

Werk

Label: Article Jahr: 1978

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0103|log50

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON NOWHERE DENSITY OF THE CLASS OF SOMEWHAT CONTINUOUS FUNCTIONS IN M(X)

TIBOR ŠALÁT, Bratislava (Received June 18, 1976)

This paper is closely related to the paper [3] and contains the solution of a problem formulated in [3].

Let X, Y be two topological spaces. The function $f: X \to Y$ is said to be somewhat continuous on X if for each set $G \subset Y$ open in Y the following implication holds:

$$f^{-1}(G) \neq \emptyset \Rightarrow \operatorname{Int} f^{-1}(G) \neq \emptyset$$

(cf. [1]). This implies that every function $f: X \to Y$ continuous on X is also somewhat continuous on X.

Let X be a topological space, let M(X) be the linear normed space (with the norm $||f|| = \sup_{t \in X} |f(t)|$) of all real-valued functions which are defined and bounded on X.

Denote by S(X) and C(X) the set of all $f \in M(X)$ which are somewhat continuous and continuous on X, respectively. A problem was posed in [3] wheter S(X) is a nowhere dense subset of M(X) provided that $S(X) \neq M(X)$.

We shall give an affirmative answer to the foregoing question.

Let us remark that if X is a discrete space then each $f \in M(X)$ is continuous in X and hence M(X) = S(X) = C(X).

Theorem. Let X be a non discrete topological space. Then S(X) is a nowhere dense subset of M(X).

Proof.*) If $f \in M(X)$, $\delta > 0$, put $K(f, \delta) = \{h \in M(X); ||h - f|| < \delta\}$. According to the assumption there exists an $x_0 \in X$ such that $\{x_0\}$ is not open in X. Given $f \in M(X)$, define a real-valued function g on X in the following way:

- 1) put $g(x_0) = f(x_0)$;
- 2) if $x \in X$, $x \neq x_0$, $|f(x) f(x_0)| < \frac{1}{3}\delta$, put $g(x) = f(x_0) + \frac{1}{3}\delta$;
- 3) If $x \in X$, $|f(x) f(x_0)| \ge \frac{1}{3}\delta$, put g(x) = f(x).

^{*)} The author is thankful to the referee for improving the original version of the proof.