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EXPRESSING fe 2 AS A DIFFERENCE OF TWO POSITIVE
FUNCTIONS fy, f, €92

Jiikf MEska, Praha
(Received March 31, 1977)

The following unsolved problem was published in American Mathematical
Monthly (7, 1975)*). Is it possible to express every function

fe2 = {feC®E,); f(x) =0 for each x e (—o0,0) U (1, )}

as a difference of two positive functions f, f, € 2?

We shall prove here that the answer is affirmative. Let E; denote the space of real
numbers, C°(K) = {f:K — E,, f have continuous derivatives of all orders},
where K = E; or K = (0, 1).

Let us denote by h an arbitrary function satisfying the following conditions:

1. he 2,

2. h(x) = h(1 — x) for each x e (0, 1),

3. h(x) > 0 for each x € (0, 1),

4. h is increasing on <0, 1).

(For example, take the function h(x) = e~ /*. e"/*~" for x € (0, 1), h(x) = 0 for
xeE; - (0,1).) :

By h,, ..., We shall denote an arbitrary function which has the following properties:

1. b, .., € C°(E,),

2. hy, 40(x) = 1 for each x e (— o0, &) U {g;, ),

3. h{?, . (a) = O for each ieN,

21,8,82

4. h,, .., is decreasing (increasing) on <{g;, a) (on <a, &,)).

82

*) In the meantime a different solution of this problem was published in American Mathemati-
cal Monthly (3, 1977).

STUDENTS’ RESEARCH ACTIVITY AT THE FACULTY OF MATHEMATICS AND
PHYSICS, CHARLES UNIVERSITY. Awarded the 4th prize in the National Students’ Research
Work Competition, section Mathematical Analysis, in the year 1977. Scientific adviser: Professor
V. Souc¢ek.
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Lemma 1. (On joining of functions.) Let a € (0, 1), g, € C*0, a), g4 = 0,
g,€C<a,1), g, 20 and 0 £ 6, <a <, £ 1. Then there exists a function
g € C*{0, 1> such that:

(1) g = g4 on £0,a), g = g, on {a, 1),

(2) 9 = g1 0n 0,8:), g = g5 on {3, 1).

Proof. Choose &y, &, such that

0<d,<g <a<eg<6,=1 holds.

Define
§(x) = g4(x) foreach xe<0,a),

= g,(x) foreach xe<{a,1)
and put d(x) = §(x) h,, 4.,(x).

We show by mathematical induction that d e C*<0, 1)>. The “bad” point is a.
The first step is easy. Now suppose that d e C" <0, 1)>. We have

lim d”(x) = lim ¥ (") Fx)heo2 (x) = 0.
x—a x—a i=1\1

According to the well known theorem d € C"(0, 1). Let us denote

~ X — 61 . ~

h(x) =h(———=), n= min h(x)

62 = 51 xe{ey,82)
m = max §(x) and finally, put g(x) = (d(x) + 1) ((m/n)n(x) + 1) — 1. Clearly
xee1,e2)
g€ C*{0,1) and g(x) = d(x) = §(x) for x € €0, 1) — {8y, 8,). If xe by, 8,) —
— &y, &) then ((m[n)h(x) + 1) 2 1 and g = d = §. If x € (&, &, then ((m[n).
.h(x) + 1) 2 m + land g 2 m = §, hence the proof is complete.
Lemma 2. Let f(x) € 9, then f(x)[x™ € D for every m e N.

Proof. Using the well known formula we have

(S50 -

_ g (n) (= 1) £ 9(x) m(m + 1)...(m + i — 1).

xm+i :

We see that to prove lim (f(x)/x™)™ = 0 it is sufficient to show that lim f(x)/x* = 0
x=0

x-0
for all fe 2, ke N.
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However,

1( £1
L (8O _ e ) = FO)| _ o |XFE )
x=0+ x x=+0+ x x—'O*
_f 1 ¢en
=m1w“)f@) X6 I'(6s) 2otlax)=
x-0+ x—'O" x
1 k—1 o(k)( gk
=...=lim [t s é"k f (6,){ (where 0 < & < ... < &l <x) <
x=0* X

< Tim [f9(E5)] = 0.
x-0+

Lemma 3. There exists a family of segments {U,},cx satisfying the following
conditions:

1. UU, < (0,1).

neN
2. Denote
Un= <ambn>’ &y = bn —a

U"l = <a;,n br,|> = <an + 8n/3’ bn - 8:-/3) .
Then there exists 6 > 0 such that (0, 6) = U U,.
neN

3. There exists ke N such that for each x € (0, ) it holds card {n,xeU,} <k
4. Define ®(x) = sup {ye(0,1), ye U U,}. Then lim ®(x) = 0.

x=0
er..

5. There exists 1 € N such that for every ne N it holds

Proof. Put U, = (1/(n + 1), 1/n) for neN, a, = 1/(n + 1), b, = 1/n,

_ n=] _ n+2 . = 3
nn+1)" " am+1)" " nm+1)

First we find a suitable number no e N such that the sequences {a,}, {b,} are for
n > n, decreasing. It is sufficient to investigate the functions (x — 1)/x(x + 1) and

(x + 2)/x(x + 1) for x — co. Further, let ny denote a positive integer such that for
all n > ny it holds

o )
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For the family {U,} we take the set of segments <a,, b,», where n = max (no, n,).
The conditions 1 and 2 are obviously satisfied. The inequality () implies the proper-
ty 5 with ] = 3. :
For fixed x € (0, 8) we shall study the set
N(x) = {neN, n = max(no, ny), a, £ x < b,}.

This requires to solve the following inequalities.

n-1 <x x< 2 il
n(n + 1) n(n + 1)
(1 = x) + J[(x = 1)* — 4x] , _(L=x)+ J[(x = 1) + 8x]
my, = my 2=
2x 2x
xS<my or x2=m, my < x < my
W/ %
o m, m,

m O m

We show that there does not exist n € N(x) such that mj < n < m;. Assume the

contrary. Denote i € N(x), m; < i < my and choose j, ke N suchthat m; < j < m,
and m, < k < m,. This is possible since

() Ew)=my—my =N 8] Ve 1f - de]

2x

6

0 = 1) + 8x] + J[(x — 1) — 4x]

-3 (x-0)

and

Je-1P-a] o

m2 = ml =
We obtain x e U; n U, & x ¢ U; together with i < j < k and this is contradiction
since {a,}, {b,} are decreasing. It follows from (##) that there exists a suitable number

n € (0, 1) such that §(x) < 4 for each x € (0, 7) and this proves the property 3.
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. Suppose now that x € (0, ) is a fixed point and investigate the function
m(x) = min {n, (n — 1)/n(n + 1) = a, < x, n = max (ny, n,)} .

Since m; < max (no,™;,) for each x € (0, n) we obtain m(x) = [m,] + 1.

(x) = mx)+2 _ [m;] +3
m(x) (m(x) + 1) ([mz] + 1) ([m2] +2)

while [m,] - o (x — 0) and the proof of the condition 4 is complete.

-0 (x-»O)

Theorem. For every fe 9 there exist functions fy,f,€ 9, f; =0, f, = 0 such
that f = f, — f,. We can also say that 9 is generated as a vector space by its
positive functions.

Proof. Let f € 2 be an arbitrary function. If wefind ge 2, g = 0, g = f then we
canwritef =g — (g — f), g = f1, 9 — f = f,. To prove our theorem we show that
there exist 6 > 0 and § € 2 such that je 2, § 20, § = f on (— oo, ). Since the
space 2 has the same behavior at 0 and 1 we complete the proof by means of the
joining lemma. Let {U,},.y be the family of segments satisfying the conditions of the
preceding lemma and h our standard function. For all n € N we define

o=y I
e, h(3)

Clearly g, € 2. It will be useful to express

max [f(x)|

(l)(x) ( ) h® (x — an) xeUp’
&, . &y h(3)
and by Lemma 3 we have
00) 5 100 [l [0 [165)
h(3) by h(‘}) xb
where |h®| = sup [hD(x)|, |£(xl)| = max |f(x)|- Put § =f+ Zg,, By the con-
dition 3 of Lemma 3 g(x) < oo forall xe E1 It is easy to see that g =0and g = f

on (0, &) where & is the same as in Lemma 3. The proof will be complete if we prove
that g(0) = 0 for all n € N. But

B s 0] + 0 s ,
i ()
gww+%§"¥% 0 (x-0)

by Lemma 3 (condmons 3and 4) and Lemma 5.
Author’s address: 186 00 Praha 8 - Karlin, Sokolovsk4 83 (Matematicko-fyzikélni fakulta UK)
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