

Werk

Label: Article Jahr: 1978

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0103|log65

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIQUENESS OF THE OPERATOR ATTAINING $C(H_n, r, n)$

ZDENĚK DOSTÁL, Ostrava (Received May 24, 1976)

Introduction. Let r be a fixed real number, 0 < r < 1, n a fixed natural number. Let $L(H_n)$ denote the algebra of all linear operators on an n-dimensional Hilbert space H_n and let the operator norm and the spectral radius of $A \in L(H_n)$ be denoted by |A| and $|A|_{\sigma}$, respectively.

In connection with the critical exponent, V. PTÁK has introduced in [1] the quantity

$$C(H_n, r, m) = \sup \{ |A^m| : A \in L(H_n), |A|_{\sigma} \le r, |A| \le 1 \}$$

and found a certain operator $A \in L(H_n)$ such that

(1)
$$C(H_n, r, n) = |A^n|, |A|_{\sigma} \leq r, |A| \leq 1.$$

The point of this note is to show that the operator A is unique in the following sense: if $B \in L(H_n)$ is any operator which satisfies (1) then there exists a unitary operator $U \in L(H_n)$ and a complex unit ε such that

$$\varepsilon A = U^*BU$$
.

2. Notation and preliminaries. Let M_n denote the algebra of all $n \times n$ complex valued matrices.

The adjoint and the spectrum of an operator A will be denoted by A^* and $\sigma(A)$, respectively.

An operator $A \in L(H_n)$ is said to be extremal if $|A| \le 1$, $|A|_{\sigma} \le r$ and $|A^n| = C(H_n, r, n)$.

For a given set $W = \{w_1, ..., w_n\}$ of vectors $w_i \in H_n$, denote by G(W) the Gramm matrix of W. If $z \in H_n$ and $A \in L(H_n)$, we shall abbreviate $G(z, Az, ..., A^{n-1}z)$ by G(A, z).

We shall denote, for $1 \le i \le n$, by E_i the polynomial

$$E_{i}(x_{1}, \ldots, x_{n}) = \sum_{\substack{e_{j} \in \{0,1\}\\e_{1}+\ldots+e_{n}=i}} x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{n}^{e_{n}},$$

Let $\varrho_1, \ldots, \varrho_n$ be given complex numbers. For $i = 1, 2, \ldots, n$, put $\alpha_i = (-1)^{n-i}$ $E_{n-i+1}(\varrho_1, \ldots, \varrho_n)$ so that the roots of the equation

$$x^n = \alpha_1 + \alpha_2 x + \ldots + \alpha_n x^{n-1}$$

are exactly $\varrho_1, ..., \varrho_n$. Consider the recursive relation

(2)
$$x_{i+n} = \alpha_1 x_i + \ldots + \alpha_n x_{i+n-1} .$$

For each $i, 1 \le i \le n$, we denote by $w_i(\varrho_1, ..., \varrho_n)$ the solution $(w_{i0}, w_{i1}, w_{i2}, ...)$ of this relation with the initial conditions

$$w_{ik}(\varrho_1,\ldots,\varrho_n)=\delta_{i,k+1}, \quad 0\leq k\leq n-1.$$

The result of V. KNICHAL ([1], Lemma 7) reads:

2.1. For each i = 1, 2, ..., n and each $k \ge n$,

$$w_{ik}(\varrho_1, \ldots, \varrho_n) = \varepsilon_i Q_{ik}(\varrho_1, \ldots, \varrho_n)$$

where $\varepsilon_i = (-1)^{n-i}$ and

$$Q_{ik}(\varrho_1, ..., \varrho_n) = \sum_{\substack{e_j \geq 0 \\ e_1 + ... + e_n = k - i + 1}} c_{ik}(e_1, ..., e_n) \varrho_1^{e_1}, ..., \varrho_n^{e_n},$$

where all $c_{ik}(e_1, ..., e_n) \geq 0$.

The point of the lemma is that, for $k \ge n$ and i fixed, all coefficients of w_{ik} are of the same sign.

Following [1], we denote by $P(\varrho_1, ..., \varrho_n)$ the linear space consisting of all solutions of the recursive relation (2); it is spanned by the vectors $w_1(\varrho_1, ..., \varrho_n), ..., w_n(\varrho_1, ..., \varrho_n)$.

Now suppose that all $|\varrho_i| < r$. It is proved in [1] that, in this case, $P(\varrho_1, ..., \varrho_n)$ is a subspace of the Hilbert space l^2 of all sequences $(a_0, a_1, a_2, ...)$ of the complex numbers such that $\sum_{i=0}^{\infty} |a_i|^2 < \infty$.

Let S denote the shift operator on l^2 which sends $(a_0, a_1, a_2, ...)$ to $(a_1, a_2, a_3, ...)$. Its restriction on $P(\varrho_1, ..., \varrho_n)$ is denoted by $S \mid P(\varrho_1, ..., \varrho_n)$.

The solution $(a_0, a_1, a_2, ...)$ of (2) with the initial conditions $a_0 = 1$, $a_1 = \varrho_i$,, $a_{n-1} = \varrho_i^{n-1}$ is the eigenvector corresponding to ϱ_i . On the other hand,

$$(S^n - \alpha_n S^{n-1} - \ldots - \alpha_1) \mid P(\varrho_1, \ldots, \varrho_n) = 0$$

so that the minimal polynomial of $S \mid P(\varrho_1, ..., \varrho_n)$ is a divisor of $(x - \varrho_1) ... (x - \varrho_n)$. We have thus

(3)
$$\sigma(S \mid P(\varrho_1, ..., \varrho_n)) = \{\varrho_1, ..., \varrho_n\}.$$

- 3. Shifts. V. Pták has discovered extremal properties of restrictions of the shift S. He has proved:
- 3.1. Theorem. (Pták). Let $\varrho_1, \ldots, \varrho_n$ be complex numbers, $|\varrho_i| \le r$ for $i = 1, \ldots, n$; $A \in L(H_n)$, $|A| \le 1$ and $(A \varrho_1)(A \varrho_2) \ldots (A \varrho_n) = 0$. Then

$$|A^n| \leq |S^n| P(\varrho_1, \ldots, \varrho_n)|$$

([1], Theorem 6).

Moreover,

(5)
$$C(H_n, r, n) = |S^n| P(r, ..., r)|$$

(ibid, Theorem 8).

The proof of (5) consists in showing that

$$\left|S^{n} \mid P(\varrho_{1}, ..., \varrho_{n})\right| \leq \left|S^{n} \mid P(r, ..., r)\right|.$$

An inspection of the proof of (5) suggests a supplement to the inequality (6).

3.2. Let $\varrho_1, ..., \varrho_n$ be complex numbers, $|\varrho_i| \le r$ for i = 1, ..., n. Then the relation

$$|S^n \mid P(\varrho_1, ..., \varrho_n)| = |S^n \mid P(r, ..., r)|$$

holds if and only if $\varrho_1 = \ldots = \varrho_n$ and $|\varrho_1| = r$.

We shall follow [1] in the proof.

Let Q_i , w_i and E_i be those of Section 2. With the aid of the recurrent relations (2), it is easy to verify directly that

$$Q_{in} = E_{n-i+1}$$
 and $Q_{1,n+1} = E_1 \cdot E_n$.

Now suppose all $|\varrho_i| \le r$ and let there be i such that $\varrho_1 \neq \varrho_i$ or $|\varrho_i| < r$. It follows immediately that

(7)
$$|Q_{1,n+1}(\varrho_1,...,\varrho_n)| < Q_{1,n+1}(r,...,r)$$

and

(8)
$$|Q_{i,n}(\varrho_1,...,\varrho_n)| < Q_{i,n}(r,...,r), \quad i=2,...,n.$$

All coefficients of the forms Q_{ik} being nonnegative, we have

(9)
$$|Q_{ik}(\varrho_1,...,\varrho_n)| \leq Q_{ik}(r,...,r), \quad i=1,...,n.$$

We intend to show that

$$\left|S^{n} \mid P(\varrho_{1},...,\varrho_{n})\right| < \left|S^{n} \mid P(r,...,r)\right|.$$

To prove this, we associate with each $x \in P(\varrho_1, ..., \varrho_n)$, $x \neq 0$, a vector $y \in P(r, ..., r)$ such that

$$|S^n x| |x|^{-1} < |S^n y| |y|^{-1}$$
.

Put $y = \sum_{i=1}^{n} |x_{i-1}| (-1)^{n-i} w_i(r, ..., r)$. It follows that, for $0 \le k \le n-1$, we have $|x_k| = |y_k|$. If $k \ge n$, then

(10)
$$|x_k| = \left| \sum_{i=1}^n x_{i-1} w_{ik}(\varrho_1, ..., \varrho_n) \right| \le \sum_{i=1}^n |x_{i-1}| |Q_{ik}(\varrho_1, ..., \varrho_n)| \le$$

$$\le \sum_{i=1}^n |x_{i-1}| |Q_{ik}(r, ..., r)| = \sum_{i=1}^n y_{i-1}(-1)^{n-i} |Q_{ik}(r, ..., r)| = y_k .$$

If $x_0 \neq 0$, then we can apply the inequality (7) together with (9) to get $|x_{n+1}| < y_{n+1}$, otherwise by (8) $|x_n| < y_n$. We have thus $|x_k| = |y_k|$ for k = 0, 1, ..., n-1; $|x_k| \leq y_k$ for $k \geq n$, $|x_n| < y_n$ or $|x_{n+1}| < y_{n+1}$ and this implies the desired inequality.

On the other hand, if $\varrho = e^{it}r$, t real, then by (6) and (4)

$$|S^n \mid P(\varrho, \ldots, \varrho)| \leq |S^n \mid P(r, \ldots, r)| = |(e^{it}S)^n \mid P(r, \ldots, r)| \leq |S^n \mid P(\varrho, \ldots, \varrho)|,$$

which completes the proof.

We shall need a little more information about $S \mid H(\varrho, ..., \varrho)$. Let $|\varrho| < 1$, and abbreviate $S \mid P(\varrho, ..., \varrho)$ by S_{ϱ} , $w_n(\varrho, ..., \varrho)$ by w. Clearly $|w| = |S_{\varrho}w| = ...$... = $|S_{\varrho}^{n-1}w|$. All the vectors w, $S_{\varrho}w$, ..., $S_{\varrho}^{n-2}w$ being linearly independent eigenvectors of $S_{\varrho}^*S_{\varrho} \neq I$ corresponding to the eigenvalue 1, we have

(11)
$$\operatorname{rank}\left(I - S_{o}^{*}S_{o}\right) = 1.$$

We intend to show that $|S_{\varrho}^n z|$ attains its maximum on the unit sphere for a unique vector. To prove it, assume $u, v \in P(\varrho, ..., \varrho)$ linearly independent, |u| = |v| = 1, $|S_{\varrho}^n u| = |S_{\varrho}^n v| = |S_{\varrho}^n|$, i.e. $|S_{\varrho}^n|^2 = |S_{\varrho}^{*n} S_{\varrho}^n| = (S_{\varrho}^{*n} S_{\varrho}^n u, u) = (S_{\varrho}^{*n} S_{\varrho}^n v, v)$. It follows that both u and v are eigenvectors of $S_{\varrho}^{*n} S_{\varrho}^n$ corresponding to the eigenvalue $|S_{\varrho}^n|^2$ and, consequently, $|S_{\varrho}^n|^2 |z|^2 = (S_{\varrho}^{*n} S_{\varrho}^n z, z) = |S_{\varrho}^n z|^2$ for each $z \in \text{Span}(u, v)$. Since dim Ker $(I - S_{\varrho}^* S_{\varrho}) = n - 1$ and S_{ϱ} is regular there exists a nonzero $w, w \in S^n(\text{Span}(u, v)) \cap \text{Ker}(I - S_{\varrho}^* S_{\varrho})$. Setting $z = |S_{\varrho}^{-n} w|^{-1} S_{\varrho}^{-n} w$ we have

(12)
$$(I - S_o^* S_o) S_o^n z = 0 , \quad |S_o^n z| = |S_o^n| = C(H_n, r, n) .$$

Hence we can write

(13)
$$|S_{\varrho}^{n}z|^{2} - |S_{\varrho}^{n+1}z|^{2} = ((I - S_{\varrho}^{*}S_{\varrho}) S_{\varrho}^{n}z, S_{\varrho}^{n}z) = 0.$$

Now return to the proof of 3.2 and set $y = \sum_{i=1}^{n} z_{i-1}(-1)^{n-i} \cdot w_i(r, ..., r)$. We have again $|z_i| = |y_i|$ for i = 0, 1, ..., n-1 and $|z_i| \le y_i$ for i = n, n+1, ... Applying (12) we get even $|z_i| = y_i$ for $i \ge n$. Since by (13) $|S_q^n z| = |S_q^{n+1} z|$, we have $z_n = 0$.

At the same time

$$|z_n| = y_n = \sum_{i=1}^n |z_{i-1}| Q_{in}(r, ..., r) = \sum_{i=1}^n |z_{i-1}| E_{n-i+1}(r, ..., r) > 0$$

which is impossible. We have proved the following result:

3.3. Let
$$|\varrho| < 1$$
, $u, v \in P(\varrho, ..., \varrho)$, $|u| = |v| = 1$ and $|S^n u| = |S^n v| = C(H_n, r, n)$. Then $u = e^{it}v$.

4. Spectrum of extremal operators. Now it is easy to describe the spectrum of extremal operators.

4.1. If
$$A \in L(H_n)$$
 is extremal, then $\sigma(A) = \{\varrho\}, |\varrho| = r$.

Proof. Suppose $\varrho_1, ..., \varrho_n$ are the roots of the characteristic polynomical of an extremal operator $A \in L(H_n)$. If they were not all equal or some $|\varrho_i| < r$, then, since $(A - \varrho_1) ... (A - \varrho_n) = 0$, by 3.1 a 3.2

$$|A^n| \leq |S^n| P(\varrho_1, ..., \varrho_n)| < |S^n| P(r, ..., r)| = C(H_n, r, n).$$

We shall need two easy consequences of 4.1.

4.2. If $A \in L(H_n)$ is extremal, $z \in H_n$, |z| = 1 and $|A^n z| = A^n$, then the vectors z, $Az, ..., A^{n-1}z$ are linearly independent.

Really, otherwise we could define an extremal operator B which has 0 in its spectrum by setting Bx = Ax for x from the linear span of the vectors z, Az, ..., $A^{n-1}z$ and By = 0 on the orthogonal complement.

It follows that no extremal operator can be a root of the polynomial of a degree less than the dimension of the space. Together with 4.1, this yields

- **4.3.** If $A \in L(H_n)$ is extremal then its minimal polynomial is $(x \varrho)^n$, where $|\varrho| = r$.
- 5. We give a brief account of Pták's method of linearization that we need here ([1], pp. 250-253). In the sequel, let $z \in H_n$ be a fixed unit vector, $\varrho = e^{it}r$ a fixed real number and let T be the companion matrix of $(x \varrho)^n$, that is

$$T = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \dots & \alpha_n \end{bmatrix},$$

where α_i are defined by

$$(x-\varrho)^n=x^n-\alpha_nx^{n-1}-\ldots-\alpha_1.$$

If $A \in L(H_n)$ satisfies $(A - \varrho)^n = 0$, then it is easy to verify directly that for each $z \in H_n$

(14)
$$G(A, Az) = TG(A, z) T^*.$$

We denote by \mathscr{A} the class of all operators $A \in L(H_n)$ such that $|A| \leq 1$ and $(A - \varrho)^n = 0$, by \mathscr{Z} the class of all symmetric matrices $Z \in M_n$ satisfying $TZT^* \leq Z$ and $z_{11} = 1$. The mapping

$$g_z: \mathscr{A} \ni A \mapsto G(A, z) \in \mathscr{Z}$$

is epimorphic.

The crucial point is that there is a linear isomorphism between the cone \mathscr{F} of all symmetric matrices $Z \in M_n$, $TZT^* \leq Z$, and the cone \mathscr{P} of all symmetric positive semidefinite matrices. It is defined by

$$p: \mathscr{T}\ni Z \mapsto Z - TZT^* \in \mathscr{P}.$$

Let us define a linear functional

$$f: M_n \ni Z \mapsto q(T^n Z T^{*n})$$
,

where q(Z) denotes the (1,1) entry of Z, and let $\mathcal{Q} = p(\mathcal{Z})$. If $A \in \mathcal{A}$, we may write

$$fp^{-1}(p g_z(A)) = f(g_z(A)) = |A^n z|^2$$
,

so that $\max |A^nz|^2$ for $A \in \mathscr{A}$ equals the maximum of fp^{-1} on the set \mathscr{Q} . The last set being compact and convex, the maximum of fp^{-1} will be attained at an extreme point of \mathscr{Q} . Since the extreme rays of \mathscr{P} are generated by matrices of the rank 1, the rank of the extreme matrices of \mathscr{Q} is equal to 1.

Put $\mathscr{E} = \{P \in \mathscr{Q} : fp^{-1}(P) = C(H_n, r, n)^2\}$. First we show what do the operators from \mathscr{A} , which are sent by pg_z to the extremal point of \mathscr{E} , look like.

5.1. Let $A \in L(H_n)$ be extremal. If the rank of the matrix

$$G(A, z) - G(A, Az)$$

is equal to 1 and $|A^nz| = C(H_n, r, n)$, then there is a complex number ϱ , $|\varrho| = r$ and a unitary mapping

$$u: H_n \to P(\varrho, ..., \varrho)$$

such that

$$A = u * Su$$

Proof. Suppose A satisfies the assumptions of the theorem and put $D = (I - A + A)^{1/2}$. We have seen already that $\sigma(A) = \{\varrho\}, |\varrho| = r$. Obviously,

$$G(A, z) - G(A, Az) = G(Dz, DAz, ..., DA^{n-1}z)$$
.

By 4.2 the vectors z, Az, ..., $A^{n-1}z$ form a basis of the space H_n . The rank of $G(Dz, ..., DA^{n-1}z)$ being equal to 1, the same holds for D, too.

We denote by e the only unit eigenvector of D with the eigenvalue different from zero and define a linear mapping

$$u: H_n \ni w \mapsto ((Dw, e), (DAw, e), \ldots) \in l^2$$
.

Clearly u maps H_n into $P(\varrho, ..., \varrho)$. Since $A^n \to 0$ and Dw = (Dw, e) e, we have

$$|u(w)|^2 = \sum_{i=0}^{\infty} |(DA^i w, e)|^2 = \sum_{i=0}^{\infty} |DA^i w|^2 = \sum_{i=0}^{\infty} (|A^i w|^2 - |A^{i+1} w|^2) = |w|^2$$

so that u is an isometry. The spaces H_n and $P(\varrho, ..., \varrho)$ having the same dimension n, the range of u is $P(\varrho, ..., \varrho)$. Moreover, the shift S satisfies

$$uA = Su$$
,

which completes the proof.

The next step consists in showing that \mathscr{E} is a singleton. To prove it, assume P, Q are extreme points of \mathscr{E} and let A, $B \in \mathscr{A}$ be such operators that p g(A) = P, p g(B) = Q, $|A^n z| = |B^n z| = C(H_n, r, n)$.

By 5.1 there are isometries $u, v: H_n \to P(\varrho, ..., \varrho)$,

$$A = u^*Su , \quad B = v^*Sv .$$

It immediately follows that

$$|S^n uz| = |S^n vz| = |A^n z| = C(H_n, r, n),$$

by 3.3 we get $uz = e^{it}vz$ and clearly $z = e^{-it}v^*uz$. The desired relation

$$P = p g(A) = p g(B) = Q$$

is now an easy consequence of $B = v^*uAu^*v$.

Now, if A is any extremal operator, then there is $z \in H_n$ such that |z| = 1 and $|A^n z| = C(H_n, r, n)$. Clearly $p g_z(A) \in \mathscr{E}$. Since the only matrix belonging to \mathscr{E} is of rank 1, the rank of

$$p g_z(A) = G(A, z) - G(A, Az)$$

is equal to 1 and A satisfies the assumptions of 5.1.

We can summarize our results in the promised theorem.

5.2. Theorem. Let
$$A \in L(H_n)$$
, $|A| \leq 1$, $0 < r < 1$, $|A|_{\sigma} \leq r$ and $|A^n| = C(H_n, r, n)$.

Then $\sigma(A)$ consists of an only point ϱ , $|\varrho| = r$ and A is unitary similar to the restriction of the shift operator S on the space of all sequences $(x_0, x_1, x_2, ...)$ which satisfy

$$\sum_{i=0}^{n} \binom{n}{i} (-\varrho)^{i} x_{k+n-i} = 0.$$

The problem of uniqueness of extremal operators was raised by V. Pták.