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1. INTRODUCTION

1.1. This paper deals with the solvability of the equation
(1.1) Lu = Su,

where L, S are operators acting from a Hilbert space H into H, Lis a linear non-
invertible selfadjoint and Fredholm operator, S is nonlinear completely continuous.

1.2. Denote by Ker [L] and Im [L] the null-space and the range of the operator L,
respectively. Let P : H — Ker [ L] be the orthogonal projection from H onto Ker [L].

Put
Pu=u—Pu, ueH.

The solvability of the equation (1.1) is usually established by solving the so-called
bifurcation system

(1.2) PS(w+v) =0, v=KPSw+v),

where w e Ker [L], ve Im [L] and K : Im [L] — H is the right inverse of the opera-
tor L. The Schauder fixed point theorem was originally used to obtain the solvability
of (1.2) in the case of boundary value problems for second order partial differential
equations by E. M. LANDESMAN and A. C. LAzER [14]. The abstract setting of this
method is given in [6], [7], [10], [16], ..., where also the applications to existence
theorems for various boundary value problems are given.

1.3. In the papers of J. MAWHIN (for the references see [11]) the coincidence
degree theory is established which is useful for proving the existence results for equa-
tions of the type (1.1). Let us remark that the topological approach to the solvability
of (1.1) also in the special cases of differential equations has been used during the last
seven years in many papers — the long list may be found e.g. in [4], [11].
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1.4. The type of results obtained by the above method may best be illustrated by

the following example:
Let n be a positive integer. We consider the existence of a solution of nonlinear

two-point boundary value problem

(1.3) —u'(x) — n? u(x) + g(u(x)) = f(x), xe(0,7)

u(0) = u(n) =0,
where g(&) is a bounded continuous real valued function defined on the real line R!
with a finite limit

g(w) = lioy 9()-

Suppose that there exists &, € R! such that

g9(¢) = —g(=¢) .
for || 2 &. Let fe Ly(0, m).
Then the boundary value problem (1.3) has at least one weak solution u € W, **(0, 7)
provided

(1.4)

1.5. In order that the set of functions f € L,(0, n) satisfying the condition (1.4) be
nonempty, we must suppose g(c0) > 0. In the case g(c0) = 0 the procedure from
Section 1.2 does not work. The solvability of boundary value problems for ordinary
and partial differential equations with such a type of nonlinearities are solved in

(21, (3] [5], [9], [12], [13].

1.6. A new idea how to establish the solvability of boundary value problems for
second order partial differential equations (whose abstract formulations correspond
to (1.1)) is included in the paper [1], where the following elementary critical point
principle is proved. -

< 2 g(o).

j“f (x) sin nx dx
0

1.7. Notation. Let (x, y, z) be a point in R" x R™ x R? = R"*™*% and let
F: Rn+m+q - Rl

be assumed to be of class C'. Denote by ¢, > and ll the inner product and the norm
in R*, respectively, where k may equal n, m, q or n + m + q. We set

OF _(9F  OF
ox \ox, T ox,)

‘3_1’_(‘3_F a_F)
ay  \ay: 7 oym)’

OF _(oF  OF
0z 0z, oz,
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so that, identifying the gradient VF at a point (X, 7, Z) with a point in R**"*? we
may write

o oF ,_ _ \OF,_ _ _, OF ,_ _ _
VF(x,y,z)=(—a—; (%, 7, z),(—a;(x,y, z),g(x, 7, z))

1.8. Elementary Critical Point Principle. Let n > 0, m = 0 and q = 0. Suppose
that there exist numbers ¢, > 0, ry > 0 such that:

(1.5 <.‘?.F. (x, s 2), y> >0
dy
for |y| = co, x| < o and |z| < ¢o if m > 0;
e <‘3—F (6 1> 2) z> )
' 0z
for lxl < ro, |y| < ¢o and Izl =coifq>0;

(1.7) F(x, y, z) < F(0, y*, 0)

for |z| < ¢o» |yl < ¢y, |y"‘| =< ¢, and le = ro.

Then there exists (xo, Yo, Zo) With

(1-8) |xo| Sro, I)’ol S ¢, 'Zol S ¢
and
(1.9) VF(xo, Yos Zo) =0,

1.9. In this paper we shall apply Elementary Critical Point Principle to the problem
of solvability of (1.1). The abstract result obtained (see Section 2) extends not only
the result of S. AHMAD - A. C. LAZER - J. L. PAUL (see [ 1]) but many various existence
theorems for the weak solvability of boundary value problems for differential
equations (see Sections 4 and 5). Let us note that the stated results applied to (1.3)
give the existence of a solution also if g(c0) = 0 (see Section 4), also in the case of
sublinear nonlinearity, i.e. if

(1.10) lim @
{0 f

is non-zero and finite for certain & € (0, 1) (see Section 5), and also in the case of
nonlinearity which has a linear growth, i.e. if (1.10) is finite (and sufficiently small)
with 6 = 1.
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2. ABSTRACT THEOREM

2.1. The operator L. Let H be a real separable Hilbert space with the inner product
{u, v)g and with the norm

Jull = <uudi*.

Suppose that B: H — H is linear completely continuous selfadjoint operator and
denote by o = a(B) the set of all eigenvalues of the operator B. Let A be a sequence
of all eigenvalues of B considered together with their multiplicities and let e, € H,
|ez]| = 1, be the eigenvector corresponding to A € 4, i.e.

Ae; = Be,, A€ A.
Let 0 ¢ 6. Choose 4, € ¢ fixed and denote
(2.1) u =42, —infa,
(2.2) d = distance of Ao to ¢ — {1,} .
Let W be a null-space of the operator
(2.3) L:uw Ay — Bu, ueH
(i.e. W= Ker[L]).

2.2. The operator S. Let S : H — H be a strongly continuous operator (i.e. it maps
weakly convergent sequences in H onto strongly convergent sequences in H) and
suppose that there exist « 2 0, 2 0, 6 € [0, 1] such that

(2.4) [Sul| <o+ Bllu|®, ueH.
Suppose that

(2.5) =0 ifandonlyif g =0,
(2.6) B<dd if §=1.

Moreover, let the operator S be potential with a potential & : H —» R, i.e. the
functional & possesses the Fréchet derivative &'u on the whole space H and

P(u + h) — F(u) — {Su, h)y

F'u=Su, ueH: lim =0.
O - |&l
Define
(27) % :r —inf F(w).
lwil =r

The main result is the following theorem.
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2.3. Theorem. Let the above assumptions be fulfilled. Then the equation

(2.8) . Lu = Su
is solvable in H provided
.. #(r
(2.9 v(6) = ,lf: inf (_a—-l-L[%;ji > 0(9),
where
& ;25‘1 if 6=0,
@10) . o) = “2“;24" if 0<o6<1,

(48 +5) @20y 4 2d — gy it o=t

2.4. Proof of Theorem 2.3. Denote
A" ={AeA; A> A}, A.={led; A<}

and let Z and V be the closures of linear hulls of all eigenvectors e;, 1 € A for which
Ae A” and A€ A., respectively. Then

H=WoeVeZ
(the direct sum). We define a functional

d:WxVxZ->R!

by
(2.11) ®:(w,v,z) > Lo, )y + ¥Lz, 2Dy — L(W + v + 2).
Obviously
(2.12) Lo, vpg 2 d|v]*, veV,
(2.13) (Lz,z)g £ —d|z|*, zeZ.
Put
(2.14) A(6) = min {ﬂ ? —ar — Br“"}.
€0, 0) (2
Let ¢ = ¢(r) > 0 be the (unique) solution of the algebraic equation
(2.15) de — (¢ + pr®) — 2B’ = 0.
If 6 = B =0 then
(2.16) o(r) =oad™t.
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Let 6 € (0, 1]. Obviously

(2.17) er) 2 (a + pr¥)a
and thus
(2.18) lime(r) = .

The implicit function theorem implies that there exists the derivative ¢’(r) and

(219) ¢(r) (d — 283 7\(r)) — por*~* =0,
Thus
() . 1 B
(220 '122 por=t rlir:d —2pN(r) l9)-
where
_ fa! if 56€(0,1)
(2.21) w(d) = {(d e e,

and, the I’Hospital rule implies

. c(r) _
(2.22) ,I:T, pyrare w (9).

The above results give

(2.23) v(8) > 0(8) = tp w?(0) + 2 w(8) if 6€(0,1)
and

1 2, 2_ _A0 -2 2
(2.24) v(0) > > + dud™?* + 5= e + dud™* + =

According to the assumptions (2.9), (2.10) there exists r, > 0 such that

) AQ) ) ) g €
(« + Bri)? (« + Bri)? (« + Bro)? a+ prd (x + Bré)*’

i.e. if ¢(ro) = ¢, then

(2.25) #(ro) > —A(6) + ducy + 2co(a + Bry) + 4Bcs ™.

Denote by @;, @3, and @} the partial Fréchet derivatives of @ with respect to the
first, second and third variable, respectively.

Now the following inequalities hold:
If

(2.26) Iwl=ro, [oll =cos |z < o
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then
(2.27) {Dy(w,v,2), )5 20

-

since
<¢;(W, v, Z), v)H = <LU, v)H - <S(W + v+ Z), U>H g

2 d||o]* — afv] — B|w|® o] — Bllo|*** = Bz]|° o] 2
2 cofdco — (a + Bry) — 2Bc} = 0.

If
(2.28) Iwl 7o, ol o, |z =co
then
(2.29) (DPy(w,v,2),z)p £ 0
since
(Dy(w, v, 2), g = Lz, )y — {S(W + v + 2), 2Dy <
< —d|jz?* + afz| + Blw|® 2] + Bl=]'** =
< co{—dco + (@ + Bry) + 2Bch} = 0.
If
(2.30) Wl =70, Joll Scos [o*] Sco, |z o
then
(2.31) d(w, v, z) < (0, v*, 0)
since '

®(w, v, z) < 3ufo)* — d|z]|* + <S(W + v + 2)), v + z)g — F(W) <
L lef? = dlzl* + ool + alzl + BIwI? o] + AlE I2] +
+ B + Blol® J2] + Bl ol + Bl — #00) =
< duck + 2co(a + Brd) + 4Bcy ™ — x(ro) < A(S) £
< 3alor]? — afor] — Bl S 30,073 — <S00%), 073 =
= KLo%, v*yy — F(v%) = B(0, v*,0).

Let {V,}m=1 and {Z,,}-, be sequences of finite-dimensional subspaces of ¥ and Z,
respectively, such that

(2.32) VLCVZC"'CVMCVM+1C""

iCs
~
]
o

(2.33) ZICZZC--.CZMCZM.,,I C ..oy

iCs
!N
I
N
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Now we shall apply Elementary Critical Point Principle (see Section 1.8) to the
function @ restricted to W x V,, x Z,. The assumptions of Section 1.8 are satisfied
in virtue of the relations (2.26)—(2.31).

Thus there exists (Wp, Ups Zn) € W X V,, X Z,, € W x V x Z such that

(2.34). [wal <70, on]

and

IIA

cos |zn] = co

<‘1§’I(WM’ Upysy Zm), W>H =0 s, WE W,
<¢12(wm’ Ums zm)9 vy =0, veV,;

<¢,3(wma Upms Zm)9 Z)H =0, ze zZ,,

ie.

(2.35) (SWp + Uy + 2n)s Wdp =0, weW;

(2.36) {LUpy 0D — {S(Wp + U + 2)s 0Dg =0, v eV,;
(2.37) Lz, 20 — {S(Wpy + Uy + 2p), 2D = 0,2 € Z,,.

Choose subsequences {W,,,}, {t,}, {zm,} With the following properties (— and — de-
note the strong and weak convergences, respective]y):

Wm, > Wos Un,~>Up, Zm, = Zo
(this follows from (2.34)),
Bv,, - Bvy, Lv,, = Lvyg, S(Wm, + U, + zn,) = S‘(w0 + vy + zo)
(this follows from the continuity properties of B and S). Then the point
Uy =Wo + 09 + zo€ H

satisfies the equation (2.8) as follows immediately by passing to the limit in (2.35)—
(2.37) and using (2.32), (2.33).

3. NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

3.1. Sobolev spaces. Let 2 be a bounded domain in RN (N 2 1) with a lipschitzian
boundary dQ if N > 1. Let us write, as usual,j = (jy, ..., Jjn), where j; are nonnegative
integers, i = 1, ..., N, and
Dl ol
oxit ... oxiy
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N .

with |j| = ¥ j.. We define the Sobolev space W**(2) (for k 2 0, integer) of all
i=1

functions u for which D/u € L,(2) when |j| < k, normed by

e

(D’u means the derivative in the sense of distributions).
The space W*?(Q) is a separable Hilbert space with the inner product

Uy Vyisa = Y, J DY u(x) D v(x) dx .
2

il sk

Furthermore, denoting the set of all infinitely differentiable functions on Q with
compact supports in Q by 2(2), we define W§?*(2) as the closure of 2(Q)in W*?(Q).
Let V be a closed subspace of W*%() such that

(3.1) Wei(Q) = Ve wh(Q).

3.2. Linear differential operator. Let

(3.2 ai(x)eLo(Q), ay=a; (i, |i] k).
Suppose that there exists ¢ > 0 such that
(3'3) Z aij(x) éifj 2c Z fiz
li|=1j]=k li[=k
forall ¢;e R* (Ji| = k) and almost all x € Q. Let
(3.4) Aije L(0Q), Ay= Ay (li||j] <k).
Put
(35) Lou)= 3 J' ay(x) D' o(x) D' u(x)dx + 3 J’ Ay D'v Dlu .
lil.lilsk J o lilLlil<k Jaq

(In the surface integral the derivatives D'v, D/u are considered in the sense of traces.
Since we suppose that Q is a domain with a lipschitzian boundary 02 and, moreover,
D'v, Diu € W"*(Q) for lil, I]l < k, the traces are well-defined — see e.g. [15, p. 15].)
The form #(v,u) is symmetric, bounded and bilinear on W*?(Q) x W*%(Q).
Define a mapping :
L:V->V
by

(3.6) {Lu, vypxz = ZL(v, u)

foreach u,ve V.
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Introduce a new inner product on V by

Qu, )y = Y, gai,(x) D' v(x) D'u(x) dx + f nu(x) u(x) ‘dx

n=T=x
for u,ve V. The norm
Jully = <u, uwi?, uev
is equivalent with |u]y«.. on the space V. Define the operator B : V — Vﬁy
Lu=u— Bu, ueV.

The mapping B is selfadjoint and completely continuous by virtue of the complete
continuity of the imbedding from W*2(Q) into W*~*%(Q) (see e.g. [15, Chapter 2]).

3.3. Nonlinear operator. It will be very convenient to denote by V,_ u the gener-
alized gradient of the function u, i.e. the vector containing all derivative D’u for
| j | < k — 1 (which are lexicographically ordered). Let ¢ be the number of all multi-
indices of dimension N whose Iéngth is less or equal to k — 1.

Let b(x; ¢) be defined for almost all x € Q and all ¢ € R®. Suppose that the functions
b(x; &) and
ob

bi(X; 5) = oz,

(x;¢) for || k-1

satisfy the Carathéodory condition on Q x R® (i.e. they are méasurabie on Q for
fixed ¢ € R? and continuous in ¢ for fixed almost all x € ). Suppose that there exist
Y€ Ly(Q), e Ly(R), ¢s 20, ¢, 20and 6€[0,1], :

(3.7 c; =0 ifandonlyif 6 =0.
such that
(3.8) [bGe; &) S va(x) + ¢ ¥ |G,
lilsk-1
(3.9) bi(x; ) S ¥a(x) + 2 Y [gf
lil k-1

for almost all x € Q and all £ € R? Let

(3.10) 0 e Wh(Q)
and define a functional
Z V- R!
by
G1)  Fiue J b(x; Vi u(x) + Va_10(x)) dx, ueV. |
Q SRR e, 3 {
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Then the functional & possesses the Fréchet derivative &'u = Su for arbitrary
u eV, where S : V- Vis given by

(3.12) (Su,v)y = Y J‘ bi(x; Vi—1u(x) + Vi—y0(x)) D' v(x)dx, u,veV.
li|sk-1 J g

It easily follows from the complete continuity of the imbedding from W*?*(Q) into
W*~1:2(Q) that the operator S : ¥ - Vs strongly continuous.
Let ¢; > 0 be such a constant that

(3.13) Y D, < csfully, uev.
li| sk

Then (according to the assumption (3.9)) the operator S : ¥V — V satisfies the growth
condition
|Suly < a+ Blul}, uev,

where
(3.14) @ = c3[|Wz]|z, + cacs(meas Q)““‘”/zmszk_l" Dig|?,,
(3.15) g = Jea(meas @4~ c37% if 50, 1)

‘ {620§ if 6=1.

3.4. Remark. Using the imbedding theoréms the condition upon Y, may be
generalized, e.g. Y, € L,(Q) if N = 1, etc.

3.5. Boundary value problem. As usual, we define that u € Vis a weak solution
of the general boundary value problem with respect to the space ¥ (see (3.1)) and the
boundary condition ¢ € W**(Q) of the nonlinear partial differential equation

(316) T (=1 DHay(x) Du) = ¥ (=) DIbx; Vi yu)
i1l sk _ |j|‘§k-1

if u satisfies the operator equation
(3.17) Lu = Su,

where Land S are defined by (3.5), (3.6) and (3.12), respectively.

4. BOUNDARY VALUE .PROBLEMS WITH BOUNDED NONLINEARITIES
Let the notation introduced in Section 3 be observed. We shall suppose
(4.1) Ker[L] = W+ {0}.
From Sections 2 and 3 we obtain immediately:
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4.1. Theorem. Suppose (3.1)—(3.4), (3.7)—(3.9) with 6 = 0 and ¢, = 0, (3.10),
(4.1). Let

(4.2) - lim inf J b(x; r Vi—y1w(x) + Vi_10(x)) dx = 0.
== e Jo

Then the equation (3.17) has at least one solution u € V.

4.2. Remarks. (i) Instead of (4.2) it suffices to suppose

r—-o weKer[L]
[lwllv=1

(4.3) liminf inf f b(x; 7 Vi yw(x) + Vi—19(x)) dx > o? ¢(0)
2

(see (2.7), (2.9), (2.10), (3.11)).

(i) Theorem 4.1 extends the result from [1] mainly by considering

a) the higher order elliptic equations;
b) the general boundary value problems;
¢) no continuity of the functions b(x; ¢) in the variable x € Q.

(iii) In the following results we give algebraic conditions upon the functions
b;(x; &) for the assumption (4.2) to be satisfied.

4.3. Assumptions. Let M be a nonempty subset of multiindices of dimension N
the length of which is less or equal to k — 1. Denote

éu = {éi}isM’ ¢ieR, |€M| = ('ZMglz)l/z » Yy = {Dju}.iEM .

Let g be an even continuously differentiable function in the variables &;, ie M,
9(0) = 0. Suppose that the derivatives '

d
9(&n) = % (n)> jeM
f

are bounded. Let

(4.9 feL,(Q),

(4.5) J 7 w()dx =0, weKer[1],
(4,'6) : peC Q) n WY (Q),

4.7) Ker [L] = C*~1(@).

Put

(4.8) b(x; &) = g(&m) — f(x) &

(where 0 is the multiindex with zero length) for almost all x € @ and every ¢ e R®.
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4.4. Theorem. Suppose (3.1)—(3.4), (4.1), (4.4)—(4.7) and

(4.9 lim inf 7 inf Z & gtéy) =y>0.

- T |&m] =1 jeM

Then (4.2) is satisfied with b(x; &) given by (4.8) and thus the equation (3.17)
is solvable in V.

Proof. Obviously

(4.10) o(6) = j -y s fM) .

T JeM |'fM| éM
Let € > 0 and choose a > 0 such that
& M
YiLg (= —e>0
JjeM |<§M| Iful
for each &, + 0, T = a. Put

0 if |&<a,
wa(éM) =
1og|§£l if |&y]>a.
a
Then ‘
g(éM) P —na + (')" - 8) wn(éM) ’
where

Z ¢; gj(TCM) e -1

jeM
for 1€ [0,a], |&y| =

Suppose that (4.2) does not hold. Then there exist seﬁuences r,e R, r, » oo,
w, € Ker [L], [w,]|y = 1 such that
supJ\ b(x; 7 Vi— 1wa(X) + Vi-19(x))dx =K < oo,
L 2
ie.
(4.11) supj 9(ra Vawn(x) + Vpyo(x)) dx = K
n Ja

We can suppose that w, — w in ¥ since Ker [L] is a finite dimensional space and

w, = w in C*~!(2) according to the assumption (4.7). Choose v > 0 and let ny e N
“be such that

sup |Vawa(x) — Vaw(x) < v
xef2
for n = ny. Denote
2, (w) = {x € Q; |Vyw(x)| = 2v} .



Then

K gf 9(ra Vaewa(x) + Vyo(x))dx 2

> —nameas Q + (y — a)f 0 (s Vagwu(X) + Vyo(x))dx =
Q

v

—na meas Q + (y — &) 0 (rs Vawa(x) + Vyo(x)) dx =

22v(w)

v

—na meas 2 + ('y = s) log L”‘P"_c_u_-_x
22v(W) a

dx =

= —nameas Q@ + (y — ¢) meas Q,,(w) log r,,v——"(p"q.:
a

if n is sufficiently large so that

a + ”(Pllck—l )
v

ry, >

Putting n > oo in

K 2 —nameas Q + (y — &) meas 2,,(w) log rav = | @fer-s
a
we obtain contradiction proving the theorem.

4.5. Theorem. Suppose (3.1)—(3.4), (4.1), (4.4), (4.8). Let ¢ = 0. Let R(¢y)
be a lower semicontinuous function in the variables &, such that

(4.12) liminf ) &; g,(c8y) = R(¢y)

Tt~ JjeM

uniformly on bounded sets of &y = {&;} jen

Then (3.17) is solvable in V provided

(4.13) LR(VMw(x)) dx > Lf (x) w(x) dx

for each we Ker [L], w # 0.

Proof. The function R is bounded on bounded sets. For p 2 0 and &y = {&;} ;e
it is

R(ptm) = P R(¢w) -
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With respect to (4.13) we have

it { J' R(Tun(s) dx ~ .[ 19 w2 dx} —
lIwllvy=1

Let ¢ > 0 and choose a‘ > 0 such that

¢ ( ﬁu) S ( §M)
—L g, (t—|=R[—]|—¢
& e "7\ e ||
for each &y + 0, 7 = a. From (4.10) we have

g('fM) 2 —ma+ R(éM) = SlfM' — an, + ag
for arbitrary &,,, where
2 & 9/(téw) = —ny s
JjeM

R(fu) =,
for €0, a], |(§M| = 1.
Then

Lb(x; F (X)) dx = f o Vil % = 7 Lf(x) ) dx =

Q2

2 —n,a meas Q + rJ.

R(Vyw(x)) dx — er J‘ |Vaw(x)| dx — an, meas @ +
Q2 2

+ ea meas Q — rJ-f(x) w(x)dx = r(y — sJ- |Vaew(x)| dx) —

— an, meas Q + ea meas Q.

From the previous calculation the validity of the condition (4.2) follows provided
€ > 0 is sufficiently small.

4.6. Remarks. (i) The condition (4.4) upon “the right hand side” may be generalized
in the sense of Remark 3.4 (e.g. it is possible to assume f e L,(Q) if N = 1).

(ii) The assumption (4.7) is the regularity assumption on the solutions of the
equation '
Lu=0

the validity of which is proved (under some conditions on the coefficients a;;, 4;))
e.g. in [15].
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(iii) Theorem 4.4 extends the results from the papers [3], [9], [12] mainly in the
following directions:

a) instead of f e L,(R) we consider f e L,(2);
b) the nonlinearity contains higher order derivatives.

(iv) Theorem 4.5 extends the result from [10] and the other papers: we consider
the nonlinearity in the equation (3.16) with (4.8) which depends on many variables.

5. BOUNDARY VALUE PROBLEMS WITH SUBLINEAR NONLINEARITIES

Analogously as in the proof of Theorem 4.5 we can prove (on the basis of Theorem
2.3) the following result.

5.1. Theorem. Suppose (3.1)—(3.4), (3.10), (4.1) and (4.4). Let g be an even
continuously differentiable function in the variables &; ie M, g(O) = 0. Suppose
that the derivatives

0
9,(&x) = a—g(cu), jeM

satisfy the growth condition

(5'1) Igj(éM)l S+ csléula s

where ¢y, 2 0, cs > 0 and 5 €(0, 1). Let

(5.2) lim infla inf Y & g;(véy) =7>0.

= T |EMm|=1jeM

Then the equation (3.17) (with b(x; &) given by (4.8)) is solvable in V.

5.2. Remark. The above theorem extends the result [10, Theorem 3.1] mainly in
the following directions:

a) no monotonocity assumptions upon the functions g; are made;

b) the nonlinearities g; depend on many derivatives Diu, je M.

5.3. In the same way it is possible to consider the boundary value problems whose
nonlinearities have a linear growth. If the assumptions of Theorem 5.1 hold with

=1 and if c3cs5 < 4d (for c; see (3.15), for d see (2.2) where 4, = 1 and Bis
defined in Section 3.2) then it is possible to generalize the result from [6] as is men-
tioned in Remark 5.2.
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