Werk Label: Article **Jahr:** 1978 **PURL:** https://resolver.sub.uni-goettingen.de/purl?31311157X_0103|log72 ## **Kontakt/Contact** <u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen ## NOTES ON LATTICE CONGRUENCES Ivan Chajda, Přerov (Received August 11, 1976) It is well-known that each ideal of a lattice Lis a kernel of at least one congruence relation on Lif and only if Lis distributive (see e.g. [1]), and that there exists a one-to-one correspondence between congruences and ideals for relatively complementary distributive lattices (see [2]). An approach adopted in [3] enables us to investigate the relationship between congruences and ideals also for modular lattices. **Definition 1.** Let J be an ideal of a given lattice L. Denote $a \vee J = \{a \vee j; j \in J\}$. A binary relation T_J on L defined by the rule $\langle x, y \rangle \in T_J$ if and only if there exists $u \in L$ with $x, y \in u \lor J$ is said to be induced by the ideal J. It is clear that T_J is a symmetrical relation on L. Further, for each $a \in L$ and an arbitrary $j \in J$ we have $a = a \lor (a \land j)$; clearly $a \land j \in J$, thus $a \in a \lor J$, which implies the reflexivity of T_J . Thus T_J is a tolerance relation on L (see [3]). In [3], conditions of the compatibility of T_J are studied (for the compatibility, see [4]). We shall now investigate the conditions for T_J to be a congruence relation. By Definition 1, if T_J is a congruence relation, J is a kernel of T_J . **Theorem 1.** Let L be a lattice and J an ideal of L. If the relation T_J induced by J is compatible on L, then T_J is a congruence relation on L. Proof. As T_J is reflexive, symmetrical and compatible, we must prove only its transitivity. Suppose $a, b, c \in L$ and $\langle a, b \rangle \in T_J$, $\langle b, c \rangle \in T_J$. Then there exist $u, v \in L$ and $i, j, k, l \in J$ with $a = u \lor i$, $b = u \lor j$, $b = v \lor k$, $c = v \lor l$. As $i, l \in J$, we have $$(1^{\circ}) \qquad \langle i, l \rangle \in T_{J}.$$ From $u \in u \vee J$, $a \in u \vee J$ it follows $\langle u, a \rangle \in T_J$. Analogously it can be proved that $\langle u, b \rangle \in T_J$, $\langle v, b \rangle \in T_J$, $\langle v, c \rangle \in T_J$. As T_J is symmetrical, also $\langle b, v \rangle \in T_J$. From the compatibility of T_J then $$(2^{\circ}) \qquad \langle u, b \rangle \in T_{J}, \ \langle b, v \rangle \in T_{J} \Rightarrow \langle (u \wedge b), (b \wedge v) \rangle \in T_{J}.$$ From $b = u \lor j$ we have $b \ge u$, from $b = v \lor k$ then $b \ge v$. Then (2°) implies $\langle u, v \rangle \in T_J$, which together with (1°) implies $$\langle (u \vee i), (v \vee l) \rangle \in T_J$$, thus $\langle a, c \rangle \in T_J$. Hence T_J is transitive. **Lemma 1.** Let L be a lattice and J its ideal. Let T_J be the relation induced by J. If $a, b, c, d \in L$ and $\langle a, b \rangle \in T_J$, $\langle c, d \rangle \in T_J$, then $$\langle (a \vee c), (b \vee d) \rangle \in T_J$$. Proof. If $\langle a,b\rangle \in T_J$, $\langle c,d\rangle \in T_J$, then $a=u \vee i$, $b=u \vee j$, $c=v \vee k$, $d=v \vee l$ for some $u,v \in L$, $i,j,k,l \in J$. Hence $a \vee c=(u \vee v) \vee (i \vee k)$, $b \vee d=(u \vee v) \vee (j \vee l)$, thus $a \vee c \in (u \vee v) \vee J$ and $b \vee d \in (u \vee v) \vee J$, i.e. $\langle (a \vee c), (b \vee d) \rangle \in T_J$. **Lemma 2.** Let L be a lattice, J an ideal of L and T_J the relation induced by J. If $a, b \in L$ and $\langle a, b \rangle \in T_J$, then $a = (a \wedge b) \vee i$, $b = (a \wedge b) \vee j$ for some $i, j \in J$. Proof. If $\langle a, b \rangle \in T_J$, then by Definition 1, $a = u \lor i$, $b = u \lor j$ for some $u \in L$, $i, j \in J$. Hence $a \ge a \land b \ge u$, $a \ge i$, thus $a = a \lor i \ge (a \land b) \lor i \ge u \lor i = a$, i.e. $a = (a \land b) \lor i$. Analogously it can be proved that $b = (a \land b) \lor j$. **Lemma 3.** Let L be a modular lattice, J an ideal of L and T_J the relation induced by J. Let $c, d \in L$ and $c \leq d$. If $\langle c, d \rangle \in T_J$ and T_J is transitive, then $\langle (a \wedge d), (a \wedge c) \rangle \in T_J$ for each $a \in L$. **Proof.** Let $\langle c, d \rangle \in T_J$. Then there exist $u \in L$ and $i, j \in J$ with $c = u \lor j$, $d = u \lor i$. As $c \le d$ and L is modular, we have $j \le i$, thus $d = c \lor i$. Put $x = a \land d$, $y = x \lor c$, $t = y \land i$. Then $y \ge c$, $d \ge x$. From these inequalities and by the modularity of L we obtain $$c \lor t = c \lor (y \land i) = (c \lor i) \land y = d \land y = d \land (x \lor c) =$$ $$= (d \land x) \lor c = (d \land (a \land d)) \lor c = (a \land d) \lor c = y.$$ As $t \in J$, this implies $\langle y, c \rangle \in T_J$. From $y = c \lor t$, $t \le x \lor t$ and by the modularity of Lit follows $$((x \lor t) \land c) \lor t = (x \lor t) \land (c \lor t) = (x \lor t) \land (c \lor t \lor t) =$$ $$= (x \lor t) \land (y \lor t) = (x \lor t) \land (x \lor c \lor t) = x \lor t,$$ hence $\langle (x \vee t) \wedge c, (x \vee t) \rangle \in T_J$. Clearly also $\langle (x \vee t), x \rangle \in T_J$. By the transitivity of T_J , $\langle (x \vee t) \wedge c, x \rangle \in T_J$. By Lemma 2, there exists $q \in J$ with $x = (x \wedge ((x \vee t) \wedge c)) \vee q$. However, $x \wedge ((x \vee t) \wedge c) = x \wedge c$, thus $x = (x \wedge c) \vee q$, i.e. $\langle x, (x \wedge c) \rangle \in T_J$. As $x \wedge c = a \wedge d \wedge c = a \wedge c$, this implies $\langle (a \wedge d), (a \wedge c) \rangle \in T_J$. **Theorem 2.** Let L be a modular lattice, J its ideal and T_J the relation induced by J. If T_J is transitive, then it is a congruence relation on L. Proof. If T_J is transitive, it is an equivalence relation on L. It remains to prove the compatibility of T_J . Let $a, b, c, d \in L$ and $\langle a, b \rangle \in T_J$, $\langle c, d \rangle \in T_J$. By Lemma 1, we must prove only that T_J preserves the operation \wedge . By Lemma 2, there exist $i, j \in J$ with $a = (a \wedge b) \vee i$, $b = (a \wedge b) \vee j$. By Theorem 1 in [3], $(a \wedge b) \vee J$ is a convex sublattice of L, thus $$a \in (a \land b) \lor J, b \in (a \land b) \lor J \Rightarrow a \lor b \in (a \land b) \lor J$$ hence $\langle (a \wedge b), (a \vee b) \rangle \in T_J$. Analogously it can be proved that $\langle (c \wedge d), (c \vee d) \rangle \in T_J$. By Lemma 3, this implies $$\langle (a \wedge c \wedge d), (a \wedge (c \vee d)) \rangle \in T_J$$. Thus $a \wedge c \wedge d \in u_0 \vee J$, $a \wedge (c \wedge d) \in u_0 \vee J$ for some $u_0 \in L$. By Theorem 1 in [3], $u_0 \vee J$ is a convex sublattice of L; clearly $$a \wedge c \wedge d \leq a \wedge c \leq a \wedge (c \vee d), \quad a \wedge c \wedge d \leq a \wedge d \leq a \wedge (c \vee d),$$ thus also $a \wedge c \in u_0 \vee J$ and $a \wedge d \in u_0 \vee J$, hence $\langle (a \wedge c), (a \wedge d) \rangle \in T_J$. Analogously also $\langle (a \wedge d), (b \wedge d) \rangle \in T_J$, thus the transitivity of T_J implies $\langle (a \wedge c), (b \wedge d) \rangle \in T_J$, i.e. T_J is a compatible relation. Corollary. Let L be a modular lattice, J an ideal of L and T_J the relation induced by J. Then the following assertions are equivalent: - (a) T_J is a compatible relation on L. - (b) T_J is transitive. - (c) T_{J} is an equivalence relation on L. - (d) T_J is a congruence relation on L with the kernel J. Proof. The implication (d) \Rightarrow (a) is clear and (a) \Leftrightarrow (d) follows by Theorem 1. The implication (d) \Rightarrow (c) \Rightarrow (b) is also clear and (b) \Rightarrow (d) by Theorem 2. The following concept is transferred from [3]: