

Werk

Label: Article **Jahr:** 1978

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0103|log54

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

DETERMINATION OF A SURFACE BY ITS MEAN CURVATURE

ALOIS ŠVEC, Olomouc (Received August 17, 1976)

M. Matsumoto [2] and T. Y. Thomas [3] have shown how to reconstruct a surface of the Euclidean 3-space from its metric form and its mean curvature; see also [1]. In what follows, a simpler and more complete solution of the same problem is presented.

1. Let be given a domain $D \subset \mathbb{R}^2$ and a metric

(1)
$$ds^2 = A(x, y) dx^2 + 2 B(x, y) dx dy + C(x, y) dy^2$$

on it. Let us choose the forms $\omega^1 = \Gamma_1^1 dx + \Gamma_2^1 dy$, $\omega^2 = \Gamma_1^2 dx + \Gamma_2^2 dy$ such that

(2)
$$ds^2 = (\omega^1)^2 + (\omega^2)^2.$$

Then there is exactly one form ω_1^2 such that

(3)
$$d\omega^1 = -\omega^2 \wedge \omega_1^2, \quad d\omega^2 = \omega^1 \wedge \omega_1^2.$$

If

(4)
$$d\omega^1 = r\omega^1 \wedge \omega^2, \quad d\omega^2 = s\omega^1 \wedge \omega^2,$$

we have

$$\omega_1^2 = r\omega^1 + s\omega^2.$$

The Gauss curvature K of the metric (1) is defined by the formula

$$d\omega_1^2 = -K\omega^1 \wedge \omega^2.$$

Let $f: D \to \mathbb{R}$ be a function. Its covariant derivatives $f_i, f_{ij} = f_{ji}$ with respect to the chosen coframe (ω^1, ω^2) let be defined by the equations

$$\mathrm{d}f = f_1 \omega^1 + f_2 \omega^2 \; ;$$

(8)
$$df_1 - f_2 \omega_1^2 = f_{11} \omega^1 + f_{12} \omega^2, \quad df_2 + f_1 \omega_1^2 = f_{12} \omega^1 + f_{22} \omega^2.$$

Let $f, g: D \to \mathbb{R}$ be functions. Let us introduce the following differential operators:

(9)
$$\nabla(f,g) = f_1g_1 + f_2g_2, \quad \nabla f = \nabla(f,f),$$

(10)
$$\Delta f = f_{11} + f_{22}, \quad \Psi f = (f_{11} - f_{22})^2 + 4f_{12}^2,$$

(11)
$$\Phi(f,g) = (f_{11} - f_{22})(f_1g_1 - f_2g_2) + 2f_{12}(f_1g_2 + f_2g_1), \quad \Phi f = \Phi(f,f).$$

Let

(12)
$$ds^2 = (\tau^1)^2 + (\tau^2)^2$$

be another expression of the form (2). Then

(13)
$$\tau^1 = \omega^1 \cdot \cos \varphi - \omega^2 \cdot \sin \varphi$$
, $\tau^2 = \varepsilon(\omega^1 \cdot \sin \varphi + \omega^2 \cdot \cos \varphi)$; $\varepsilon = \pm 1$.

From

(14)
$$d\tau^1 = -\tau^2 \wedge \varepsilon(\omega_1^2 - d\varphi), \quad d\tau^2 = \tau^1 \wedge \varepsilon(\omega_1^2 - d\varphi),$$

we see that

(15)
$$\tau_1^2 = \varepsilon(\omega_1^2 - d\varphi).$$

Denote by f_{i}^{*}, f_{ij}^{*} the covariant derivatives of the function f with respect to the coframe (τ^{1}, τ^{2}) . Then

(16)
$$f_1 = \cos \varphi \cdot f_1^* + \varepsilon \sin \varphi \cdot f_2^*, \quad f_2 = -\sin \varphi \cdot f_1^* + \varepsilon \cos \varphi \cdot f_2^*;$$

(17)
$$f_{11} = \cos^2 \varphi \cdot f_{11}^* + 2\varepsilon \sin \varphi \cos \varphi \cdot f_{12}^* + \sin^2 \varphi \cdot f_{22}^*,$$

$$f_{12} = -\sin \varphi \cos \varphi \cdot f_{11}^* + \varepsilon (\cos^2 \varphi - \sin^2 \varphi) f_{12}^* + \sin \varphi \cos \varphi \cdot f_{22}^*,$$

$$f_{22} = \sin^2 \varphi \cdot f_{11}^* - 2\varepsilon \sin \varphi \cos \varphi \cdot f_{12}^* + \cos^2 \varphi \cdot f_{22}^*.$$

This implies

(18)
$$\nabla^*(f,g) = \nabla(f,g), \quad \Delta^*f = \Delta f, \quad \Psi^*f = \Psi f, \quad \Phi^*(f,g) = \Phi(f,g).$$

2. Let $M: D \to E^3$ be a surface. The frame (w_1, w_2) on D being dual to (ω^1, ω^2) , let the orthonormal frame (v_1, v_2, v_3) associated with M be $v_1 = (dM) w_1$, $v_2 = (dM)w_2$ and v_3 the unit normal vector. Then the fundamental equations of M are

(19)
$$dM = \omega^1 v_1 + \omega^2 v_2, \quad dv_1 = \omega_1^2 v_2 + \omega_1^3 v_3,$$
$$dv_2 = -\omega_1^2 v_1 + \omega_2^3 v_3, \quad dv_3 = -\omega_1^3 v_1 - \omega_2^3 v_2$$

with the integrability conditions (3),

$$(20) \qquad \omega^1 \wedge \omega_1^3 + \omega^2 \wedge \omega_2^3 = 0$$

176

and

(21)
$$d\omega_1^2 = -\omega_1^3 \wedge \omega_2^3$$
, $d\omega_1^3 = \omega_1^2 \wedge \omega_2^3$, $d\omega_2^3 = -\omega_1^2 \wedge \omega_1^3$.

From (20), we get the existence of functions $x, y: D \to \mathbb{R}$ such that

(22)
$$\omega_1^3 = (H + x) \omega^1 + y \omega^2, \quad \omega_2^3 = y \omega^1 + (H - x) \omega^2,$$

H being the mean curvature of M. From (21_1) and (6),

(23)
$$K = (H + x)(H - x) - y^{2}.$$

Let us introduce the functions

(24)
$$l = \sqrt{(H^2 - K)}, L = l^2 = H^2 - K.$$

Then

$$(25) x^2 + y^2 = l^2,$$

and we are in the position to write

(26)
$$\omega_1^3 = (H + l\cos\alpha)\omega^1 + l\sin\alpha \cdot \omega^2,$$
$$\omega_2^3 = l\sin\alpha \cdot \omega^1 + (H - l\cos\alpha)\omega^2.$$

Our task is to produce, the forms ω^1 , ω^2 and the function H being given, a function α such that the forms (26) satisfy (21_{2,3}).

By direct calculation, we get

(27)
$$l\alpha_1 = -H_1 \sin \alpha + H_2 \cos \alpha + l_2 - 2rl,$$
$$l\alpha_2 = H_1 \cos \alpha + H_2 \sin \alpha - l_1 - 2sl,$$

the indices denoting the above introduced covariant derivatives. Let us write

$$d\alpha = \alpha_1 \omega^1 + \alpha_2 \omega^2,$$

$$(29) \qquad d\alpha_{1} - \alpha_{2}\omega_{1}^{2} = \alpha_{11}\omega^{1} + \alpha_{12}\omega^{2} , \quad d\alpha_{2} + \alpha_{1}\omega_{1}^{2} = \alpha_{21}\omega^{1} + \alpha_{22}\omega^{2} ;$$

the equation

$$\alpha_{12} = \alpha_{21}$$

is then the integrability condition of (28). The differentiation of (27) yields

(31)
$$l\alpha_{11} = -(l_1 + H_1 \cos \alpha + H_2 \sin \alpha) \alpha_1 - r l\alpha_2 - (H_{11} + r H_2) \sin \alpha + (H_{12} - r H_1) \cos \alpha + l_{12} - 3r l_1 - 2r_1 l,$$

$$l\alpha_{12} = -l_2 \alpha_1 - (sl + H_1 \cos \alpha + H_2 \sin \alpha) \alpha_2 - (H_{12} + s H_2) \sin \alpha + (H_{12} + s H_2) \sin \alpha$$

$$+ (H_{22} - sH_1) \cos \alpha + l_{22} - sl_1 - 2rl_2 - 2r_2l,$$

$$l\alpha_{21} = (rl - H_1 \sin \alpha + H_2 \cos \alpha) \alpha_1 - l_1\alpha_2 + (H_{12} - rH_1) \sin \alpha + (H_{11} + rH_2) \cos \alpha - l_{11} - 2sl_1 - rl_2 - 2s_1l,$$

$$l\alpha_{22} = sl\alpha_1 - (l_2 + H_1 \sin \alpha - H_2 \cos \alpha) \alpha_2 + (H_{22} - sH_1) \sin \alpha + (H_{12} + sH_2) \cos \alpha - l_{12} - 3sl_2 + 2s_2l.$$

Let us recall that (5) and (6) imply

(32)
$$K = r_2 - s_1 - r^2 - s^2.$$

From $(31_{2,3})$ and (27), we get

(33)
$$L(\alpha_{12} - \alpha_{21}) = -2(H_{12}l - H_2l_1 - H_1l_2)\sin\alpha + + (H_{22}l - H_{11}l + 2H_1l_1 - 2H_2l_2)\cos\alpha - -\nabla H + l\Delta l - \nabla l - 2KL.$$

Further,

(34)
$$L_1 = 2ll_1, \quad L_2 = 2ll_2,$$

$$L_{11} = 2l_1^2 + 2ll_{11}, \quad L_{12} = 2l_1l_2 + 2ll_{12}, \quad L_{22} = 2l_2^2 + 2ll_{22}$$
 and

(35)
$$\nabla L = 2L\nabla l, \quad \Delta L = 2\nabla l + 2l\Delta l.$$

The equation (33) may be rewritten as

(36)
$$2L^{2}(\alpha_{12} - \alpha_{21}) = -4L(H_{12}l - H_{2}l_{1} - H_{1}l_{2}) \sin \alpha + + 2L(H_{22}l - H_{11}l + 2H_{1}l_{1} - 2H_{2}l_{2}) \cos \alpha - 2L\nabla H + L\Delta L - \nabla L - 4KL^{2}.$$

Further,

(37)
$$L_{1} = 2HH_{1} - K_{1}, \quad L_{2} = 2HH_{2} - K_{2},$$

$$L_{11} = 2H_{1}^{2} + 2HH_{11} - K_{11}, \quad L_{12} = 2H_{1}H_{2} + 2HH_{12} - K_{12},$$

$$L_{22} = 2H_{2}^{2} + 2HH_{22} - K_{22},$$

which implies

(38)
$$\nabla L = 4H^2 \nabla H - 4H \nabla (H, K) + \nabla K, \quad \Delta L = 2 \nabla H + 2H \Delta H - \Delta K.$$

Because of this, the integrability condition (28) may be written as

$$(39) -4LP_1 \sin \alpha + 2LP_2 \cos \alpha + P = 0$$

with

(40)
$$P_1 = H_{12}l - H_2l_1 - H_1l_2$$
, $P_2 = (H_{22} - H_{11})l + 2H_1l_1 - 2H_2l_2$,

(41)
$$P = -4KH^{4} + 2 \Delta H \cdot H^{3} + (8K^{2} - \Delta K - 4 \nabla H) H^{2} + 2\{2 \nabla (H, K) - K \Delta H\} H + K \Delta K - \nabla K - 4K^{3} .$$

Further, it is easy to see that

(42)
$$(4P_1^2 + P_2^2) L = (H^2 - K)^2 \Psi H + 4H^2 (\nabla H)^2 +$$

$$+ \nabla H \cdot \{ \nabla K - 4H \nabla (H, K) \} + 2(H^2 - K) \{ \Phi (H, K) - 2H \Phi H \} .$$

3. Let us recall that the second fundamental form of M is given by

(43)
$$II = \omega^{1} \omega_{1}^{3} + \omega^{2} \omega_{2}^{3} =$$

$$= (H + l \cos \alpha) (\omega^{1})^{2} + 2l \sin \alpha \omega^{1} \omega^{2} + (H - l \cos \alpha) (\omega^{2})^{2};$$

the vectors v_1, v_2 are principal at $p \in D$ if $\sin \alpha(p) = 0$.

Now, it is easy to see the validity of the following

Theorem. In a domain $D \subset \mathbb{R}^2$, let a metric ds^2 be given. Let K be its Gauss curvature, and let $H: D \to \mathbb{R}$ be a function satisfying $H^2 > K$. Let $p \in D$ be a fixed point, and let the vectors $w_1(p)$, $w_2(p)$ be orthonormal with respect to ds^2 .

1° Let $\nabla H = 0$. If there is a surface $M: D \to E^3$ with its first form equal to ds^2 and the mean curvature H, H is a solution of the equation

(44)
$$4KH^4 + (\Delta K - 8K^2)H^2 + \nabla K - K\Delta K + 4K^3 = 0.$$

Let ds^2 be such that there exists a constant solution H of (44) satisfying $H^2 > K$. Then there is a neighborhood $U \subset D$ of p and a unique surface $M: U \to E^3$ having ds^2 for its first form and H for its mean curvature, the vectors $dM_p w_1(p)$, $dM_p w_2(p)$ being principal.

2° Let

(45)
$$(H^2 - K)^2 \Psi H + 4H^2 (\nabla H)^2 + \nabla H \cdot {\nabla K - 4H \nabla (H, K)} + 2(H^2 - K) {\Phi (H, K) - 2H \Phi H} = 0.$$

If there is a surface $M: D \to E^3$ with its first form equal to ds^2 and the mean curvature H, we have

(46)
$$4KH^{4} - 2 \Delta H \cdot H^{3} + (\Delta K + 4 \nabla H - 8K^{2}) H^{2} +$$

$$+ 2\{K \Delta H - 2 \nabla (H, K)\} H + \nabla K - K \Delta K + 4K^{3} = 0.$$