4, also satisfies the condition

(52)  A(A(=n, n; 4,)) 0 (P() U A(@ a_p_ 1> U {oyi1s B)) U H() = 0.

Let te(o, f) and 6 > 0 be fixed numbers. Then there is a number n e N with
t € (o, &,). Further, there is a 6" € (0, 6) such that

(53) Ut,6)c A(—n,n; 4,) n A(—n — 1,n + 1; 4,4,) .

Set ' =1 -0, 1"=1t+0, G=AU(t,d)). Since A is one-one on A(—n — 1,
n+1;4,.,) and U(t,8') 0 ((ot-pey, 1) U (", #,41)) = O we have

(54) GAM(o—per, )V ) = 0.
Conditions (52), (53) imply that
(55) G (P(A) U M(o, oy U g, B)) U H(R) = 0.

From (54), (55) and from the inclusion (¢, t") = U(t, 6') (which implies A((¢', t")) = G)
it follows that G n (1) = A((7, t")). This completes the proof of Theorem 2,1.

Remark 2. As we can see at the end of the proof just completed, we have even
Gn(A)=Gn (PR u(h)uH() = A, 1").

This implies, obviously, that (under the assumptions of Theorem 2,1) conditions
I—1III of Theorem 2,1 are equivalent to the following assertion:

III'. For each t € (a, B) and each & > 0 there are points ', ¢” € («, f) and a Jordan
region G such thatt — 8 < t' <t <1 <t + §and G n (2) = (7, 1")).
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(As A is one-one on A(—n, n;4,) = X and U(t,90") = A(—n, n; 4,), the set
G = A(U(t, &) is a Jordan region. The equality (1) = (1) U (1) U H(2) is
obvious.) .

Remark 3. As in Theorem 2,1, let 1:(«, f) - S be one-one and analytic. Tt
follows immediately that conditions I—1III of Theorem 2,1 are equivalent to the fol-
lowing assertion:

IV. If A is a meromorphic extension of 4 to a region X containing («, f), then there
is a subregion X* of X containing (a, B) such that A is conformal on X*.

3. Definition 3. We say that a free part V of the boundary of a region Q is analytic
iff there is a one-one analytic mapping 4 of an interval (, §) onto V.
Theorem 2,1 and Lemma 2 immediately imply the following assertion:

Theorem 3,1. Let Q be a region, A:(x, p) > 02 a one-one analytic mapping
such that () is a free part of 0Q. Then A is strictly analytic.

The following theorem is one of the fundamental theorems concerning the exten-
sion of a meromorphic function across a free part of the boundary:

Theorem 3,2. 1. Let V be an analytic free part of the boundary of a region Q,
i :(y, 6) > S a one-one analytic mapping. Suppose F is meromorphic on Q, con-
tinuous on Q U V, and F(V) < (u). Then there is a region Q* containing Q UV
and a function F* meromorphic on Q* such that F* = Fon Q U V.

2. Suppose, moreover, that F is one-one on Q L V. If F* is a meromorphic exten-
sion of F to a region Q* containing Q U V, then F* is conformal at each point
z € V. More generally: For each compact subset K of V there is a A > 0 such that
F* I U(K, 4) is conformal.

Proof. 1. Let the assumptions of the first part of the theorem be fulfilled. By
Theorem 3,1 (and Remark 3, Section 2), there is an interval («, f), a region X > («, f),
and a conformal mapping 4 : X — § such that A = 4| («, ) maps (a, B) onto V.
Besides, there is a region Y > (y, 6) and a function M meromorphic on Y, conformal
at each point of (y, 8) with M | (3, §) = p.

If F is constant, the assertion of the first part of Theorem 3,2 is obvious. Thus,
let us suppose F is not constant.

If z e ¥, then F(z) e (1) and pu_(F(z)) € (7, 6). Since M is conformal at u_(F(z)),
there is an 7, > 0 such that

(56) the points y, 6 do not lie in the set A, = U(u_,(F(z)), 1,)
and

(57) the mapping M* = M | 4, is one-one.
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The domain M(4,) of M%, ©) is a region containing F(z). Since F is continuous
at z with respect to Q U V, there is, by Lemma 2, a Jordan region G, such that

(58) zZE G;_v )

(59) G, — (%) = G} UG?Z, where G} = 2, G} = S — Q are Jordan regions with
z€dG! n dG?,

(60) F(G, N (QU V) « M(4,).

As z e V = (4), we have 2_,(z) € (a, ). Since A is continuous, there is a 4, > 0
such that

(61) B, = U(A_,(2), 4,) is a subset of X and does not contain any one of the points
o, B,

(62) A(B,) = G, .
Then obviously
(63) B, — (x p) = B; v B,

where B!, BZ are disjoint open half-circles. Since A is one-one on X, the regions
A(BY) (j = 1, 2) are disjoint with the set (4). Hence by (62), (59), each of the regions
A(BY) is a subset either of Q of or § — . Since the region A(B,) (containing the point
ze 3 (S — Q)) intersects both @ and § — @, one of the regions A(B]) must be
a subset of @, the other one a subset of § — Q. Hence one of the regions A(BJ) is
contained in G, the other one in G2. Choose the notation so that

(64) A(B}) = G} (<=Q), A(B)) < Gi(cS - Q).

The function M% | o F o A is holomorphic on B}, continuous on B} U (B, n E,),
and maps the interval B, n E, into the interval (7, 8). According to the Schwarz
reflection principle there is a function g, holomorphic on B, such that

(65) g.=M>,cFoA on B!uU(B,nE,).

Take

(66) F,=Mog,oA_; on AB,);

then F, is obviously meromorphic on its definition domain and

(67) F,=F on AB,)n(Ru V)= AB; u(B.nE,)).
Suppose z, { € V are two points with '

(68) A(B,) " A(By) + 0.

) We write MZ | instead of the more correct (M?)_ i-
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As A is one-one, it follows that B, n B; #+ 0. As B,, B; are circles with centres in E,,
we have B, n B, n E; #+ 0. As the set B, n B, n E; has accumulation points in
B, N By, the set A(B, n B; n E,) has accumulation points in the set A(B,) N A(B;) =
= A(B, n BJ, which is (as a conformal image of the region B, n B;) a region. By
(67) and by an analogous condition for B; we have F, = F, = F on A(B, n B, n E,).
By a well known ,,unicity theorem” this implies

(69) F,=F, on A(B,) n A(B).

As F is continuous on 2 U V, we have

(70) F,=F,=F on AB)nAB)n(QuUV).
This implies that on the set

(1) Q* = QU UAB,),

zeV

it is consistent to define a function F* as follows:

sF on QuUV,

*
(72) F* = \F, on A(B,) where zeV.

It is evident that Q* is a region containing Q U V and that F* is a meromorphic
extension of F to Q*.

This completes the proof of the first part of the theorem.

2. In the proof of the second part we shall use the following assertion (which is
important by itself):

Lemma 3. Let F be meromorphic on a region Z symmetric with respect to the
real axis *E, and let F(Z n *E,) < *E;. Then:

1. F is one-one on Z iff it is one-one on Z N E* and F(Z n E*) n *E, = 0.

2. If F is one-one on Z  E¥, then it is conformal at each point z € Z n *E,.

First we prove the second part of Theorem 3,2 by means of Lemma 3: If F is one-
one on 2 u V, then for each z € V the function g, is one-one on Bl U (B, nE,):
Lemma 3 implies g, is conformal at A_,(z). Further, it follows that F, is conformal
at z. The same is true for any extension F*.

The rest of the second part of Theorem 3,2 is a consequence of what has just been
proved, and of (26).

Proof of Lemma 3. Suppose the conditions for F and Z from Lemma 3 are
satisfied. :

1. Suppose first F(Z n E*) n *E; + 0; this means that F assumes a real value at
a certain point zeZ n E*. According to the Schwarz reflexion principle, this
implies F(Z) = 17(-5 = F(z); we have, of course, Z € Z, Z + z. Hence F is not one=one
on Z. '
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Suppose now F is not one-one on Z; we have to show that the following implication
holds: If F| Z A E™ is one-one, then F(Z nE*) " *E, % 0.If Fisone-oneon Z N E¥,
then by the Schwarz reflexion principle, it is one-one on Z N E™ as well. Since F
is not one-one on Z, there are points z, € Z n E*, z, e Z n E™ with F(z,) = F(z,).
Taking z* = Z, we have z} € Z n E¥, and by the Schwarz principle, F(z}) = F(z,).
If F(z,) € *E,, there is nothing more to prove. If F(z,) ¢ *E,, then one of the numbers
F(z,), F(z}) lies in E*, the other one in E™. Hence the set F(Z n E*) intersects
both E* and E~. As we prove easily, the set Z n E* is a region”). This implies that
F(Z N E*) is a region as well. Hence F(Z n E*) n *E; =+ 0, which completes the
proof.

2. Let F be one-one on Z N E*. First, suppose zo € Z N E,, F(zo) € E,. Choose
8 > 050 that U(zo, 8) = Z and that F is holomorphic on U(z, 6). Then the function
F [ (zo — 9, zo + 0) is real, finite, one-one, and continuous. Thus it is strictly mono-
tone, and F((zo — 8, zo + 8)) is a certain interval (a, f) (where —c0 < & < f <
< + ). Let n > 0 be such that (F(z,) — #, F(z,) + 1) = («, B). Since F is conti-
nuous, there is a 4 €(0,d) such that F(U(z,, 4)) = U(F(z,), ). As F is one-one
on Zn E—+, we have

(73) F(U(zo, 4) 0 E*) A F(U(z0, ) 0 E;) = 0.

Obviously, F(U(zo, 4) n E*) n *E, = U(F(z,), n) 0 *E; = (F(z) — 1, F(zo) + ) =
< (a, B) and F(U(zo, ) 0 E;) = F((zo — 9, zo + 9)) = (, B); this implies that

F(U(zg, ) NE*)n*E; = 0.

By the first part of the present Lemma, F | U(zo, 4) is one-one. This completes the
proof in the case zo € Z N E,, F(z,) € E,. If z, = oo, we investigate F o Id~! instead
of F; if F(z,) = oo, we investigate 1/F, and use what we have proved already.

Remark 1. The assumptions of the second part of Theorem 3,2 do not ensure
that the extension F* of F is one-one on a certain region @** < Q* containing Q U V.
This will be obvious, if we take e.g.

Q={z;|Rez| <1, 0<Imz <2}, F=exp, V=(-1,1), p=IdonkE,.

Indeed, any region Q** containing the set Q U V contains pairs of points z, z + 2mi
at which the exponential function assumes the same value.

Nonetheless, in this case there exists a region Q, containing V such that the
extension is one-one on £2,. However, take

ut) = " —ie* —1 for te|0,¢n).
7) This is a consequence of the symmetry of the region Z with respect to the real axis.
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Then S — (u)a) has precisely two components; one of them is bounded, the other
one unbounded. For the unbounded component G of § — {(u) we have G = {u)
so that G is a simply connected region. It may be proved that for any conformal
mapping F of U onto G there is an open arc C, of the circumference C = 6U such
that F may be extended to a homeomorphic mapping of the set U u C, so that
F(C,) = (u) (denoting the extension by the same letter F).

Take A = F_; o pon (0, 7). Then (1) = C, is an analytic free part of the bound-
ary of U, u | (0, $n) is a one-one analytic mapping, F((1)) = (x) and F is one-one and
continuous on U U (4). By Theorem 3,1, F may be extended to a meromorphic
function on a region U* containing U U (4). It is not too difficult to prove that the
extension is not one-one on any region U; < U* containing ()) (Cf. the example
in Remark 1, Section 2.)

As the following theorem shows, the essential point in the example above is that
the mapping p is not strictly analytic.

Theorem 3,3. Let V be an analytic free part of the boundary of a region Q, 1
a one-one analytic mapping of («, B) onto V, p : (y, ) - S a strictly analytic map-
ping. Suppose F is meromorphic on £, continuous and one-one on Q UV,
F(V) = ().

Then there is a region Q, containing V and a conformal mapping F, of Q, such
that F; = F on Q; 0 (2 U V); moreover, F o A is a strictly analytic mapping.

Remark 2. If the assumptions of Theorem 3,3 are satisfied, then by Theorem 3,2
there is a meromorphic extension F* of F to a certain region Q* containing Q U V.
For each extension F* there exists by Theorem 3,3 a region 2, — Q* such that
V < ©, and that the mapping F* | 2, is conformal.

Proof of Theorem 3,3. By Theorem 3,2 there is an extension F* of F to a region
Q* containing Q U V. Then the mapping ¢ = F o A = F* o A is one-one and analytic.
The function ¥ = u_; - ¢ is a one-one continuous mapping of the interval (o, f)
into the interval (7, &), hence a real strictly monotone continuous function.

Suppose ¥ is increasing; the proof for a decreasing ¥ is analogous. Y((c, f)) is
a subinterval (y', 8") of (7, ). As it is easy to see, the following assertions hold: If
' =y, then P(¢) = P(p); if ¥ > v, then P(¢) = {u(y')}; if 5’ = 8, then H (o) =
= A (p); if 8" < 6, then H(¢) = {u(8")}.

By Theorem 2,1 we have

(74) @AW A =0;
hence, according to what we have just said,
(75) (P(e) v H(9)) n(9) = 0.

8) (u) is a part of a cardioid similar to the figure 9.
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Thus by Theorem 2,1, the mapping ¢ = F o A is strictly analytic.

By Theorem 3,1 the mapping A is strictly analytic as well. Hence there is a region
X o (a, B) and a conformal mapping A : X — § such that A | (@, ) = A. Evidently
we may assume that A(X) = Q*. Hence by Remark 3, Section 2, the mapping
F* o A(whichis a meromorphic extension of the strictly analytic mapping ¢ = F o 1)
is conformal on a certain region X; = X containing («, §). This implies that F* =
= (F* o A)o A_, is conformal on the region @, = A(X,) containing V. Thus by
putting F, = F* ] 2, we complete the proof.

4. Definition 4. We say that a topological circumference®) T is analytic iff there is
a conformal mapping f of a region X containing C such that f(C) = T.

Theorem 4,1. Suppose Q is a Jordan region the boundary of which is an analytic
topological circumference. Let F be meromorphic on Q, continuous on Q. Then the
following two assertions hold:

1. Suppose that either there is a one-one analytic mapping p :(y, 6) - S with
F(0Q) = (u), or F(0Q) is an analytic topological circumference. Then there is
a region Q* containing Q and a function F* meromorphic on Q* such that F* = F
on Q.

2. Suppose that F is one-one on @ and that the topological circumference F(0Q)
is analytic. Then for each meromorphic extension F* of F to a region Q* con-
taining Q there is a A > 0 such that F* is one-one on U(02, 4).

Proof. Since 02 is an analytic topological circumference, there is a conformal
mapping f of a region X > C with f(C) = 9Q. By the compactness of the set C there
is an n €(0, n) such that G = {z;e™" < Izl < €'} is a subset of X. Of course, we
may suppose that

(76) X={ze"<|z| <e}.

For each z € 02 we have f_,(z) € C. Hence there is an «, € E, such that f_,(z) =
=e* If A, € (0, 77), then exp o ild is a conformal mapping of the open rectangle

I, ={z;|Rel — o < 4, |Im{| < 4,}
into X. Hence for each z € 0Q the function

(77) A1) = f(e"), te(a, — 4, a, + 4,),

is a one-one analytic mapping. Besides, the set ().,) contains the point z and, obviously,
it is an analytic free part of 0Q.

In the first part of the assertion of Theorem 4,1 we suppose that either there is
a one-one analytic mapping p : (3, §) > § with F(0Q) < (1) or F(0R) is an analytic

%) i.e. a homeomorphic image of C.
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topological circumference. In the former case put yu, = u for each z e dQ. Then
obviously

(78) - F((4;)) = (u,) foreach zedQ.

In the latter case choose a number 4, € (0, ) small enough to ensure F((,)) *
+ F(0Q). Then there is a point w, € F(0Q) — F((1,)). Since F(dQ) is an analytic
topological circumference, there is a conformal mapping g of a region Y > C with
g(C) = F(09). If we choose B, € E; with g(e”<) = w, and put

(79) pt) = g(e*) for te(B,, B. + 2n),

then y, is a one-one analytic mapping satisfying (78).

By the first part of Theorem 3,2, to each z € Q2 there is a region Q] containing
Qu (4,) and a function F; meromorphic on €} such that F; = F on Q u (4,).
For each z € 0Q we have z€(4,) = QF. Hence there is a 9, > 0 such that, taking

(80) Uz = U(f— 1(2)9 ‘9z) ’
we have
(81) U, X, f(U) <.

Suppose that for certain two points z, { € 02 we have f(U,) n f(U,) * 0. The
region U, n U, intersects C and, therefore, also U. Hence f(U,) n f(U;) = f(U, n Uy)
is a region intersecting Q. As

(82) F}=F on @nf(U), F!=F on 2nf(U),
we have
(83) F}=F=F on f(U)nf(U)n@Q.

By the ,,unicity theorem this implies that
(84) F!=F on f(U)nf(U).
Hence it is consistent to define a function F* on the set

(85) Q* = 8uUfU,)

2zed

(which is obviously a region containing £) as follows:

‘ «_ 7F on Q :
(86) . \F, on f(U) where zedQ.

Obviously, this function is meromorphic on Q* and F* = F on Q.
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