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ON KOPCKE AND POMPEIU FUNCTIONS

J. BLAZEK, E. BorAK, J. MALY, Praha
(Received March 31, 1977)

It is well known that any continuous function without derivative serves an example
of nowhere monotone function. It seems that in the original Képcke’s papers, the
construction of a nowhere monotone differentiable function appeared for the first
time. Later, a sequence of articles followed containing a study of derivatives which
change often the sign. We mention only the penetrating study of A. DENjoy 1915
[1], the papers of Z. ZALcwASSER 1927 [13], D. PompEIU 1906 [9], S. MARCUS 1963
[7], KATzNELSON-STROMBERG 1974 [5]. Nevertheless, constructions of functions
with desirable properties have been rather complicated.

The purpose of this note is to give simple constructions of such functions. A func-
tion f on an open interval I is of the Pompeiu type if f has'a bounded derivative and
the sets on which f’ is zero or does not vanish, respectively, are both dense in I.
A Kopcke function is any function of the Pompeiu type such that the sets on which f”
is positive or negative, respectively, are dense in I.

In the first part of this paper we give an elementary construction of a Kopcke
function. In the second part, we shall prove that the derivative of our function is
even approximately continuous. Moreover, using our ideas, we shall prove a “Za-
horski type”” theorem in its simple version, and using Tietze’s type extension procedure
we shall describe an elementary method of constructing a whole scale of Kopcke
functions. We mention only that similar ideas can be found in investigations of
PETRUSKA-LACKOVICH [8]. Also C. GOFFMAN [3] used the complete regularity of
density topology for construction of Kopcke functions. Finally, in the last part we
shall propose a method of construction of Kopcke functions from functions of
Pompeiu type. A completely different method using the Baire Category Theorem is
due to C. E. WELL [11].

STUDENTS’ RESEARCH ACTIVITY AT THE FACULTY OF MATHEMATICS AND
PHYSICS, CHARLES UNIVERSITY. Awarded the 3™ prize in the National Students’ Rzsearch
Work Competition, section Mathematical Analysis, in the year 1977. Scientific advisers: Professor
J. LukeS and Professor L. ZAJ{CEK.
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ELEMENTARY CONSTRUCTION

In this part we givg an elementary construction of a Kopcke function. We shall
not use the notions of the Lebesgue measure and Lebesgue integral, we use the
integral of a continuous function only. Note that Lemma 2 substitutes the assertion
that every bounded approximately continuous function is a derivative (see Corollary
of Lemma 3).

We believe that our construction is simpler than the elementary construction of
Katznelson and Stromberg [5].

Lemma 1. Let m be a positive integer, s and d real numbers, d > 0. Then the
Sunction p : p(x) = (|x — s|/d)"/™ has the following properties:
i) p is continuous.
ii) p(x) = 0, and p(x) = 0 if and only if x = s.
iii) Let 0 <& <y < p(x). Denote I ={teR:p(t)<y—¢}. Let h >0 and
{x —=h,x+ h>) I =#0. Thenl is a closed interval with a length less than

2h(y — ") — (v — &)

Remark. The importance of the assertion (iii) consists in the convergence of the
series

0 (y — e)m .
m=1y™ — (y — ¢)"
Proof. The properties (i) and (ii) are evident. For z = 0, p(t) < z is equivalent

to |t —s| < dz™. Choose x,e€In{x— h,x + h). Since p(x;) <y —¢ and
p(x) = y we have

|y —s| d(y — &, |x—s|2dy", |x—x|<h.

From the inequality
A P
we obtain
h>d(y™ - (y — &)
and hence

dly — o = h(y — &f"[O" = (v — ¢)") -
Since t € I if and only if |t - s| < d(y — &)™ I has the required length.

Lemma 2. Let f, be continuous real functions such that |f,(x)| < K for every
neN and xeR. Let f, — f. Assume that lim 5 f, = @(x) exists for every x,and

n—-o

that the following condition holds for every x:
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For any ¢ > 0 there exists 6 > 0 and ne€ N such that whenever 0 < h < 6 and
m > n we can find a finite sequence of closed intervals I, = {o;, B>, i =1,..., k
satisfying

él([}, —a)<e.h
and
{teR:|ft) —f(x)| 2 & [x — | £ h} C:Q;Ik'
Then &' exists everywhere and ®' = f holds.

Proof. Consider the expression

1 1 x+h

= (?(x + h) — &(x)) = lim - S

h nsoh J,
for a fixed x. Let 6 and n be found for a given ¢ > 0, let m > n and 0 < |h| < 4.
Suppose h > 0, the case h < 0, the case h < 0 being similar. We find points x,, x,, ...
...y Xp,+1 Such that

X=X XS ... S X41 =X+ h

and
r k
j[_)1<x2j_1, Xp;> 0 (x,x + h) =il_)11i A (x,x + h).
We have
.leij—ij_ll <8h, |x21+1 _xzjl Sh
J= ji=1
r
jl:}1<x2,-, X2j41) O (X, x + h) = {te(x,x + h):|f(t) — f(x)| < &} .
Thus
x+h r X24 X2j+1
f,,,=z< f,,,+J f,,,><ehK+(e+f(x))h
x Jj=1 x25-1 x2j
Similarly
x+h
J’ fmZ —€hK + (f(x) — &) h.
Hence

f(x)—eK +1) = —hmJ‘ fu 2f(x) + &K +1).

n-'oo

This proves that

&(x) = lim O(x + h) ?(x) — 1(4).

h-0
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Theorem 1. Let {a,}>., be a sequence of real numbers, let 9 + F, = F, < ...
be a sequence of closed subsets of R. Denote

A={a,:neN}, F=UF,.
n=1

If An F = 0, then there exist functions f, ® satisfying

i)0<Sf<1; f(f) =0 for te A and f(t) > O for teF,
ii) @' = f holds everywhere on R.
Proof. Define d,, = dist (a,, F,), Po(t) =1 on R, pu(t) = (|t — a,|/dn)'™
for m 2 1, f,(t) = min p(f). Put f = lim f,,, &(x) = lim (5 f,.
0sSism m= o

m=®©

Since

{teR:f,(t) =0} = {ay,..., a5}

and

pn(t) 2 1 = pol1)
for any t € F,,, (i) holds.

We verify the assumptions of Lemma 2: We can put K = 1. For each x such that
f(x) > 0and for any ¢, f(x) > & > 0, we can find n e N and 6 > 0 such that

o (w-o  _
E T ~ () —

and |f(t) — f(x)] <& for te(x — &, x + 5). Put

I;={xeR:pft) < f(x) —¢}.

Then
(1) U Lo {tede — hx + b : |fuld) = F()| 2 )

i=n+1
for any m > n and h, 0 < h < 4. By (1) and Lemma 1, the system of intervals
{Ij:n<jsm I ;0 {x — h,x + h) + 0} has the required properties. Indeed,
the sum of their lengths is less than
m _ © Y )
2hy — &) < 2h =g < oh
j=nryl — (y — g jent1y! — (y — &y

where y denotes f(x). For each x such that f(x) = 0 and any ¢ > 0 it is sufficient
to find n € N and & > 0 such that f(f) < efor te(x — J, x + ).

Theorem 2. Given any two disjoint denumerable subsets A, B of R, there exists
a function ¥ with a bounded derivative g such that g > 0 on A, g < 0 on B.

(If both 4 and B are dense, g is a Kopcke function.)
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Proof. According to Theorem 1 we find functions ¥, and ¥, such that ¥;, ¥,
exist everywhere and

O<¥%; =1 on 4, ¥Y,=0 on B;
0<¥%,<1 on B, Y. =0 on A.

Put 5”=W1—?2.

TIETZE’S TYPE EXTENSION THEOREM

In this section we shall use some theorems on approximately continuous functions
and the elementary construction from the preceding section to obtain a variety of
“wild” differentiable functions. The main idea using a “Tietze’s type construction”
is established in the paper of Petruska and Lackovich [8], where a more general
theorem is proved. In our proof, in contradistinction to theirs, we shall not use a non-
elementary topological lemma of ZAHORSKI (see [12], Lemma 12).

Definition. A real function f on R is said to be approximately continuous at
x € R if f(f) - f(x) as t tends to x on a measurable set E for which x is a point of
density.

Let of denote the system of all measurable sets with density one at each of
its points. It is not so difficult to prove that a function f is approximately continuous
on R iff for any c e R, the sets {te R : f(t) < ¢}, {te R : f(t) > ¢} belong to .

We shall use the following well known facts on approximately continuous functions:
Theorem A. Any approximately continuous function on R is of the Baire class 1.

Theorem B. If f, g, h are approximately continuous functions on R and h(x) + 0
for any x e R, then the functions f.g, f + g, f|h are approximately continuous
functions.

@
Theorem C. If Y. f, is a uniformly convergent series of approximately continuous

n=1 &

functions, then f =Y f, is approximately continuous.

n=1

Theorem D. (Saks [10], p. 132.) Any bounded approximately continuous function
is a derivative. .

Note. For a simple proof of Theorem A see the paper of J. LUKES and L. ZAJiCEK
[6]. Theorems B, C immediately follow from the fact that & is the system of open
sets in a certain topology (the so called density topology, cf. [4]).
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Lemma 3. Let f, \ f, let f, satisfy the assumptions of Lemma 2. Then f is ap-
proximately continuous.

Proof. Let c € R. Obviously f is upper semicontinuous and thus {t € R : f(t) < ¢}
belongs to &#. Denote M = {te R : f(t) > c},let x e M. Choose &,0 < ¢ < f(x) — ¢
and find the corresponding é and n from Lemma 2. For m > n denote

Po={teR:f(i) Sf(x)—¢}, P= Glpm.

m=n+

Choose h, 0 < h < . By the assumptions of Lemma 2 we have
k
MP, n<{x — h,x + h)) £ Y AI, < eh (A is the Lebesgue measure)
) i=1

for any m > n, further P,,; = P,,, < ... and therefore
ﬁl(Pn(x —h, x + h)) <& and 2—1};).(<x~ h, x + h)\P)>1—¢.

Since {x — h, x+ h\PcM,xisa point of density for M.
Corollary. The function f constructed in Theorem 1 is approximately continuous.

Lemma 4. Let A be a denumerable subset of R. Let By, B; be two disjoint Gsets.
Then there exists an approximately continuous function f such that 0 £ f <1
andf=00nBynA,f=1o0nB; nA.

Proof. A n B, is denumerable, R \ B, is of type F,. By Theorem 1 we can find
an approximately continuous, nonnegative function f,, such that f, > 0 on R\ By,
fo = 0 on 4 N B,. Similarly we find an approximately continuous function f; such
that f; > 0 on R\ B, and f; = 0 on A n B,. Using Theorem B we can put f =
= fol(fo + f1)-

Theorem 4. Let A be a denumerable subset of R. Let g be a bounded function on A
which is a restriction of a function f which is of the Baire class 1 on R. Then there
exists on R a bounded approximately continuous extension g* of g.

Proof. We can suppose that —1 < g < 1. Put

HY = {x:f() S -4}, HI=(x:/()24).

Since f is the function of the Baire class 1, H}, H; are disjoint G,-sets. By
Lemma 4 we can find an approximately continuous function ¢, such that ¢,(x) =
= —Hxe H} n A), ¢s(x) = 3 (xe H n A) and —} =< ¢,(x) £ } otherwise.
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Putting f; = f — ¢, we have —% < fy(x) < % for x € A. Suppose that approxi-

mately continuous functions ¢4, ..., ¢, have already been defined such that
©) )| < 36)

for xeR and k =1,...,n;

(3) @) =f(x) = 3)

for x € A, f, denoting f —-k;(p,. Put Hy = {x; f(x) £ —33)}, H, = {x : f,(x) 2

> 4(3)"}, A, = A A H;. By Theorem A, ¢, k = 1, ..., n are functions of the Baire
class 1 and therefore H,, H, are disjoint G4-sets. Thus, by Lemma 4 we can choose
an approximately continuous function ¢, (x) such that

§0n+1(x) = "‘}(3‘)" (XEH1) s (Pn+1(x) = ‘}(i‘)n (x EH:)

and
|@ns1(x)] < H3)* otherwise .

By this construction we obviously have

_(g‘)n+1 éfnﬂ(x) = (5‘)”“

for x € A,where f,,y = f, — ¢@,+1. Thus we obtain the sequence {¢,};= by induction
and put

ACECE

By (2) the series is uniformly convergent and therefore by Theorem C g* is a bounded
approximately continuous function. From (3) it follows that g(x) = g*(x) for x € A4.

Remark. Let {¢,};2,, {d.}s=1 be sequences of real numbers, ¢, + ¢, d, * d,
for n+m. Let C={c,:n=1,2,...}, D={d,:n=1,2,...} be disjoint dense
subsets of R. If {z,} is a sequence of nonzero numbers tending to 0, the function g
on C u D defined by g(c,) = 0, g(d,) = z, is the restriction of a function of the
Baire class 1. By Theorem 4 there exists a bounded approximately continuous
extension g* of g. By Theorem D, g* is the derivative of a Pompeiu function. We can
choose d, and z, such that both the sets {d, : z, > 0}, {d, : z, < 0} are dense. Then g*
will be the derivative of a Kopcke function.

FROM POMPEIU FUNCTIONS TO KOPCKE FUNCTIONS
In this section we demonstrate how we can construct Kdpcke functions from
Pompeiu functions using some essentially known simple facts concerning monotone

differentiable transformations on R.
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Let ¥ be a Pompeiu function. Then evidently one of the sets {x : ¥'(x) > 0},
{x : ¥'(x) < 0} is dense in an open interval. Therefore it is easy from an arbitrary
Pompeiu function on R to construct a Pompeiu function w on R such that the set
{x : @'(x) > 0} is dense in R.

If f, g are two Pompeiu functions on R such that the sets {x : f'(x) > 0},
{x :g'(x) > 0} are dense in R, the function h(x) = f(x) — g(x) need not be
a Kopcke function. But if we change g by a suitable differentiable transformation ¢
to g*(x) = g(e(x)), the function k(x) = f(x) — g*(x) will be a Kdpcke function
on (0, 1). We shall use the following elementary lemma based on the main idea
of Franklin [2].

Lemma 5. Let A < (0,1), B = (0, 1) be two disjoint denumerable sets, let.C, D
be two disjoint sets dense in R. Then there exists a real function ¢ on (0, 1) such
that 0 < ¢'(x) < + o for x€(0, 1) and ¢(A) = D, ¢(B) = C.

Proof. Let A = {a,}, B = {b;}2,. We may suppose that a; + a; and b; + b,
for i # j. Lete, >0, Y g, < 1. Put ¥y(x) = x, ¥,(x) = x — a; and
n=1
k
Yor+1 =‘l__11(x = a,) (x - bi)9
k
Wzn.’.z = (x == ak+1)‘l__[1(x = ai) (x — bi) fOl‘ k g 1 .

We shall define a sequence {w;}{2, for which

4) |y sup (|Pix)| + |¥i(x)|) <& for i=1,2,..

and xe(0,1)

§)) @an-1(a,)eD, @yb)eC for n=1,2,...,
where

(6) @o(x) = x and @,(x) = x +‘i;w‘ Pix) for n=1,2,....

We proceed as follows:
Let n = 1 and let all w; for 1 < j < n be defined.
We put ,
gn(®) = @p—1(an) + © P(a,) if n=2m—1
and
gn(@) = @p—1(bn) + @ P,(b,) if n=2m.

Since g, is a linear non-constant function and C, D are dense in R, we can find o,
such that g,(w,) € D if n is even and g,(w,) € C if n is odd and (4) holds for i = n.
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