

## Werk

Label: Article **Jahr:** 1978

**PURL:** https://resolver.sub.uni-goettingen.de/purl?31311157X\_0103|log72

## **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

## NOTES ON LATTICE CONGRUENCES

Ivan Chajda, Přerov (Received August 11, 1976)

It is well-known that each ideal of a lattice Lis a kernel of at least one congruence relation on Lif and only if Lis distributive (see e.g. [1]), and that there exists a one-to-one correspondence between congruences and ideals for relatively complementary distributive lattices (see [2]). An approach adopted in [3] enables us to investigate the relationship between congruences and ideals also for modular lattices.

**Definition 1.** Let J be an ideal of a given lattice L. Denote  $a \vee J = \{a \vee j; j \in J\}$ . A binary relation  $T_J$  on L defined by the rule

 $\langle x, y \rangle \in T_J$  if and only if there exists  $u \in L$  with  $x, y \in u \lor J$  is said to be induced by the ideal J.

It is clear that  $T_J$  is a symmetrical relation on L. Further, for each  $a \in L$  and an arbitrary  $j \in J$  we have  $a = a \lor (a \land j)$ ; clearly  $a \land j \in J$ , thus  $a \in a \lor J$ , which implies the reflexivity of  $T_J$ . Thus  $T_J$  is a tolerance relation on L (see [3]). In [3], conditions of the compatibility of  $T_J$  are studied (for the compatibility, see [4]). We shall now investigate the conditions for  $T_J$  to be a congruence relation. By Definition 1, if  $T_J$  is a congruence relation, J is a kernel of  $T_J$ .

**Theorem 1.** Let L be a lattice and J an ideal of L. If the relation  $T_J$  induced by J is compatible on L, then  $T_J$  is a congruence relation on L.

Proof. As  $T_J$  is reflexive, symmetrical and compatible, we must prove only its transitivity. Suppose  $a, b, c \in L$  and  $\langle a, b \rangle \in T_J$ ,  $\langle b, c \rangle \in T_J$ . Then there exist  $u, v \in L$  and  $i, j, k, l \in J$  with  $a = u \lor i$ ,  $b = u \lor j$ ,  $b = v \lor k$ ,  $c = v \lor l$ . As  $i, l \in J$ , we have

$$(1^{\circ}) \qquad \langle i, l \rangle \in T_{J}.$$

From  $u \in u \vee J$ ,  $a \in u \vee J$  it follows  $\langle u, a \rangle \in T_J$ . Analogously it can be proved that  $\langle u, b \rangle \in T_J$ ,  $\langle v, b \rangle \in T_J$ ,  $\langle v, c \rangle \in T_J$ . As  $T_J$  is symmetrical, also  $\langle b, v \rangle \in T_J$ . From the compatibility of  $T_J$  then

$$(2^{\circ}) \qquad \langle u, b \rangle \in T_{J}, \ \langle b, v \rangle \in T_{J} \Rightarrow \langle (u \wedge b), (b \wedge v) \rangle \in T_{J}.$$

From  $b = u \lor j$  we have  $b \ge u$ , from  $b = v \lor k$  then  $b \ge v$ . Then (2°) implies  $\langle u, v \rangle \in T_J$ , which together with (1°) implies

$$\langle (u \vee i), (v \vee l) \rangle \in T_J$$
,

thus  $\langle a, c \rangle \in T_J$ . Hence  $T_J$  is transitive.

**Lemma 1.** Let L be a lattice and J its ideal. Let  $T_J$  be the relation induced by J. If  $a, b, c, d \in L$  and  $\langle a, b \rangle \in T_J$ ,  $\langle c, d \rangle \in T_J$ , then

$$\langle (a \vee c), (b \vee d) \rangle \in T_J$$
.

Proof. If  $\langle a,b\rangle \in T_J$ ,  $\langle c,d\rangle \in T_J$ , then  $a=u \vee i$ ,  $b=u \vee j$ ,  $c=v \vee k$ ,  $d=v \vee l$  for some  $u,v \in L$ ,  $i,j,k,l \in J$ . Hence  $a \vee c=(u \vee v) \vee (i \vee k)$ ,  $b \vee d=(u \vee v) \vee (j \vee l)$ , thus  $a \vee c \in (u \vee v) \vee J$  and  $b \vee d \in (u \vee v) \vee J$ , i.e.  $\langle (a \vee c), (b \vee d) \rangle \in T_J$ .

**Lemma 2.** Let L be a lattice, J an ideal of L and  $T_J$  the relation induced by J. If  $a, b \in L$  and  $\langle a, b \rangle \in T_J$ , then  $a = (a \wedge b) \vee i$ ,  $b = (a \wedge b) \vee j$  for some  $i, j \in J$ .

Proof. If  $\langle a, b \rangle \in T_J$ , then by Definition 1,  $a = u \lor i$ ,  $b = u \lor j$  for some  $u \in L$ ,  $i, j \in J$ . Hence  $a \ge a \land b \ge u$ ,  $a \ge i$ , thus  $a = a \lor i \ge (a \land b) \lor i \ge u \lor i = a$ , i.e.  $a = (a \land b) \lor i$ . Analogously it can be proved that  $b = (a \land b) \lor j$ .

**Lemma 3.** Let L be a modular lattice, J an ideal of L and  $T_J$  the relation induced by J. Let  $c, d \in L$  and  $c \leq d$ . If  $\langle c, d \rangle \in T_J$  and  $T_J$  is transitive, then  $\langle (a \wedge d), (a \wedge c) \rangle \in T_J$  for each  $a \in L$ .

**Proof.** Let  $\langle c, d \rangle \in T_J$ . Then there exist  $u \in L$  and  $i, j \in J$  with  $c = u \lor j$ ,  $d = u \lor i$ . As  $c \le d$  and L is modular, we have  $j \le i$ , thus  $d = c \lor i$ .

Put  $x = a \land d$ ,  $y = x \lor c$ ,  $t = y \land i$ . Then  $y \ge c$ ,  $d \ge x$ . From these inequalities and by the modularity of L we obtain

$$c \lor t = c \lor (y \land i) = (c \lor i) \land y = d \land y = d \land (x \lor c) =$$
$$= (d \land x) \lor c = (d \land (a \land d)) \lor c = (a \land d) \lor c = y.$$

As  $t \in J$ , this implies  $\langle y, c \rangle \in T_J$ . From  $y = c \lor t$ ,  $t \le x \lor t$  and by the modularity of Lit follows

$$((x \lor t) \land c) \lor t = (x \lor t) \land (c \lor t) = (x \lor t) \land (c \lor t \lor t) =$$

$$= (x \lor t) \land (y \lor t) = (x \lor t) \land (x \lor c \lor t) = x \lor t,$$

hence  $\langle (x \vee t) \wedge c, (x \vee t) \rangle \in T_J$ . Clearly also  $\langle (x \vee t), x \rangle \in T_J$ . By the transitivity of  $T_J$ ,  $\langle (x \vee t) \wedge c, x \rangle \in T_J$ . By Lemma 2, there exists  $q \in J$  with  $x = (x \wedge ((x \vee t) \wedge c)) \vee q$ . However,  $x \wedge ((x \vee t) \wedge c) = x \wedge c$ , thus  $x = (x \wedge c) \vee q$ , i.e.  $\langle x, (x \wedge c) \rangle \in T_J$ . As  $x \wedge c = a \wedge d \wedge c = a \wedge c$ , this implies  $\langle (a \wedge d), (a \wedge c) \rangle \in T_J$ .

**Theorem 2.** Let L be a modular lattice, J its ideal and  $T_J$  the relation induced by J. If  $T_J$  is transitive, then it is a congruence relation on L.

Proof. If  $T_J$  is transitive, it is an equivalence relation on L. It remains to prove the compatibility of  $T_J$ . Let  $a, b, c, d \in L$  and  $\langle a, b \rangle \in T_J$ ,  $\langle c, d \rangle \in T_J$ . By Lemma 1, we must prove only that  $T_J$  preserves the operation  $\wedge$ . By Lemma 2, there exist  $i, j \in J$  with  $a = (a \wedge b) \vee i$ ,  $b = (a \wedge b) \vee j$ . By Theorem 1 in [3],  $(a \wedge b) \vee J$  is a convex sublattice of L, thus

$$a \in (a \land b) \lor J, b \in (a \land b) \lor J \Rightarrow a \lor b \in (a \land b) \lor J$$

hence  $\langle (a \wedge b), (a \vee b) \rangle \in T_J$ . Analogously it can be proved that  $\langle (c \wedge d), (c \vee d) \rangle \in T_J$ . By Lemma 3, this implies

$$\langle (a \wedge c \wedge d), (a \wedge (c \vee d)) \rangle \in T_J$$
.

Thus  $a \wedge c \wedge d \in u_0 \vee J$ ,  $a \wedge (c \wedge d) \in u_0 \vee J$  for some  $u_0 \in L$ . By Theorem 1 in [3],  $u_0 \vee J$  is a convex sublattice of L; clearly

$$a \wedge c \wedge d \leq a \wedge c \leq a \wedge (c \vee d), \quad a \wedge c \wedge d \leq a \wedge d \leq a \wedge (c \vee d),$$

thus also  $a \wedge c \in u_0 \vee J$  and  $a \wedge d \in u_0 \vee J$ , hence  $\langle (a \wedge c), (a \wedge d) \rangle \in T_J$ . Analogously also  $\langle (a \wedge d), (b \wedge d) \rangle \in T_J$ , thus the transitivity of  $T_J$  implies  $\langle (a \wedge c), (b \wedge d) \rangle \in T_J$ , i.e.  $T_J$  is a compatible relation.

Corollary. Let L be a modular lattice, J an ideal of L and  $T_J$  the relation induced by J. Then the following assertions are equivalent:

- (a)  $T_J$  is a compatible relation on L.
- (b)  $T_J$  is transitive.
- (c)  $T_{J}$  is an equivalence relation on L.
- (d)  $T_J$  is a congruence relation on L with the kernel J.

Proof. The implication (d)  $\Rightarrow$  (a) is clear and (a)  $\Leftrightarrow$  (d) follows by Theorem 1. The implication (d)  $\Rightarrow$  (c)  $\Rightarrow$  (b) is also clear and (b)  $\Rightarrow$  (d) by Theorem 2.

The following concept is transferred from [3]: