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A DETERMINISTIC SUBCLASS OF CONTEXT-FREE LANGUAGES

JAN PECKEL, Praha
(Received March 31, 1977)

INTRODUCTION

G. WECHSUNG in [1] has introduced a new complexity measure and has proved
that the class of all context-free languages turns out to be a complexity class with
respect to this measure for nondeterministic Turing machines.

We investigate the complexity class C given by the same bound and complexity
measure for deterministic Turing machines in this paper. Namely, the relation of this
complexity class to the class of all deterministic context-free languages is studied.
It is proved that these two classes of languages are incomparable. Moreover, similar
incomparability result is proved for the class C and the class of all linear languages.

WECHSUNG’S COMPLEXITY MEASURE

By a Turing machine (or simply TM) M = (Q, X, d, g, F) we shall mean a deter-
ministic one-tape, one-head model of Turing machine with the state space Q, the
alphabet X, the next-state'function d, the initial state g, and the accepting state
space F. The alphabet of every TM will contain the blank symbol b. X, will denote
the set X — {b}.

By a computation of a TM M = (Q, X, d, qo, F) on a word we X* we shall
mean the computation starting in the initial state g, on the leftmost symbol of w.

ATMM = (Q, X, d, g, F) accepts a word w € X} iff the computation of M on w
halts in an accepting state. ’

‘A TM M = (Q, X, d, q, F) recognizes a language L = X, iff for every word
we Xy the following condition holds: we L<> M accepts w.

STUDENTS’ RESEARCH ACTIVITY AT THE FACULTY OF MATHEMATICS AND
PHYSICS, CHARLES UNIVERSITY. Award the 1** prize in the National Students’ Research

Work Competition, section Theoretical Cybernetics, in the year 1977. Scientific adviser: Professor
M. CHYTIL.

43



In case that during a computation the content of a tape square is changed, every
visit of the head payed to this square after its first altering shall be called an active
visit. For every word w accepted by a TM M the maximal number of all active visits
on one tape square during the computation of M on w shall be denoted as gy(w).

Let k be a nonnegative integer.

A TMM = (Q,X,d, qo, F) recognizes a language L< X, with Wechsung’s
complexity k iff 1. M recognizes Land 2. for every word w e L it is gy(w) < k.

A language L is recognizable with Wechsung’s complexity k iff there is a TM
recognizing L with Wechsung’s complexity k.

NOTATION AND DEFINITIONS

For every nonnegative integer k denote by W(k) the class of all languages recogniz-
able with Wechsung’s complexity k. Then

C =daf U W(k) )
k=0

CFL =4 the class of all context-free languages,
DCFL =4 the class of all deterministic context-free languages,

LIN =g the class of all linear context-free languages,
w = 4¢ the “mirror image” of the word w,
A = 4¢ the empty word.

By a numbering of the tape of a TM we shall understand a 1-1 mapping of the set
of tape squares into the set of integers. So every tape square has a number, “square p”
will denote “the square numbered by p”.

Let M = (Q, X, d, go, F) be a TM and let k be a nonnegative integer.

If we X then the symbol P(w) stands for “the part of the tape which was initially
occupied by the characters of the input word w”. If the tape of M is numbered in
such a way that the square p; stands to the left from the square p,, then the symbol
P(p;, p,) denotes the word formed by the sequence of characters in the squares
between p; and p, (“between squares p, and p,” will always implicitly include
“excluding the squares p; and p,”).

Definition 1. Two words u, ve X™* are said to be E,-equivalent (notation u ~ g, v)
iff for arbitrary states ¢, ¢’ € Q the following conditions hold:

1. [If M starts in the state g on the leftmost (rightmost) symbol of the word u,
then M changes the content of P(u) without leaving it before]

<>

[If M starts in the state g on the leftmost (rightmost) symbol of the word v, then M
changes the content of P(v) without leaving it before].
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2. [If M starts in the state g on the leftmost (rightmost) symbol of the word u,
then the first exit from P(u) is made leftwards in the state q']

<~

[If M starts in the state g on the leftmost (rightmost) symbol of the word v, then the
first exist from P(v) is made leftwards in the state g'].

3. [If M starts in the state g on the leftmost (rightmost) symbol of the word u,
then the first exit from P(u) is made rightwards in the state g']

<

[If M starts in the state g on the leftmost (rightmost) symbol of the word v, then
the first exit from P(v) is made rightwards in the state ¢'].

4. [If M starts in the state g on the leftmost (rightmost) symbol of the word u,
then M enters an accepting state without leaving P(u) before]

<

[If M starts in the state g on the leftmost (rightmost) symbol of the word v, then M
enters an accepting state without leaving P(v) before].

For any u e X* and q € Q, the symbols (u),, and (u), will denote, respectively,
the content of the tape segment P(u) after the first exit from P(u), provided the TM M
has started on the leftmost or rightmost symbol of the word u in the state q. If M
does not leave the segment, the meaning of the symbols is not defined.

Definition 2. Two words u, ve X * are said to be E,-equivalent iff for an arbitrary
sequence q;, Ay, 4z, Az, ..., 45, A4;
where jeN, j < 2k,

A; = either Lor Rfori =1,2,...,],
g;eQfori=12,...,j,
the following condition holds:

If at least one of the symbols (... ((#)g,4.)q2dz -+ Jasa; @04 (.. (0)g,4)a2s - - Jaya, i
meaningful, then both of them are meaningful and at the same time

(' o ((u)anx)quz "')'IJAJ ~E; ( o ((v)qun)quz "')flJA: :

Remark. For j = 0 the last relation has the form u ~ g, v.

Both above defined equivalences have a finite number of classes.

45



INCOMPARABILITY OF DCFL AND C

Lemma 1. Let a TM M = (Q, X, d, qo, F) have s states. Let a tape segment
contain the word z°, where z € X. If M enters this tape segment from the left or right
and passes through it rightwards or leftwards, respectively, without any rewriting,
then the first rewriting of a tape square cannot be performed before scanning
a symbol different from z.

The proof is obvious and follows from the fact that M must reach (at least) twice
the same state when scanning the word z°.

Lemma 2. Let a TM M recognize a language L with Wechsung’s complexity k,
where k € N. Then there exists such a positive integer | that during the computation
of M on any word w € L — {A} the head reaches maximally I-1 squares out of P(w).

For the proof cf. [1].

Theorem 1. DCFL and C are incomparable, i.e. DCFL £ C& C ¢ DCFL.

Proof. (1.1) Let us consider the language L = {ww; w € {a, ¢} *}. It follows from
[2] that L¢ DCFL. We can construct a TM M = (Q, X, d, o, F) where X =
= {a, ¢, b} so that the computing process of M on an arbitrary word we X;" will
proceed as follows:

1. M will check if the leftmost of the squares of P(w) which have not been rewritten
contains the same character as the rightmost of the squares of P(w) which have not
been rewritten and if moreover these two squares are not identical. If it is so the
both squares will be rewritten by the character b and then
— either the activity No. 1 will proceed, in case some squares of P(w) have not

been rewritten
— or the activity No. 2 will proceed, in case all squares contain the character b.

If it is not so the activity No. 3 will proceed.

2. M will reach an accepting state.

3. The computation will halt in a situation for which the next-state function is not
defined.

It is obvious that the next-state function of such a TM can be defined in such a way
that during the computation of M on an arbitrary word w e {a, c}* there will not
appear more than one active visit on any square. It follows from this fact that Le W(1).

(1.2) The converse will be proved by contradiction. Consider the language L =
= {a"c¢"*"a"; m,n = 1,2,...}. It is obvious that Le DCFL. Assume that M =
= (0, X, d, g, F) is such a TM which recognizes L with Wechsung’s complexity k,
where k is a nonnegative integer. Let gy, g, ¢ 0. Define M = (Q, X, d, g,, F),
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where Q = Q U {41, 4.} and the next-state function d is defined in the following way:

d(g,z) =d(q,z)if (g,z)e @ x X and d(g, z) is defined,
d(qb b) = (ql’ ba R)’

d(Q1, a) = (‘12, a, L),

d(‘lz’ b) = (‘10; b, R),

d is not defined for other arguments.

Now introduce for the TM M and k the equivalences E, and E, on X* according
to Definitions 1 and 2. E; and E, are of finite indices, say e; and e,, respectively.

Remark. If u = b™au,, v = b™av,, where n;,n €N, u;,v; e X* and u ~g v,
then for any state ¢’ € Q the points 1, 2, 3, and 4 of Definition 1 hold even if we replace
the words “If M starts in the state g on the leftmost (rightmost) symbol of the word u”
by the words “If M starts in the state g, on the leftmost of the nonblank symbols
of u” and if wereplace the words “If M starts in the state g on the leftmost (rightmost)
symbol of the word v’ by the words “If M starts in the state g, on the leftmost of the
nonblank symbols of v”*. This fact has been used in the proof and for this reason the
TM M was extended to the TM M.

Now let us enumerate the tape of M as indicated by Fig. 1.

. =5 -4 -3 -2 -1 1 2 3 4 5 ...

Figure 1.

Let positive integers m; and m,, where my < m, < e, + 1, satisfy a™ ~ a™
(such numbers can be found). Let ! be a positive integer satisfying the assertion of
Lemma 2 for the given TM M and for the language L. Define s = card Q.

Consider the word w = a"c*"a", where neN, n2 s((s + 1)(e; + 1 — 1) +
+ 1 —2) + max {s + 1, m;}. It holds that we L, so during the computation
of M on w, not more than k active visits on any square will appear and M will reach
an accepting state.

Now place w on the tape in such a way that the leftmost character of the word w
will be written in the square —2n.

Lemma 3. Neither between the squares —2n — 1 and —n nor between the
squares n and 2n + 1 there exist m, adjacent squares the contents of which would
not be changed during the computation of M on w.

Proof. By contradiction. Let there be m,; squares of the above described property.
Let us form a word u by replacing the word situated in the assumed m; squares
by the word a™ in the word w. M accepts u, but u € {a, c}* — L.
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We shall choose tape squares py and pf (for i = 1,2,...,(s + 1) (e, + I — 1) +
+ 1) inductively as follows:

Define pf = —2n = I and pf =2n + L

Let py and pf be defined for a positive integer i, i < (s + 1)(e; + 1 — 1) + L
Then by Lemmas 1 and 3, there is a tape square p; such that during the computation
of M on w, p; is rewritten as the first of squares between p; and pf. Then define

L
p;“—p;}ifp,§max{pf‘, —2n—1}+sorn—s<p,<n+s,
Pi+1 = Di
and
L _ L
P A 4 ‘} otherwise.
Pi+1 = Pu

Lemma 4. Let i be a positive integer, i < (s + 1) (e_z + 1 — 1) + . During the
computation of M on w the head can enter the part of the tape between the squares p*
and p} at most 2k + 1-times, after rewriting these two squares.

Proof. Let the squares pj and p}, where ie N,0 < i < (s + 1) (e, + I — 1) + [,
be rewritten during the computation of M on w and let then the head enter the tape
segment between the squares p; and p} more than 2k + 1-times. At the same time
at least k + 1 active visits on the square pF or p} must appear.

In the following paragraphs (1.2.1) and (1.2.2), we distinguish two possible situa-
tions. (1.2.2) is again decomposed into two parts. Each of the situations leads to
a contradiction as shown in the paragraph (1.2.3).

(1.2.1) Assume that for i =1,2,...,e, + 2] — 1 the condition pf S n —s&
& p{ 2 —n + s holds. Then among the words P(pf, pY), P(p%, P3); ---» P(Pr,+21-1>
pfz+2,_ 1) there exists a pair of E,-equivalent words such that the difference between
the number of the characters ¢ and the number of the characters a in one word is
smaller than the difference between the number of the characters ¢ and the number
of the characters a in the second word. Let such a pair be formed for instance by the
words P(pf, p{') and P(p}, p¥), where i,jeN,0 <i <j < e, + 2I.

The proof continues at (1.2.3).

(1.2.2) Assume that pL,,,—; > n—s For pf.y—; < —n + s the proof is
quite analogous.

(1.2.2.1) Let for an integer i, such that e, + 2l — 2 < io< (s + 1).
.(e; + 1 — 1) — e, the condition pf: 4, = p& ., = ... = P 4., +, hold. Then among
the words P(ph i1, Phs1)s P(Phszs Prot2)s oo P(Phot eyt 1s Phover+1) there exists
a pair of E,-equivalent words such that the difference between the number of the
characters ¢ and the number of the characters a in one word is smaller than the
difference between the number of the characters ¢ and the number of the characters a
in the second word. Let such a pair be formed for instance by the words P(p}, p})
and P(p}, p}), where i,jeN, ip <i<jSip+e, + I
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The proof continues at (1.2.3).

(1.2.2.2) Let the introductory assumption of the paragraph (1.2.2.1) be not
fulfilled. Define r = s(e, + ! — 1) + I. Then pf 2 n. Among the words P(pf, pF),
P(pEe 1, PRe1)s oo os P(PEs eyt 1-15 Prvey+1-1) there exists a pair of E,-equivalent words
such that the number of the characters a in one word is greater than the number of
the characters a in the second word (these words do not contain the character c).
Let such a pair be formed for instance by the words P(p}, p}) and P(pf‘, pf), where
LjeEN,rSi<j<r+e +1

(1.2.3) Suppose now that on the tape of the TM M the word wy = b~ lwb'~!is
written in such a way that the leftmost character of the word w, is written in the
square —2n — | + 1. Construct a word u by replacing the tape segment between pr
and pf by the word P(p}, p}) in the word w, (cf. Fig. 2). If we remove all blank
characters b in the word u we shall obtain a word u, accepted by M although it
holds that u € {a, c}* — L: a contradiction.

- - L
2n-1 +P WP Py Pt 2ngl
f..,b b v, V2 1 v, Vs b b3
Wi = V103030405 U = 040305
Figure 2.

Corollary. C is a proper subclass of CFL.

INCOMPARABILITY OF LIN AND C

Theorem 2. LIN and C are incomparable, i.e. LIN ¢ C& C & LIN.

Proof. (2.1) Consider the language L = {a"c"a’; i,n = 1,2,...} U {a'c"a"; i, n =
= 1,2,...}. It holds that Le LIN. Assume that M = (@, X, d, g,, F) is such a TM
which recognizes L with Wechsung’s complexity k, where k is a nonnegative integer.
Let q;,9,¢ Q. Define M = (Q X, d, qo, F), where Q = Qv {qy,q,} and the
next-state function d is defined in the following way:

d(g.z) =d(q.z)if (g,z)e @ x X and d(q, z) is defined,

d(qls b) = (QI’ b, R) s

d(‘]l’ a) = (q29 a, L),

d(qzs b) = (qO: b, R)a

d is not defined for other arguments.

Now introduce the equivalences E; and E, on X* according to Definitions 1 and 2
and denote their indices e; and e,, respectively.
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Now enumerate the tape of M as indicated by Fig. 3.
e =5 -4 3 -2 -1 0 1 2 3 4 5 ..

] \ 3

Figure 3.

Let for positive integers my, m,, my and m,, where m; < m, < e; + 1 & m; <
< my £ e; + 1, the condition @™ ~g a™ & c™ ~p ¢ hold. Let | be a positive
integer satisfying the assertion of Lemma 2 for the given TM M and the language L.
Define s = card Q. ; '

Take the word w = a"c"a", where neN,n 2 s((e; + 1 —1)* + e, + 2s +1 — 4) +
+ max {s + 1, m,}. It holds that w € L, hence during the computation of M on w at
most k active visits on any square will occur and M will reach an accepting state.

Place w on the tape of the TM M in such a way that the leftmost character of the
word w will be written in the square 1.
 We shall construct inductively sequences

pi, p5 ... and pf, p3,....

Define pf = —1 + 1’and p¥ = 3n + L
Now let pF and pf for an i be defined. Then if there exists a square p'? which is
rewritten as the first of squares between pF and pY during the computation of M
on w, define LW
p'R“ —pR} if p»<n—s and
Piv1 = Di
L L
p;“ - P(,-i)} it p®>2n+s,
Pi+1 =P

pr. and pR, ;| are not defined otherwise.

There are two possible cases which are studied in the paragraphs (2.1.1) and (2.1.2)
in this proof. Each of this cases is decomposed into a number of subcases which are
treated in the corresponding subparagraphs.

(2.1.1) Let the symbols p; and p} be meaningful for i = (e, + I — 1)* + 1.

(2.1.1.1) Let for a nonnegative integer i, such that ip < (e; + 1 — 1) (e, + I — 2),
the condition pf;“ = pf;“ = ... = P 4e,+1 hold.

Consider the word w; = a"*™2"™¢c"g", It holds that w, € L. Place w, on the tape
of M in such a way that the leftmost symbol of the word w; will be written in the
square 1. It holds fori = 1, 2, ..., (e2 + 1 — 1)? that during the computation of M
on w,, the first of squares between pf and m, — m, + pf rewritten by M is

— the square pl ; if pF + ps,

— the square m, — m; + pi,, otherwise.
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Among the words P(pf, 41, m, — my + Pl y1), P(Phosiar, My — My + Phiisq), -
...,P(pﬁ,+e2+,, m, — my + pﬁ,“ﬁ,) there exists a pair of E,-equivalent words.
Let such a pair be formed by the words P(p},, m, — m; + p}) and P(p},,
m, — my + py), where ji,j, €N, ig + 1 S jy <j, Sip + e, + L

Now suppose that on the tape of M the word w, = b'~!w, is written in such a way
that the leftmost character of the word w, is written in the square —I + 2. Construct
a word u by replacing the tape segment between p}‘l and m, — my + p",“ by the
word P(pfz, m, — my + p}) in the word w,. If we remove all blank characters b
in the word u we shall obtain a word u, accepted by M although it holds that u, €
e{a,c}* — Lt

. n+my—my

ug =a c"a™ where nieN, ny<n.

(2.1.1.2) Let for a nonnegative integer i, such that iy < (e, + 1 — 1) (e; + I — 2),
the condition pf ., = pR,, = ... = pR,.,+, hold. Contradiction can be deduced
analogously as in paragraph (2.1.1.1).

(2.1.1.3) Let uneither the introductory assumption of the paragraph (2.1.1.1) nor
the introductory assumption of the paragraph (2.1.1.2) be fulfilled. Define r = e, +
+ I — 1. Among the words P(Pfi:—:)n’ Pﬁx—nﬂ), P(Pf.t+1a P.‘-z.u- 1) P(PrL(1+1)+1s
Pri+1y+1)s ---» P(PFr+ss Prrs1) there certainly exists a pair of E,-equivalent words.
Let such a pair be formed by the words P(p}, p}) and P(p},, p}), where j; =
=riy+1,j,=rip+1,i,i,eN, I —1=5i;,<i, =r. :

Now construct a word u by replacing the tape segment between pff1 and pf, by the
word P(p},, p}) in the word w. M accepts u but ue{a,c}* — L: u = a"c"a™
where ny,n,eN, n; < n, n, < n. This contradiction completes the paragraph
(2.1.1). In the paragraph (2.1.2) the following lemma is used. The proof of the lemma
is evident.

Lemma 5. There do not exist m; adjacent squares between n and 2n + 1 the
contents of which would not be changed during the computation of M on w.

(2.1.2) Let the symbols pr and p} be meaningful for i = j, where j is a positive
integer such that j < (e, + I — 1), and not meaningful for i = j + 1.

Let p; be such a square which is rewritten as the first of the squares between p}‘
and pf during the computation of M on w (by Lemma 5 such a square exists).

(2121) Let n—s<p; Sn+s.

Consider the word w; = a"c"a"*™* ™™ It holds that w, € L. Place w, on the tape
of M in such a way that the leftmost symbol of the word w; will be written in the
square 1. It holds for i = 1,2, ...,j — 1 that during the computation of M on wy,
the first of the squares between p} and m, — m, + pX rewritten by M is

— the square piy, if pi' * piyys

— the square m, — m; + pX,, otherwise.
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