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UNIQUENESS OF THE OPERATOR ATTAINING C(H,,r, n)

ZpENEK DosTAL, Ostrava

(Received May 24, 1976)

Introduction. Let r be a fixed real number, 0 < r < 1, n a fixed natural number.
Let L(H,) denote the algebra of all linear operators on an n-dimensional Hilbert
space H, and let the operator norm and the spectral radius of 4 € L(H,) be denoted
by |4] and |4|,, respectively.

In connection with the critical exponent, V. PTAK has introduced in [1] the quantity

C(H,, r, m) = sup {|A"| : Ae (H,), |4|, < r, |4] < 1}
and found a certain operator A € L(H,) such that
(1) C(H"’ T, n) = IA"l > lAIc é r, |AI é 1 .

The point of this note is to show that the operator A4 is unique in the following
sense: if Be L(H,) is any operator which satisfies (1) then there exists a unitary
operator U € L(H,) and a complex unit & such that

eA = U*BU .

2. Notation and preliminaries. Let M, denote the algebra of all n x n complex
valued matrices.

The adjoint and the spectrum of an operator A will be denoted by A* and o(4),
respectively.

An operator A € L(H,) is said to be extremal if |4| < 1, |4], < 7 and |4"] =
= C(H,, r, n).

For a given set W = {w,, ..., W} of vectors w; € H,, denote by G(W) the Gramm
matrix of W. If ze H, and A € L(H,), we shall abbreviate G(z, Az, ..., A" 'z) by
G(4, z). .

We shall denote, for 1 < i < n, by E; the polynomial

ey e €,
Efxy,..ox) = Y xpx..xe,
ese(0,1)
e +..ten=1i
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Let 9,,..., 0, be given complex numbers. For i = 1,2,...,n, put o; = (—1)""'
E,_i+1(0ys ---5 0,) so that the roots of the equation

X" =y + dpx + ...+ oox" !
are exactly g,, ..., 0,- Consider the recursive relation
(2) Xpgn = 01X + oo + XX yqp-1 -

For each i, 1 < i < n, we denote by wygy, ..., ¢,) the solution (w;g, Wiy, Wi, ...)

of this relation with the initial conditions

IIA

k=n-—1.

wik(Qh vens Qn) = 51,k+1 , 0
The result of V. KNICHAL ([1], Lemma 7) reads:

2.1. Foreachi=1,2,...,nand each k = n,

wik(els viswy Qn) = EiQik(Ql’ Loy Qn) ’

where ¢; = (—1)""" and

Qik(gl’ eosy Qn) = ZZO C"‘(el, coey e") Qell, vesy Q:n,
n+...-:1¢:=k—i+1
where all c,(ey, ..., e,) 2 0.

The point of the lemma is that, for k = n and i fixed, all coefficients of w;, are of
the same sign.

Following [1], we denote by P(gy, ..., g,) the linear space consisting of all solutions
of the recursive relation (2); it is spanned by the vectors w;(0y, - .., @n)s -+-» Wa(@1, - -
cees On)-

Now suppose that all |g;| < r. It is proved in [1] that, in this case, P(g,, ..., ¢,)
is a subspace of the Hilbert space I of all sequences (ao, @, a,, ...) of the complex

@
numbers such that Y |a,|* < oo.
i=0

Let S denote the shift operator on 1* which sends (aq, a;, a5, ...) to (a,, a3, a3, ...).
Its restriction on P(g,, ..., @,) is denoted by S | P(gy, ..., €)-

The solution (ao, a,, a,, ...) of (2) with the initial conditions ao = 1, a; = g, ...
ve., @,_4 = 0] ! is the eigenvector corresponding to ¢;. On the other hand,

(5~ w8t — = @) | Plew 5 0) = 0

so that the minimal polynomial of S| P(gy, ..., 0,) is a divisor of (x — ¢,)...
... (x — @,). We have thus

3 . o(S| Py, ---» 0w)) = {@1 -+ 04} -
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3. Shifts. V. Ptak has discovered extremal properties of restrictions of the shift S.
He has proved:

3.1. Theorem. (Pték). Let g,, ..., ¢, be complex numbers, |o;| S rfori=1,...,n;
AeL(H,), |[A| S 1 and (A — ¢,)(A - ¢;)...(A — @) = 0.

Then
@ 4] < |S"] Pless > )]
([1], Theorem 6).

Moreover,
(%) C(H,, r,n) = |S"| P(r, ..., 7)|

(ibid, Theorem 8).
The proof of (5) consists in showing that

(6) |S"| Pley, ---» @) < |S"| P(r, ..., 7)| .
An inspection of the proof of (5) suggests a supplement to the inequality (6).
3.2. Let gy, ..., 0, be complex numbers, |Q,| Zrfori=1,...,n. Then the rela-

tion
|S" I P(oy, - Q,,)I = IS" | P(r, ..., r)'

holds if and only if o, = ... = ¢, and |91| =r.
We shall follow [1] in the proof.

Let Q;, w; and E; be those of Section 2. With the aid of the recurrent relations
(2), it is easy to verify directly that

Qin = En.—i+1 and Ql,n+1 = El s En .

Now suppose all |¢;| < r and let there be i such that ¢, # g; or |¢;| < r. It follows
immediately that

(7 |Q1ms1(1s - @) < Qumia(s . 7)

and

(8) IQ,-',.(QI, . Q..)I < Qufr,.ost), i=2,..,m.
All coefficients of the forms Q;, being nonnegative, we have

) |Quless - @) £ Qu(rs..ir), i=1,..,n.

We intend to show that .
|S*| P(ey, ... @n)] < |S"| P(r, ..., )|
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To prove this, we associate with each x € P(gy, ..., ¢,), X % 0, a vector y € P(r, ..., 1)
such that .
S| |x|~* < |s"y] [y|™* .

Put y = ¥ |xi—4| (—1)""* w(r, ..., r). It follows that, for 0 < k < n — 1, we have
i=1

]x,l = |yk|. If k = n, then

(10) |xk| — |i=21, Xi—1 wik(Ql’ ) Qn)l §‘§|x5—1I IQu(Qx, cee Qn)' =

M:

< X Jxies] Qalrs 1) =z=zly‘—1("1)"_i Qu(r, - 7) = Y-

1

If xo # 0, then we can apply the inequality (7) together with (9) to get |x,,. 1| < Vus1s
otherwise by (8) Ix,,| < yn- We have thus |x,| = |yk| fork =0,1,...,n — 1; |xk|§y,‘
for k 2 n, |x,.| < Y, O [X,41| < y,+1 and this implies the desired inequality.

On the other hand, if ¢ = e'r, t real, then by (6) and (4)

|s"| Pe, ... @)| < |S"| P(r, ... 7)| = |(e"S)" | P(r, ....7)| < |S"| P(o. ... 0)| ,

which completes the proof.

We shall need a little more information about S | H(g, ..., ¢). Let |o| < 1, and
abbreviate S| P(g, ..., @) by S, wae,...,@) by w. Clearly [w| = |Sw| = ...
... = |S;™"w|. All the vectors w, Sw, ..., S; *w being linearly independent eigen-
vectors of S:S‘, %+ I corresponding to the eigenvalue 1, we have

(11) rank (I — S;S,) = 1.

We intend to show that IS:z| attains its maximum on the unit sphere for a unique
vector. To prove it, assume u,v€ P(g, ..., ¢) linearly independent, [u| = o] = 1,
[Seu| = |Sgo| = |Sq], ie. |Sp|* = |S3"S5| = (S;"Spu, u) = (S;"Sv, v). It follows that
both u and v are eigenvectors of S;"S; corresponding to the eigenvalue |S}|? and,
consequently, |Si|? |z|* = (S;"Siz, z) = |Siz|* for each z e Span(u,v). Since
dim Ker (I — S}S,) = n — 1 and S, is regular there exists a nonzero w, we
€ S"(Span (u, v)) N Ker (I — S;S,). Setting z = |S;"w| ™! S;"w we have

(12) (I-5;S)Siz=0, |Siz| =[S} = C(H,,7,n).

Hence we can write

(13) |Saz|? — |S5*12|* = (I — S7S,) S3z, Sz) = 0.

Now return to the proof of 3.2 and set y = Y z,_y(—1)""*. w(r, ..., 7). We have
i=1

again |z;| = || fori =0,1,...,n — land |z| £ y;fori = n,n +1,.... Applying
(12) we get even |z,| = y, for i 2 n. Since by (13) |S;z| = |S;*'z|, we have z, = 0.
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At the same time
n n
IZ,,I =‘ In =‘=21|zi—ll an(r9 AR ] T) =‘=lezi—1| En—i+1(r’ ke r) >0 s

which is impossible. We have proved the following result:

3.3. Let |Q| <1, u,veP(p,..,0), |u| = |v| =1 and |S"u| = lS"vI = C(H,, r, n).
Then u = e'v.

4. Spectrum of extremal operators. Now it is easy to describe the spectrum of
extremal operators.

4.1.'If A e L(H,) is extremal, then o(A) = {o}, |e| = .

Proof. Suppose g, ..., @, are the roots of the characteristic polynomical of an
extremal operator A € L(H ). If they were not all equal or some |g,| <r, then smce
(A4-e)...(4—0)=0by31a32

4] < [S"| Ploss s @0)] < |S"| P(ry o) = C(H ).
We shall need two easy consequences of 4.1.

4.2. If Ae (H,) is extremal, z € H,, |z| = 1and |A"z| A", then the vectors z,
Az, ..., A" 1z are linearly independent.

Really, otherwise we could define an extremal operator B which has 0 in its spec-
trum by setting Bx = Ax for x from the linear span of the vectors z, 4z, ..., A" 1z
and By = 0 on the orthogonal complement.

It follows that no extremal operator can be a root of the polynomial of a degree
less than the dimension of the space. Together with 4.1, this yields

4.3. If AeL(H,) is extremal then its minimal polynomial is (x — @), where
]e| =r.

5. We give a brief account of Ptik’s method of linearization that we need here
([1], pp. 250—253). In the sequel, let z € H, be a fixed unit vector, ¢ = e'r a fixed
real number and let T be the companion matrix of (x — 0)", that is

fj0 1.0 ...0
0 01 0
T=] Juveveninnons
0 00O 1
a oy oy a,l,
where a; are defined by -
x—@=x"-ax""!1—...—qa.
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If A€ L(H,) satisfies (4 — @)" = 0, then it is easy to verify directly that for each
zeH,

(14) G(A, Az) = TG(4, z) T* .

We denote by o the class of all operators 4 € L(H,) such that |4| < 1and (4 — @) =
= 0, by Z the class of all symmetric matrices Z € M, satisfying TZT* < Z and
z,, = 1. The mapping
g.: A 2A > G(A, z2)eZ

is epimorphic.

The crucial point is that there is a linear isomorphism between the cone J of all
symmetric matrices Z € M,, TZT* < Z, and the cone £ of all symmetric positive
semidefinite matrices. It is defined by

p:I33Z\>Z—TLZT*e 2.
Let us define a linear functional » A
f:M,5Z b q(T"ZT*),
where g(Z) denotes the (1,1) entry of Z, and let 2 = p(Z). If A € o, we may write
7! (p 9:(4)) = flg{4)) = |4z,

so that max |4"z|? for A € o equals the maximum of fp~* on the set 2. The last set
being compact and convex, the maximum of fp~! will be attained at an extreme point
of 4. Since the extreme rays of & are generated by matrices of the rank 1, the rank
of the extreme matrices of 2 is equal to 1.

Put & = {Pe 2: fp~*(P) = C(H,, r, n)*}. First we show what do the operators
from </, which are sent by pg, to the extremal point of &, look like.

5.1. Let A € L(H,) be extremal. If the rank of the matrix
G(4, z) — G(4, Az)

is equal to 1 and |A"z| = C(H,,, r, n), then there is a complex number g, IQI =r
and a unitary mapping :
u:H,- P(g,...,0)
such that
' A=u*Su:

Proof. Suppose A satisfies the assumptions of the theorem and put D =
= (I — A*A)!/2. We have seen already that o(4) = {g}, |e| = . Obviously,

G(A, z) — G(A4, Az) = G(Dz, DAz, ..., DA™ 'z).
By 4.2 the vectors z, Az, ..., A" 1z form a basis of the space H,. The rank of
G(Dz, ..., DA""'z) being equal to 1, the same holds for D, too.
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We denote by e the only unit eigenvector of D with the eigenvalue different from
zero and define a linear mapping

) u:H,ow((Dw,e), (DAw,e),...)el*.

Clearly u maps H, into P(g, ..., ¢). Since A" — 0 and Dw = (Dw, e) e, we hﬁve
W2 = 3 |(DA'w, O = 3 |Daw]? = ¥ (|4bw]? — |47 W) = [w]?
i=0 i=0 i=0

so that u is an isometry. The spaces H, and P(g, ..., ¢) having the same dimension n,
the range of u is P(a, 5 Q). Moreover, the shift S satisfies

. uA = Su,
which completes the proof.

The next step consists in showing that & is a singleton. To prove it, assume P, Q
are extreme points of & and let 4, B € & be such operators that p g(4) = P, p g(B) =
= Q, |A"z| = |B"z| = C(H,, r, n).

By 5.1 there are isometries u, v : H, > P(g, ..., ),

A=u*Su, B=v*Sv.
It immediately follows that

|S"u2[ = |S"vz| |A"z| = C(H,, 1, n),

by 3.3 we get uz = e''vz and clearly z = e~ "*v*uz. The desired relation
P=pg(4)=pg(B)=Q

is now an easy consequence of B = v*udu*v.

Now, if A is any extremal operator, then there is z € H, such that |z| =1 and
|A"z| = C(H,, r, n). Clearly p g,(A) € &. Since the only matrix belonging to & is
of rank 1, the rank of

pg,(k) = G(4, z) — G(4, Az2)

is equal to 1 and A satisfies the assumptions of 5.1.
We can summarize our results in the promised theorem.

5.2. Theorem. Let A€ I(H,), |4| £ 1,0 < r < 1,|d|, £ rand |4"| = C(H,, T, n).

Then o(A) consists of an only point ¢, |e| = r and A is unitary similar to the
restriction of the shift operator S on the space of all sequences (xo, Xy, X3, ...)
which satisfy :

‘ZO(’:) (—0) Xk4n-1=0.
The problem of uniqueness of extremal operators was raised by V. Ptak..
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