

Werk

Label: Article **Jahr:** 1978

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0103|log78

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON A PROBLEM OF R. HÄGGKVIST CONCERNING EDGE-COLOURINGS OF GRAPHS

BOHDAN ZELINKA, Liberec (Received October 25, 1976)

At the 5th Hungarian Colloquium on Combinatorics in Keszthely in 1976 R. HÄGGKVIST has proposed the following problem [1]:

Let Q(n, G) be the set of n-line-colourings of G. Let $q \in Q(n, G)$. Define L(q) (l(q)) as the maximal (minimal) length of a cycle with edges from two of q's line-colour classes. Put

$$L(n, G) = \min_{q \in Q(n,G)} L(q), \quad l(n, G) = \max_{q \in Q(n,Q)} l(q).$$

Give bounds on L(n, G) and l(n, G) for reasonable defined graphs G. Especially: Is $L(n, K_{n,n}) = 2n$?

In this paper we shall study $L(n, K_{n,n})$ for n which is a power of 2. Instead of "line" we shall say "edge".

Theorem. Let $n = 2^m$, where m is a positive integer. Then $L(n, K_{n,n}) = 4$.

Proof. For each positive integer m denote $G(m) = K_{n,n}$, where $n = 2^m$. Denote $N = \{1, 2, ..., n\}, P = \{n + 1, n + 2, ..., 2n\}.$ The vertices of G(m) are $u_1, ..., u_n$ v_1, \ldots, v_n , the edges are $u_i v_j$ for each i and j from N. For each G(m) we shall introduce an edge-colouring q(m) by n colours such that no vertex of G(m) is incident with any two edges of the same colour. We define it recurrently. In the graph G(1) we colour the edges u_1v_1 , u_2v_2 by the colour 1, the edges u_1v_2 , u_2v_1 by the colour 2. Now let the colouring q(m) of G(m) by the colours from N be given for some m; we shall construct the colouring Q(m+1) of the edges of G(m+1). Consider four graphs H_1 , H_2 , H_3 , H_4 which are all isomorphic to G(m). The vertices of H_1 are denoted in the same way as in G(m); we may consider G(m) and H_1 as the same graph. The vertices of H_2 are $u_{n+1}, ..., u_{2n}, v_{n+1}, ..., v_{2n}$ and the edges are $u_i v_j$ for all i and j from P. The vertices of H_3 are $u_1, ..., u_n, v_{n+1}, ..., v_{2n}$ and the edges are $u_i v_i$ for each i from N and each j from P. The vertices of H_4 are $u_{n+1}, ..., u_{2n}$ v_1, \ldots, v_n and the edges are $u_i v_j$ for each i from P and each j from N. Now we shall colour the edges of the graphs H_1 , H_2 , H_3 , H_4 . The graph H_2 is considered the same as G(m), therefore its edges will be coloured by the colours from N in the same way as the edges of G(m). Also the edges of H_2 will be coloured by the colours from N;