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CUTS IN SIMPLE CONNECTED REGIONS AND THE CYCLIC
ORDERING OF THE SYSTEM OF ALL BOUNDARY ELEMENTS

ILia CerNY, Praha
(Received September 16, 1976)

1. In the present paper we shall work in the extended complex plane S; the open
complex plane will be denoted by E. By a neighbourhood of a point z € E we mean
any circle U(z, &) = {{ € E; |{ — z| < &} (where & €(0, ©)); neighbourhoods of the
point oo will be the sets U(c0, &) = {{ € S; |{| > 1/} (Where & € (0, c0) again). Neigh-
bourhoods of points z € § will be denoted briefly by U(z) also. N will always denote
the set of all natural numbers, U = U(O, 1) will be the unit circle, C = U the
unit circumference. By o* we denote the metric in S obtained by transferring the
cartesian metric of the threedimensional euclidean space by means of the stereo-
graphical projection of the unit sphere onto S (see [4], p. 24).

We shall use the common definition of the topological limes superior of a sequence
of points z, € S or non-empty sets M, = S : Is z, denotes the set of all accumulation
points of {z,}, Is M, = U Is z, where the summation extends over all sequences of
points z, € M, (cf. [1]). Note that Is z, and Is M,, are non-empty compact sets (as $
is compact). Besides, in what follows, we shall use the following two simple assertions:

(1) 0+M,cN, forall n=IsM,<IsN,,
(2 if {M,} is a nonincreasing sequence of (non-empty) sets M,, then

IsM,=NM,.
n=1

The following implication concerns one of the basic properties of any conformal
mapping F of Q onto G (where ©, G are open subsets of S):
(3 z,€Q, Isz, < 0Q=1sF(z,) = 9G.
It immediately implies that
4 - 0+M,cQ, IsM, < 0Q =1s F(M,) = G .
(See [4], pp. 488—489.)
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By a curve in M we understand any continuous mapping ¢ : {a, ) > M (where
-0 <o < f < +0); a curve will be a curve in S. If ¢ : (a, B> — S is a curve,
we denote .

) ip.o =9, epo=09),
(6) (o> = o(Ka, BY), (0> = o((2 B), <o) = (<, B)) (®) = ¢((. B)) -

We say that the curve ¢ : {a, B> - S is simple, iff the mapping ¢ is one-one. By
a closed curve we understand as usual a curve ¢ with i.p. ¢ = e.p. . A Jordan
curve will be any closed curve ¢ : {a, > — S such that both restrictions ¢ | {a, B),
@ | (2, B> are one-one. If ¢ is a Jordan curve in E, we denote by Int ¢ (Ext @) the
bounded (unbounded) component of S — {@). A Jordan region will be any region
(connécted' open set) Q the boundary 0Q of which has the form (@) where ¢ is
a Jordan curve (in S).

We introduce the index of a point z€ S — (@) with respect to a closed curve ¢
as usual (see e.g. [4], p. 214); notation: ind, z. We say that a Jordan curve ¢ in E is
positively (negatively) oriented, iff ind, = 1 (ind, = —1) on Int ¢.

If @ : (&, B> — S is a curve, we define the curve =~ ¢ by

() (=0) (1) = o(-1), te{=p —0o).

If Y : {y,8) — S is another curve and if ¢(B) = Y(y), we define the oriented sum
¢ + ¥ of the curves ¢, { by setting

/fp(t) for te<a, B,
Ny(t—B+7y) for telB,B+d—1yp).

We write ¢ ~ ¢ for ¢ + (=) and speak of the oriented difference of ¢, . Sure it
is clear what we mean by ¢; + ... + @, (where nzx2).

We say the curves ¢ :{a, B> = S, ¥ : {y, &) — S differ only unsubstantially,
iff there is a continuous increasing mapping @ of {y, §) onto {a, f) with ¥ =
= @ o .

It is clear that (=~¢) = {¢), that {p) = (¥, if the curves ¢, ¥ differ only un-
substantially, and that (¢ + ¥) = (@) U (YD, if the oriented sum (difference)
exists.

In what follows we shall use the following “0-curve theorem”:

(8) (@ +¥)() =

Theorem 1,1. Suppose ¢ = ¢, + @, is a positively oriented Jordan curve,
A a simple curve such that i.p.A = i.p.¢,, e.p.A = e.p. ¢y, (A) = Inte. Then
W, = @, ~ A, w, = @, + A are positively oriented Jordan curves and

9) Int ¢ — (1) = Int 0; L Int w,

where the sets on the right are disjoint.
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(This theorem is -an immediate consequence of the well known ‘“topological
O-curve theorem” — see e.g. [1] — and of the basic properties of the index of a point
with respect to a curve.)

If Qs a region and ¢ a curve such that i.p. ¢ € 02, ((p) < 2 we speak of a curve ¢
from the boundary 0Q of the region Q into Q (or: from i.p. ¢ into Q). The following
theorem is well known in the theory of conformal mappings (see [4], p. 531).

Theorem 1,2. Suppose that F is a confofmal mapping of Qonto Uand ¢ : {a, ) -
— S is a curve from 0Q into Q. Then the limit (F o ¢) (x+) exists. Besides, if
o* : (a*, p*> — S is another curve from 0RQ into Q, we have

(Fo9)(a+) = (Foo*)(e*+),
iff the following condition is satisfied:

(10)  @(x) = @*(a*), and for each neighbourhood U(@(x)) there is a curve A in
U(p{e)) 0 Q with i.p. A€ (@), e.p. A€ {@*).

Remark 1. An assertion analogous to the first part of Theorem 1,2 holds, of
course, for any curve ¢ : {a, B> — S with ¢(B) € R, {p) = Q. Instead of (F - ¢) (x+)
we investigate, naturally, the limit (F o ) (8—).

This implies immediately that for any curve ¢ : <a, B) — S with (¢) = Q and for
any conformal mapping F of Q onto U it is consistent to define a curve Y : {a, f) = S
by

(Fop)(at), if t=ua,

(11) W= E00. e,
(F )(p-), if t=8

(If, e.g., @(x) € 2, we have (F . ¢) (a+) = F(p(«)), of course.) We shall say that
(under above conditions) the curve (11) is the F-image of ¢.

Let Q be a fixed region. Let us write, for a moment, @ ~ ¥, iff ¢ : {a, > = §,
@* : {a*, B*) — S are curves from 09 into Q satisfiing (10). It is obvious that the
binary relation ~ is reflexive, symmetric, and transitive, hence an equivalence. It
partitions the set of all curves from 022 into 2 into equivalence classes, which we call
bundles of curves (from 02 into Q). (Cf. [4], p. 527.) By 6(0) we denote the set of
all bundles of curves from 02 into Q. If S € &(Q), pe ¥, ¢p*€ &, then i.p. ¢ =
= i.p. ¢*. Thus, it is consistent to define o(¥) = i.p. ? where ¢ € #. The point
o(&) will be called the origin of &.

In what follows we shall use that
(12) in any bundle & € &(R) there are simple curves.
(Proof. Let pe &, ¢ :<a, B) = S. Then ¢(a) + ¢(f) and, by a well. known
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theorem — see, e.g., [1] — there is a simple curve ¥ : <a, B) — {@) such that
¥(®) = @(a), ¥(B) = ¢(B). Obviously, y € £.)

By Theorefn 1,2, we have: If F is a conformal mapping of Q onto U, & € &(Q),
@ € ¥ a curve defined in {a, B), then the number (F o ¢) (x+) is independent of the
choise of the curve ¢ € &. We denote it by We(<). (Cf. with [4], p. 537.)

Thus, for any region 2 conformally equivalent to U and for any conformal

mapping F of Q onto U, we have defined the function Wy : &(2) - C. By Theorem
1,2,

(13) Wy is one-one (on &(2).).
In what follows it will be important that
(14) WAS(@)) = C.

(The proof of this assertion see, e.g., in [3], p. 402; of course, a little different termi-
nology is used there.)

On the unit circumference C we define a cyclic ordering of triples of distinct
points: We write w; < w, < w,, iff there is a positively oriented Jordan curve
:<{a, B> = S with {(w) = C, and a triple of points t;e<a,f) (j = 1, 2, 3) such
that t; < t, < t; and w; = a(t)) for j = 1, 2, 3. Further, we write w; <X w, < ws,
iff either w, < w, < wj, or wy = w,, or w, = w;. Symbols like w, X w, < w,,
w; < w, = w; have an analogous meaning. The symbol

Wy < Wy <L oo < W< < Wp <. < W< < W< W)

will also appear; it will mean that there is a positively oriented Jordan curve  :
:{a, ) = S with {w) = C, and points 1,1, t, € {a, f) such that w, = w(t,),
wy = a(ty) for each n e N, wy = o(t,), and

Hh<h<. .S . << <QZ<... <t <],

If wy % w,, the set C; = {we C; w, < w =X w,} is an arc of the circumference C
joining w, with w,; {we C; w;, <w < w,} is the corresponding open arc, C, =
= {we C; w, < w < w,} the complementary arc.

Any mapping
. /aziz for zeE,
cz
(15) 1&)=L
alc for z= o0

where a, b, ¢, d € E are numbers with ad — bc + 0 will be called a linear fractional
Junction').

1y We define 4/0 = o for 4 €S, 4 # 0.
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Besides very familiar properties of linear fractional functions (see [4]) we need,
in what follows, the following two ones:

(16) If F is a conformal mapping of U onto itself, then there is a linear fractional
function f such that f = F on U.

(17) If fis a linear fractional function satisfiing f(U) = U, then the relation wy <
< w, < w; implies the relation f(w,) < f(w;) < f(w,).

(For proofs of (16) and (17) see, e.g., [4], p. 470 and 543 resp.)

2. Suppose that 2 is a region and let ¢ = ¢; = @, be a simple or Jordan curve
such that the curves ¢,, @, belong to distinct bundles from &(£2). (The last condition
is, obviously, independent of the decomposition of ¢ into the oriented difference of
two curves.) Then the curve ¢ will be called a cut in Q.

Theorem 2,1. If ¢ is a cut in a region Q conformally equivalent to U, we ‘haue
(18) Q-(p)=02,00Q,
where Q,, 2, are disjoint regions conformally equivalent to U and
(19). (@) € 09, N 0Q,, 09,V =0u(p).

Proof. By assumption, there is a conformal mapping F of 2 onto U. Let y be the
F-image of ¢. By the definition of a cut and by the second part of Theorem 2,1,
Y is a simple cut in U 2). By the “topological” “f-curve theorem”, this implies that

(20) U-(@¥)=U,ul,

where U,, U, are disjoint Jordan regions. Besides, there exist two distinct points
wy, w, € € such that the arcs

(21) Ci={weCw, Sw=w}, Co={weC w, Zw=w}

have the following property:

(22) U, = Cyu(y) for j=1,2.3)
This implies that
(23) Wy = 08U, ndU,, 38U, udU, =Cu(y).

2y j.e. a simple curve which is a cut in U.
3) Of course, we have {w;, wo} = {i.p. v, e.p. v}.

263



Put
(24) Q; = F_,(U,) for j=1,2.

Then Q; are disjoint regions conformally equivalent to U (since the Jordan regions U
are conformally equivalent to U). The equality (18) follows immediately from (20).
The rest of the assertion of theorem 2,1 is an easy consequence of (3) and of the
definition of the boundary. '

Remark 1. It is easy to see that in the assertion of Theorem 2,1 it is not possible
to replace the inclusion {¢) = 0Q; N 2, by equality. More detailed informations
about boundaries of the regions £2; are contained in Theorem 6,2 which follows.

Suppose that all assumptions of Theorem 2,1 are fulfilled and let ¢* be another
cut in Q. As it is easy to see, £, is a component of both 2 — (¢) and Q — (¢*),
iff either the curves @, ¢*, or the curves ¢, = ¢* differ only unsubstantially (as only
then () = <@*)).

Lemma 1. Let Q be a region conformally equivalent to U, let ¢ be a cut in Q.
For each conformal mapping F of Q onto U denote by Y the F-image of ¢; further,

(25) Cr ={weC; ipyr=w=ep s},
Cr ={weC; ep.Yr X w=ip yr}

and suppose that Ug resp. Ug is the component of U — () satisfiing

(26) Uy = Cy U (Yr) resp. Uz = Cg U (Vg).
Then, for any two conformal mappings F, G of Q onto U we have
(27) F_(UF) = G_,(UE), F_4(Ur)=G_,(Ug).

Proof. Let {a, f) be the domain of the cut ¢. If F, G are conformal mappings
of Q onto U, then F o G_, is a conformal mapping of the circle U onto itself. By (16),
there is a linear fractional function f such that f = F o G_; on U. This implies that

i.p. Ve = (Fop)(2t+) = ((fo G) o ¢) (x+) = f(G - ) (x+)) = f(i-p. ¥) -
Similarly, e.p. ¥ = f(e.p. ¥g). By (17), this implies that
(28) ¢ =1(Cd), Ci=1(C3).
Further, it follows that
Ur = f(Us), Ur = f(Us)
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so that
F_y(UF) = G_i(f-1(f(Ug))) = G_4(Ug) .

This is the first equality in (27); the proof of the second one is analogous.

Remark 2. If all assumptions of Lemma 1 are satisfied and if we use the same
notation, then the regions F_;(Uy), F_,(Uy) are independent of the choise of the
conformal mapping F (of 2 onto U). They depend only of the region 2 and the cut ¢.
Therefore, it is consistent to define

Q, =F_(Us), @, =F_,(Uy)

(where F is any conformal mapping of  onto U and where Uy, U are as in Lemma
1). We say then that the component Q:f resp. Q, of Q — ((p) lies on the right side
resp. left side of the cut ¢.

Example 1. Suppose all assumptions of Theorem 1,1 are satisfied and use the
same notation. Then the region Int @, (Int w,) lies on the right (left) side of the cut A
(in the Jordan region Int @).

Remark 3. Let @, o* be cuts in a region Q (conformally equivalent to U). Then
Q, = Q.. (and, as a consequence, 2, = Q.), iff the curves ¢, ¢* differ only un-
substantially. The equality Q, = Q. (and, as a consequence, ‘also the equality
Q, = Q.) holds, iff the curves ¢, ~¢* differ only unsubstantially.

3. Definition. Let 2 be a region conformally equivalent to U. For each ne N
let ¢, = ¢, ~ @, be a cutin Q and let 2, be a component of Q — ((p,,). Suppose
that the following four conditions hold:

I. The sequence {£,} is nonincreasing.

II. For each pair of natural numbers m % n we have (¢,) N (¢,) = @ and the
CUIVES Py 1, Pm,2> Pn,1> Pn,2 Delong to four distinct bundles from @(9).

n. N@a,co.
n=1

IV. If pe &, o*e F*, where &, $* € &(Q), and if (> N 2, + 0 + {p*> N Q,
for all n e N, then & = &¥*. -
Then we shall say that {Q,,} is a normal sequence in Q.

Remark 1. If Q, are as in the above definition, then the following condition
(stronger than I) holds: '

I*. For each ne N we have 2,,, n Q c Q,.
Condition I implies, namely, that @,,, = Q,. As, by theorem 2.1,

6Qn < 0Qu ((Pn) ’ aQn+1 < 0Qu ((p""’l) ’
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the inclusion &,,, = @, implies that
'Qn+l Y (¢n+1) = Qn+l NQc fzn NQ = Qnu ((pn) .

By condition II, however, (@,+1) N (¢,) = 0, so that (¢,+;) < 2,. This and the
inclusion Q,,, = Q, imply that 2,,, N Q = Q,.

Theorem 3,1. Let F be a conformal mapping of Q onto U. For each ne N let
On = Pn1 = P, be a cut in Q and VY, the F-image of ¢,. Then the following 3
assertions hold:

1. If condition 1 holds, then the condition 1l is equivalent to the following one:
For each n € N, we have mn U c F(,), and the arc FT(Q—,H.I)_n C is a subset
of the open arc F(Q,) 0 C — {i.p. Y, e.p. ¥,}.

2. If conditions I—III hold, then the condition IV is equivalent to the statement

@ —_—
that the set () F(R,) contains only one point.

n=1

3. Suppose that the sequence-{,} is normal in Q (so that conditions I—1IV hold)
and denote by w the only point of the set () F(R,). Then the sequence {F(Q,)} is

n=1
normal in U, for each ne N the arc m N C is contained in the open arc
F(_Q;)'n C — {i.p. y,, e.p.¥,}, the point w lies, for each ne N, on the open arc
m N C — {i.p. Y,, e.p. ¥}, and the distance of w and the component of U — (¥)
distinct from F(R,) is positive. Finally,

(29) N 2, = {z € 0Q; there are z,€ Q with z, —» z, F(z,) > w}.
n=1

Proof. As we can take =¢, instead of ¢,, we may, without loss of generality,
suppose that each region , lies on the right side of the cut ¢,. Then

FQ)nC={weC; ip.y,Sw=Xep.y,}

for each ne N.

1. If Lis satisfied, we have F(,,,) n € = F(2,) n C for each n € N. By Theorem
1,2, condition II is equivalent to the statement that, for any two distinct natural
numbers m, n, the sets (,,), (¥,) are disjoint and i.p. Y., e.p. Y, i.p. ¥,,, e.p. ¥, are
four distinct points. Hence, the arc F(£,.,) n € is a subset of the open arc F(H,,)- N
N € — {i.p. ¥, e.p. !ﬁ,!}.

The proof of the reverse assertion is similar.

2. Now suppose conditions I—IIT hold. Condition IIT may be, by (2), written
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equivalently in the form Is , = dQ and it implies, by (4) (where G = U must be
set), that

X}

F(@,)=1sF@Q)<C.

[}

n=1

@ —_—
By a well known theorem, () F(£,) is a continuum. Obviously, it is both non-empty
n=1

and not equal to C. Hence, it is an arc of the circumference C or a one-point set.
Suppose it is an arc. By (14), there exist two distinct points w’, w” of this arc, not
equal to the end points of the arc, and belonging to the set W,(@(Q)). Hence, there
exist two distinct bundles &', & € &(Q) with w' = WH&'), w" = Wg(&"). Choose
curves ¢’ € &', ¢" € &”; without loss of generality we may suppose their domain
is €0, 1>. Let §', " be the F—image of ¢, ¢, respectively. As w' ="y'(0), w" = ¥"(0)

are interior points of the arc ﬂ F(Q ) #), they are interior points of each arc F(£2,) N

n C. Hence, <y') n F(Q,) 4: (2) + (Y") n F(Q,) for each n, and, consequently,
@'Y N 2, £ 0 £ <"> nQ, for each n. Since the curves ¢', ¢” belong to two
distinct bundles from G(Q), the condition IV does not hold.

Reversely, suppose the condition IV does not hold. Then there are curves ¢’, ¢”
belonging to two distinct bundles &', #" € &(Q) such that {¢') N Q, + 0 *
+ <¢"> n , for each n. This implies, as it is easy to see, the points Wi(&'), W{S")

@
belong to the continuum () F(£2,). By (13), these points are distinct (so that the con-
n=1

@ R
tinuum () F(,) contains more than one point).
n=1

3. Suppose the sequence {€,} is normal in Q. According to what we have proved
already, the continuum () F(Q,,) contains one and only one point; denote it by w.
n=1

As we easily see, it remains to prove the equality (29); all remaining assertions are
either proved already, or they are obvious consequences of what has been said above.

Letze n Q.. Then there is a sequence of points z, € 2, with z, — z. This implies
n=1

Is F(z,) = Is F(Q,) = ﬂ F(2,) = {w} so that F(z,) - w. This proves that the left
n=1

side of (29) is a subset of the right one. Suppose, reversely, that z € 2 and that
there are points z, € Q with z, — z, F(z,) — w. Since, for each m € N, the distance
of the point w and the component of U — (y,,) distinct from F(2,,) is positive, there
is, for each m € N, an index n,, such that F(z,) € F(,,) for each n > n,,. This implies

z,€Q, for all n > n, and z = limz,e @, for all me N, hence z e &2,. This
completes the proof of the equality (29). m=t

4) i.e. points of this arc distinct from both end points of it.
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4. We shall say two sequences {€,}, {2} (for the time being, of arbitrary non-
empty sets) are mutually inscribed, iff the following conditions hold:

-

(30) AV A[Ri=2]. AV Al2 cell].

n mp m>mp m ny, B>nm

This represents a binary relation between some pairs of sequences of non-empty
sets. As it is easy to see, the relation is reflexive, symmetric, and transitive. If Q is
a fixed region conformally equivalent to U, the above relation partitions the set of all
normal sequences in £ into equivalence classes; these classes will be called boundary
elements of the region Q. '

Thus, a boundary element of € is any non-empty system 5# of normal sequences
in Q satisfiing the following two conditions:

A. If {Q,} € # and if normal sequences {®,}, {25} are mutually inscribed, then
{Qn}est.

B. If {@,}, {23} € o#, then the sequences {Q,}, {@n} are mutually inscribed.
By 5(9) we denote the system of all boundary elements of the region Q.
The geometric image of a boundary element # € $(Q) will be the set

(31) (F> =8, where {Q)e.

(Obviously, N &2, = N 2, for any two mutually inscribed normal sequences {Q,},
n=1

m=1

{Qn} so that the definition is consistent.)

If any conformal mapping F of Q onto U is given, we define the following map-
ping yp of the system $(R2) into C: For each # € $(22), yz(3#) is the only point

of the set () F((,) where {®,} € #. (The set ) F(2,) contains, by theorem 3,1, one
n=1 n=1

and only one point, which is, obviously, independent of the choise of {2,} € #.)

Theorem 4,1. If F is a conformal mapping of Q2 onto U, then yp is a one-one
mapping of () onto C.

Proof. First we prove the mapping yp is one-one: Let y{(#) = yo(H#*) = w
for a pair of elements o, #* € H(R). Let {Q,} € &, {2} € #* Then N F(2,) =
- n=1

= {w}, and, by theorem 3,1, dist (w, U — F(R,)) > 0°) for each ne N. Hence,
for each ne N there is a neighbourhood U,(w) such that U, w)n U = F(2,).

5 u— F(82,) is the component of U — (y,,) distinct from F(22,).
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Since {w} = ) F(2},) so that, obviously, diam F(Q}) — 0, there is an m, such that
m=1
F(Q}) < U,(w) for all m > m,. This proves that

AV A [F(@7) < F(2,)].

n mp m>mp

Since the interior of the closure of any Jordan region is equal to this region (see [4],
p. 556), it follows that

AV A [F(2) = F(2,)].

n mpy m>mp

This implies the first condition of (30); the second one holds similarly. This proves
the sequences {€Q,}, {Q%} are mutually inscribed so that # = #*. This completes
the proof the mapping yf is one-one.

For the proof of the implication
(32) w e C = there is an & € H(Q) with y(H#) = w
we need the following auxiliary assertion:

(33) For each w e C and each U(w) there is a cut ¢ in Q with F(2,) = U(w) such
that the point w is an interior point of the arc F(2,) n C.

First, let us prove the implication (32) by means of (33). The assertion (33) easily
implies the existence of cuts ¢, in Q such that:

a) F(Q,..) = F(2;) n U(w, 1/n) for each ne N,
b) denoting by ¥, the F-image of ¢, we have <Y, ,> n {¥,> = 9 for each n and
ip Y, <..<ipyYy,<..<w<..<epy,<..<ep y,.

By Theorem 3,1, we easily prove the sequence {©;,} is normal in Q. Denoting by #
the boundary element of the region 2 containing the sequence {,,} we obviously
have y(a) = {w}.

It remains to prove (33). Suppose the point w, € C and its neighbourhood U(w,)
are given. By (14), there are points wy, w, € U(wp) n Wo(&(Q)) with w; < wy <
< w,. Let #;€ &(Q) (j = 1, 2) be bundles such that W{¥;) = w;. By (12), each
bundle &; contains a simple curve ¢;; we may suppose the domains of both curves ¢;
are equal to a certain interval <a, B>. If {; denotes the F-image of ¢;, then y; is
a simple curve from the point w; into U.

As we easily see, there is a simple curve ¥ : {a, y> — U(wo) such that:

a) ()= U,
b) ¥ = w; + w, ~ w3 where @, =y, | {a, 0D, w3 =V, l {a, 6) for an ap-
propriately chosen 6 € (a, B).
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Then the function ¢ defined on {a, > by
o(@) = of#1), () = F_y(¥(1) for te(x7), @(y)=o(%2)

is, obviously, a cut in Q. Since the boundary of the Jordan region F(£2,), equal to
W) u {weC;w, X w=w,},is a subset of U(w,), the same holds for the set IW.
Besides, we have woe{weC; w, <w<w,} and F(Q])nC={weC; w, X
Sw=Zw}

This completes the proof of (33).

Theorem 4,2. Let Q be a region conformally equivalent to U. Then for each
bundle & € &(Q) there is one and only one boundary element # € $(Q) such
that for each ¢ € & and each sequence {Q,,} € H# we have {¢) N Q, *+ O for all n.
This element ) has, further, the following two properties:

1. for each conformal mapping F of Q onto U we have Wi(¥) = yg(F);

2. if #* £ H is another boundary element of the region Q, then for each
curve ¢ € & and each sequence {Qn} € H#* there is an my such that {p) O Q5 = 0
for all m > m,.

Proof. Suppose the conformal mapping F of Q onto U is fixed. By Theorem 4,1,
for each bundle & € &(Q) there is one and only one boundary element # € $(2)
such that Wi(&) = y{#).

Let ¥ €@(Q) and let # = (yp)-1 (Wi(¥)) be the corresponding boundary
element. If ¢ € & is a curve defined on <{a, > and {Q,,} € S an arbitrary sequence,

we have Wi(&) = (F » ¢) (a+) and, also, {Wx(&)} = N F(2,). The point Wx{(¥)
is an interior point of any arc F(T)T) N C. If y denotes th: Fl-image of @, then i.p. ¥ =
= Y(a) = WH¥). Hence, for each n, <y» N F(Q,) + 0 (since by Theorem 3,1,
dist (W(), U — F(2,)) > 0). It follows immediately that <) N @, + @ for each n.

If #*eH(Q), H*+ #, o, (O} eH* then y(#*) + y#) and
dist (ye(£*), <¥>) > 0 (where Y is the F-image of ¢). Since diam F(2y) — 0 for

m — oo, we have F(Q25) n <y> = 0, hence Q) n<{p> = @, for all m sufficiently
large.

It remains to prove that for each conformal mapping G of Q2 onto U the following
implication holds:

If ¥ e @(Q), # e H(Q), W(&) = ye(#), then Wg(&) = y4(o).
Then, however, G o F_, is a conformal mapping of U onto itself, and there is

a linear fractional function f such that f = G o« F_; on U. This implies that for each
curve @ : {a, B> = S, ¢ € & we have

(34 We(#) = (Go0)(a+) = (o F) > 0) (x+) = f((F > ¢) (2+)) = (W) -
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If {Q,} € #, then, further,

() bel)} = N 5@ = NFIF@)) = /(N F@) = )

Hence, the equality We(&) = ye(o#) implies the equality We(#) = yg(5#), which
completes the proof of Theorem 4,2.

Definition. Suppose Q is a region conformally equivalent to U and & e &(2).
The boundary element (of the region Q) determined by the bundle & will be the
boundary element J# e $(R2) with the property that the condition {¢p)> N 2, % 0
for each n holds for a certain (hence, for each) curve ¢ € & and for a certain (hence,
for each) sequence {Q,} € #.

Remark 1. As we easily see, for the boundary element # € $(2) determined
by the bundle & € @(Q) the following condition holds: If ¢ : {a, B> = S, ¢ € &,
{9,} € #, then for each n € N there is a §, > 0 such that ¢((a, « + 6,)) = @,

5. It is convenient to introduce a cyclic ordering into the system $(Q2) (where Q
is a region conformally equivalent to U) as follows: We write o#; < o, < ¥, °),
iff for any conformal mapping F of Q onto U the relation

(36) 1H# 1) < v(#2) < 7(F3)
holds.

Let us note that the validity of (36) for one conformal mapping F of 2 onto U
implies the validity of a similar relation for any such mapping. Suppose, namely,
G is another conformal mapping of 2 onto U. Denoting by f the linear fractional
function satisfiing f = G o F_; on U we have the equality y5(o#) = f(yH##)) for
each boundary element # € () (cf. (35)). By (17), the relation y¢(s#,) <
< y6(#3) < y6(3#3) is a consequence of the relation (36).

Theorem 5,1. For each boundary element 3, of the region Q and for each open
set M containing {H,) there are elements #,, #, € H(Q) with # < K, < H#,
such that

(37) H < H<LH,=>(H>M.

Proof. Suppose the assertion does not hold. Then there is an element #, € $(Q)
and an open set M containing {3,) such that for each two elements 3#,, #, €
€ H(Q) satifiing H#; < #, < #, there is an element H € H(2) such that #’; <
<H# <LH,and (HF)— M + 0.

6) The confusion of the sign < for cyclic ordering in C with the sign now introduced will sure
not take place.
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Fix a conformal mapping F of 2 onto U and let wy = y¢(3#,). Choose points
w}, w? € C such that
(38) ] Wa = Wo, Wy = Wo,
(39) wi<wy <. <wi<..<wyg<..<w<...<wi<w
and denote
(40) H! = (yr)-y (W) for j=1,2 and neN.

Then #) < #, < #? for each n and, by assumption, there are elements 5, €
€ H(Q) with #, < #, < H#} and (H#,> — M # 0. Denote w, = yz(#,) and
choose points z, € (3#,> — M. By (29), for each n € N there is a point zj € Q such
that

(41) e*(zn 2,) < %, o*(F(zy), w,) < i .

The relation #, < o, < #; implies that w, < w, < w;. Thus, by (38), we have
w, = Wo; (41) implies that F(zy) — w, also. There is a convergent subsequence
{z,.} of {z,}; denoting z, = lim z,_ we have

z:k > zo ’ F(z:k) =% wO >

which implies z, € {3#,). This is a contradiction to the fact none of the points z,,
lies in the open set M containing {3¥,).
This contradiction completes the proof of Theorem 5,1.

6. It is quite easy to prove the following theorem (the proof of which we do not
present, since we need it only for making clear the significance of the assertion which
then follows):

Theorem 6,1. Suppose Q, Q* are two regions conformally equivalent to U. Let
H; € H(Q), #] € H(Q*) be two arbitrary triples of boundary elements such that

(42) H, < H, < Hy, K<L HF< HE.

Then there exists one and only one conformal mapping F of Q onto Q* such that
for each j = 1, 2, 3 the following implication holds:

43) ' z,€Q, sz, c (H;)=1sF(z,) = (HT).

Theorem 6,1 shows the cyclic ordering of the system of all boundary elements
plays an important role in certain fundamental questions of the theory of conformal
mappings. Theorem 6,2 contains several criteria for the relation J#; < #, < ¥#;.
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Note that the verifiing of this relation immediately by the definition is, excluding the
most trivial cases, practically impossible, since further properties of conformal map-
pings ‘F of Q onto U are unknown. The assertions presented in what follows make it
possible to decide (also in many concrete situations) which component of 2 — (¢)
lies on the right (left) side of the cut @ in Q. Further informations, very useful in
many aplications, about boundaries of the components of Q — ((p) are presented
also. Besides, these assertions contain several fundamental informations connected
with the possibility of a continuous extension of a conformal mapping to a certain
part of the boundary of its definition domain.

Theorem 6,2. 1. Suppose ¢ is a cut in a region Q conformally equivalent to U;
let a, B be its definition domain. Denote by &, resp. &, the bundle from &(Q)
containing the curve ¢ | <o, ¥ + B)> resp. ~o| <3 + B), B), and let .,
resp. 3, be the boundary element of the region Q determined by the bundle &,
resp. %;. '

Then
(44) U #u(p)caic U vy,
Ho<H<LH, : HoSH=,
(44" U BHu(p)ci, = U <#>u(e).
H <H<LHo . H,ZSH=Ho

Further, if both sets (o), {(H#> contain only one point, the following equalities
hold: ’

(45) Q= U #ule), a2, = U F>u(e).
v Ho=H X, H XK=< -

2. Let all assumptions of the first part of the theorem hold. Let ¢, be a simple
curve satisfiing i.p. o, = ¢(t;), e.p. ¢, = ¢(t;), where a <t; <t, <p, and
(91) = Q — (). Putp, = ¢ { {ty, 1), @* = @, = @,. Suppose the Jordan curve ¢*
is positively oriented and Int p* < Q.

Then Int ¢* U (¢,) = Q.

3. Let all assumptions of the first part of the theorem hold. If ¢ is a negatively

oriented Jordan curve, then Q; = Q n Int @, and the following two implications
hold: :

(46) < H>cIntop=>H < H <H,, (H)Exto=H,<H <H,.

4. Let all assumptions of the first part of the theorem hold. Let ¢ be a simple
curve, A a simple curve in 0Q such that a) i.p. A = i.p. ¢, e.p. A = e.p. @, b) the
Jordan curve A ~ ¢ is positively oriented, and c) Int (A ~ @) = Q.

Then Q; = Int(1 ~ ¢).
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Further, suppose the definition domain of the curve 4 is €0, 1). For each t € (0, 1)
let &#,€ &(Q) be the bundle containing a curve from A(t) into Int (2 =~ @). Denote
by #, (where t € (0, 1)) the boundary element of the region Q determined by the
bundle &,. Then the following four assertions hold:

(47) #o< H, < H, foreach te(0,1).
(48) If t,,1,€(0,1), then Ho<H, <H, <K, iff t,<t,.

(49) The function yg(3#,) is a one-one and continuous mapping of the interval
<0, 1) onto the arc {we C; y(3#,) X w X y{##,)} of the circumference C.

(50) <of,> = {A(t)} foreach te(0,1).

5. Let all assumptions of the first part of the theorem hold. Suppose ¢ is a Jordan
curve in Eand 4 :0,1) — 0Q n E is a Jordan curve with i.p. A = i.p. .

If (p) = Int A (resp. (¢) = Ext A), denote G = Int A n Ext ¢ (resp. G = Ext A n
N Int ) and suppose the curves ¢, A are positively (resp. negatively) oriented.
Suppose, further, G = Q, and for each t € (0, 1) let &, € &(Q) be the bundle
containing a curve from A(t) into G, #, € H() the boundary element determined
by the bundle &,.

Then Q, = G, and assertions (47)—(50) hold.

Proof. Since ¢ will be a fixed cut in the region Q, we shall write 2% resp. 2~
instead of 2, resp. 2, . Let us fix a conformal mapping F of Q onto U and denote
by ¥ the F-image of ¢. Then

(51) U-(y)=U*uU"

where U*, U~ are components of U — (), hence disjoint Jordan regions. Choose
notation so that ‘ '

(52) out = (\l/) uCt, U™ =(y)uC~

where

(53) Cct={weC;yYy(@)Zw=2yYP)}, C ={weC; y(B) w2 Y(v)}.
Then, by definition,

(54) Q*=F_,(U*). @ =F_,(U").

Since o, resp. o, is the boundary element determined by the bundle &, resp. &,,
we have, by definition of these bundles,

(55) Vo) = We(Fe) = ¥(a), 7Hs) = W) = W(B).

1. We first prove (by assumptions of the first part of the theorem) the inclusions
(44'). The condition o#, < H# < X, means, by definition and by (55), that () <
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< y#) < Y(B), i.e. yH(#) € e+, (If Lis an arc with end points a, b we denote,
in what follows, by L the corresponding open arc L — {a, b}.) This implies

dist (y(o#), U”) > 0. If {2,} € &, then {y{o¢)} = N F(Q,) and diam F(2,) - 0.
n=1
This implies F(2,) = U™ for all sufficiently large n, so that, for such n, we have
Q, c QF, hence @, = @*. Thus, (H#) = N2, =« 8" N 6Q, and, by Theorem 2,1,
n=1

Q% N 0Q < Q*. This proves that ) <(#) < dQ*; by Theorem 2,1, this
implies FiHE S

(56) U <> u(p) < ort.
_ X <H<H,
Now suppose that z € 92* — (¢); then, by Theorem 2,1, we have z € 0Q. Since
z € 0Q*, there are points z, e Q% with z, — z. Since there is a convergent sub-
sequence, we may suppose that lim F(z,) = w exists. Since F(z,)eU*, we have
w e dU™; since z € 0Q, we have w € C. This yields we dU* n C = C™.

Let o € H(Q) be the element with y/(o#) = w. Then #, <X # =< #, and
z € {M#). This proves the inclusion

(57) 0 —(p)= U <#).
KoL X<,

(56) and (57) implie (44'). The proof of (44") is analogous.

Now suppose the set (&> contains only one point z,. Since Y(«) € oU™, there
are points w,e U™ with w, —» y(«). By (29) and by definition of {(3#,), we have
Is F_y(w,) = <#o> (={20}), so that lim F_,(w,) = z,. Since F_,(w,)eQ*, we
have, by (3), zo € 92" . Hence, the inclusion {3, = dQ* holds. We prove similarly
that (o) = 0Q*, if (#,) contains one point only. By Theorem 2,1, we have
() = 0Q*.

Thus, by (56), if both {o¢,) and {3#,) contain one point only, we have

(58) U < u(e) cot. |
Ho=SH =L,

This, together with (57), yields the first equality in (45); the proof of the other one
is similar.

2. Let all assumptions of the second part of the theorem be fulfilled. By them,
we have Int o* < Q. Since the curve @* is positively oriented and since the mapping F
is holomorphic on @, by a well known theorem (see [4], p. 572), the curve Y* =
= F o @* also is positively oriented.

Choose simple curves w*, ™ such that {(w*) = C*, (@™) = C~ and that

= w* + o~ is a positively oriented Jordan curve. Then, by Theorem 1,1, the
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curves * =~ ¥, ™ 4 ¥ also are positively oriented, and Int(w* =~ y)=U",
Int(w” +¢)=U".
The -inclusion (y;) = U~ for the curve Y, = Foo, would by Theorem 1,1,

implie the curve ~y* =Fo.q, ~ =y | {ty, t;) = Y is positively oriented,
which is a contradiction. Therefore, (l// ) = U* so that (¢,) = Q*.

As {@;> = ¢({ty, t;)) is a subset of the boundary of the region Int ¢*, we have

(59) o(<ty, 1)) nInt@* = 0.

From the inclusion Int ¢* < Q it follows that 02 = § — Q < Ext ¢*. Since the
sets @(<a, t,)), @((t2, BY) are connected and disjoint with (¢*) = 9(Ext ¢*), and

since the sets @(<a, t;)) N 02, ¢((t, BY) N Q (containing ¢(a), ¢(B), respectively)
are non-empty, we have

(60) o(<a, ty)) U o((t,, BY) = Ext o*.

(59) and (60) implie {¢) N Int o* = @. Thus, the connected set Int p* = Q is
a subset of one of the components Q*, Q~ of the set Q — (¢), whereas Int ¢* is
disjoint with the other one. Since (¢;) = 2+  Int @*, we have Int p* U (¢,) = QF,
which completes the proof of the second part of the theorem.

3. Let all assumptions of the third part of the theorem be fulfilled. It is not too
difficult to prove the sets

(61) QnInte, QnExte

are components of the set 2 — (). (The proof will be left to the reader.) In order

to prove 2% = Q N Int ¢ it is sufficient, by the 2. part of the present theorem, to

find a curve @, with properties mentioned there and such that (¢,) = Q A Int .
We prove easily that

(62) 4(Q N Int .(p) (62 N Int q)) v {p)

and that the set (qo) is open in 4(2 n Int ¢). By a well known theorem (see e.g. [4],
p. 527), the set of all points z € (¢) accessible from Q N Int ¢ (i.e. all points z € (@)
such that there is a simple curve from z into Q N Int @) is dense in (¢). From this it
follows easily there are numbers t,, t, € (, f), t; < t,, and a simple curve ¢, such
that

(63) i.p.¢, = @(t), ep.or=09(t), (p))=Qnnte.

Putg, = ¢ | {t4, t,). Since the curve ¢, by assumptions, is negatively oriented, the
curve @* = @, = @, is, by Theorem 1,1, oriented positively.
- By the same theorem, Int ¢* < Int @. Obviously, ¢(x) € Ext ¢*. Since (p*> = Q,
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we have {¢*) N (§ — Q) = 0, so that the connected set § — Q 7) is disjoint either
with Int ¢*, or with Ext ¢*. Since the set (§ — 2) n Ext ¢* contains ¢(x), we have
(S — Q) nInt ¢* = 0 so that Int ¢* = Q.

Thus, we have Int ¢* = Q N Int ¢. This proves, by the 2. part of the theorem, that
Qnlnte = QF.

It remains to prove the implications (46). Let o € $(Q), (¥ < Int ¢, {Q,} € #.

As (#> = N Q,, it follows from the inclusion {J#) < Int ¢ that Q, = Int ¢ for

n=1

all n sufficiently large. For such n we have, further, F(2,) = F(Q nInt ¢) =

= F(Q*) = U* so that the arc F(2,) n C is a subset of C*. By Theorem 3,1, this
implies y(#) is a point of the open arc C*, i.e. Y(a) < ys(#) < y(B), which means
that o, < F < #,.

This completes the proof of the first implication (46); the proof of the second one
is analogous.

4. Now let all assumptions of the fourth part of the theorem hold. Since the region
G = Int (4 ~ ¢), by these assumptions, is contained in Q and since it is disjoint
with (@), it is contained in a certain component 2* of the set 2 — (¢). Provided
that G + Q*, the region Q* would intersect both G and § — G, hence 0G also. This,
however, is a contradistion, as

Q*r\aG=Q"‘n((l)u(tp))c(ﬂ—(¢))n(6Qu(¢))=0- |

Hence G = Q*, which means G is a component of the set Q — ((p)

Let us prove that G = Q*. The conformal mapping F I G (of the Jordan region G
onto one component of the set U — (), hence onto a Jordan region) may be, by
a well known theorem (see [4], p. 538), extended to a homeomorphic mapping F*

of G onto F(G). According to another well known theorem (see [4], p. 541) the
curve F*, (1 = (p) = F*, A =~ ¢ has the same orientation as the curve A =~ ¢,
hence the positive one. The curve F* - 4 is simple, and (F* . A) is equal either to C*
or to C~. Provided that (F*.A) = C~, the curve F* . A ~ § would, obviously,
be negatively oriented. Hence {(F*.1) = C*, which implies F(G) = U* and
G =Int (A ~ @) = 2, as we had to prove.

Let us note that in consequence of what has been said above also the following
assertion holds:

(64) The mapping F* o A admits of an extension to a positively oriented Jordan
curve x such that i.p. x = i.p. (F*o 1) = Y(a), (x> = C.

Now let us suppose the curve A is defined on the interval <0, 1). &,, #, (where
t€<0,1)) let be defined as in assumptions. Let t € (0, 1) and suppose y, € &, is
a curve from A(t) = o(¢¥,) into G = Int (1 ~ ¢) defined on <0, 1). Then

7 The region £2 is conformally equivalent to U, hence its complement is connected.
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YHH) = WHS,) = (F o ) (0+) = F*(ul0)) = F*(A(r)) ;

besides, obviously,

1H# o) = ¥(@) = FHA0)), yA#,) = ¥(B) = F*(A(1)).

From this it follows that
(65) yH(o#,) = F¥(A(t)) foreach te<0,1).

Since F* o A is one-one and continuous on <0, 1> and (F*. 1) = C*, (49) holds.
By (64), (47) and (48) also hold.
Thus, it remains to prove (50). If ¢ € (0, 1) and z € {(3#,), there are points z, € Q
such that z, — z, F(z,) = y{(#,) = F*((t)) (cf. (29)). Since F*(A(t)) e C*, we have
F(z,) e U* for all n sufficiently large. Since the mapping (F*)_, is continuous on U*,

the relation F(z,) — F*(A()) implies z, — A(f). Hence z = A(t). Thus, A(f) is the only -
point of the set (J#,).

5. Let all assumptions of the fifth part of the theorem hold. Suppose first (¢) =
< Int A. Let

(66) | . G=TntAinExtg cQ

and suppose the curves @, A are positively oriented. As (1) < dQ, we have either
Q c Int A or Q = Ext A. Hence, the inclusion (q)) < Q n Int A implies Q < Int A.
As we easily see, the set G is a component of the set Int A — (¢). As G = Q, the
inclusion G < Int 4 implies G is a component of the set 2 — (¢) also. The other
component of the set 2 — (¢) equals to 2 N Int ¢. Besides, obviously,

(67) 0G = (AU <p) Y.

By the theorem on accessibility of points of the boundary of any Jordan region
from this region (see [4], p. 196), it immediately follows there is a simple curve A*
and numbers t* € (0, 1), T* e («, ) such that

(68) i.p.A* = A1*), ep.A* =¢(T*), (*)<=G.
Take
(69) A =A<, L=Al<N1), 01 =0|LT*, @,=0|<TB).
Then the Jordan curves
(70) vi=A +A* =g, sz/lz*qh*).'

8) This is an analogy of the topological -curve theorem (see [1]). Instead of a topological
circumference (a set homeomorphic to C) and an arc the end points of which are the only points

common with the circumference, here we have two topological circumferences with one and only
one point common.
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are, by Theorem 1,1, positively oriented. Besides, it is obvious that
(71) ind,, + ind,, = ind; — ind,

on § — ({A) U (@) U (A*)).

If zeInt v; for j = 1 or j = 2, then (71) implies that ind, z — ind, z = ind,, z +
+ ind,, z 2 ind,, z = 1. From this it follows that ind; z = 1, ind, z = 0, which
means that z € Int A n Ext ¢ = G. This proves the inclusion

(72) Intv, ulntv, = G.

Thus, any curve going from the point l(t), where 0 < t < t*resp. t* < t < 1, into
Int v, resp. Int v, goes into G also.

Taking into account that A* € ¥, @, € &y, ~ ¢, € & We see that, by the 4. part
of the theorem (aplied to the curves v; = 4; = (@, =~ A*), v, = 1, = (1* + ¢,)),
we have

(73) Ho<H, < H,. for te(0,t*), H,.<H <H, for te(t*1).

From this (47) and (48) follow easily.
By the 4. part of the present theorem, the function yH{5#,) whcre t <0, t*) resp.
t € {(t*, 1), is one-one and continuous, and

(74') {ye(o#.); 1€<0, 1*)} = {we C; y{(#,) = w X yH#,.)}

resp.
(74" {yHot); tet* 1D} = {we C; yd#,) I w 2 yH#,)} -

This proves (49). It is obvious also that F(G) = U™, which implies G = Q*.

The assertion (50) will be proved similarly as in the proof of the fourth part of the
theorem. .

This completes the proof of the 5. part of the theorem in case that (¢) < Int 4.
If (¢) = Ext A (and if corresponding assumptions of the 5. part hold), we proof
analogously the components of the set 2 — (¢) are the sets G = Ext 1 N Int o,
Q N Ext @; (67) also holds.

Defining the curves v;, v, by (70) we prove once more they are positively oriented.
The rest of the proof also is similar as in case (¢) < Int 4.

This completes the proof of Theorem 6,2.

Remark 1. Theorem 6,2 yields some informations of the relations between {#,)
resp. {,) and 02, , dQ, . In the general case, however, not much can be said. Of
course, it is e.g. o(Fo) € {(H,> N 02, N 8N, and (H,) = 0Q; U 02, . In what
follows we show by examples that the relations between {(J¢,) (and, similarly,
{o#,>) and 02, , dQ, may be rather complicated.
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Example 1. The inclusion {#,) < 69; N 0Q,, as we know, holds if (o)
contains one point only. However, it also may hold in case {J#,) is a proper con-
tinuum. If e.g.-

(76) Q={zeE; 0 <Rez <2, |Imz|<1}—((0,1>u6i;1+£)9)
n=2nNn n

and

(77) o()=1+ 1+ i)t for te0,1),

then
(H#y> =K0,1) c E}Q; N o, .

Example 2. If

(78) Q={zeE; 0<Rez<2,0<Imz<1}-U >;1+-
n=2 h n
and if @ is as in (77), we have o(¥,) = 1, (o> = <0, 1), and

Example 3. In examples 1 and 2 both sets (o) N 69;, {Ho) N 0Q, were
connected. In the general case, nothing like this holds. Take, namely,

(79) Q={zeE;0<Rez <2 |Imz| <1} -
—<(0,1)UU i'; 1 +iu{zeE; 3 <Rezg% —-31= Imz§0}>,
n=2 N n

and let ¢ be as in (77). Then {#,)» = €0, 1) and
(Ho) <09, , (Ho)ndy =<0,3ul1).

It is easy to see an analogous example may be given with {3#,) N 69; equal e.g.
to the Cantor discontinuum.

Example 4. Examples 1—3 may sugest the set (o,) always is a subset either
of 6(): or of 92, . In general, however, nothing like this hold. Take, namely,

(80) J={zeE; |Rez| <4, 0<Imz < 8};

for each ne N let

(81) ,,=6U(0;6iu2i—2;2i, 1)h{z;Rez§0,0§lmz§6},
n

%) If a, b €E, a + b, then 7; b denotes the set {z; z= a + (b — a), # €0, 1)}.
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