

# Werk

Label: Article **Jahr:** 1978

**PURL:** https://resolver.sub.uni-goettingen.de/purl?31311157X\_0103|log14

# **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

## A REMARK ON MODELS OF BOX-JENKINS TYPE

Ha Huy Toan, Praha

(Received March 31, 1977)

#### 1. INTRODUCTION

In the well-known book *Time series analysis*, forecasting and control the authors Box and Jenkins introduced a special non-stationary model for discrete random processes. At the beginning, we shall describe shortly the Box-Jenkins approach. Further, we shall show that there is an inaccuracy in their theory, and a modified model will be described. Then we shall concentrate our attention to a problem arising when the best extrapolation is evaluated.

Let  $\{Z_t\}$  be a discrete random process. Define an operator B by  $BZ_t = Z_{t-1}$ . Then B is called a backward operator. Suppose that  $\{a_t\}$  is a white noise. Let  $\{Z_t\}$  satisfy the condition

$$\varphi(B) Z_t = \Theta(B) a_t$$

where

$$\varphi(B) = 1 - \varphi_1 B - \dots - \varphi_p B^p$$
,  $\Theta(B) = 1 - \Theta_1 B - \dots - \Theta_q B^q$ .

If all the roots of the polynomial  $\varphi(B)$  have their absolute values smaller than 1, then  $\varphi(B)$  is called a stationary operator. In this case we say that  $\{Z_t\}$  is an ARMA process (autoregressive moving average process).

Box and Jenkins investigated in [2] a model

(2) 
$$\varphi(B) (1 - B)^d Z_t = \Theta(B) a_t$$

where  $\varphi(B)$  is a stationary operator. In this case  $\{Z_t\}$  is called an ARIMA process (autoregressive integrated moving average process).

STUDENTS' RESEARCH ACTIVITY AT THE FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY. Awarded the 4<sup>th</sup> prize in the National Students' Research Work Competition, section Statistics, in the year 1977. Scientific adviser: Professor J. Anděl.

Let us suppose for a moment that the random variables  $a_t, a_{t-1}, \ldots$  are known. We are looking for the best estimate (or for the "best extrapolation") of the variable  $Z_{t+g}$ , when the estimate is based on  $a_t, a_{t-1}, \ldots$ . We restrict ourselves to linear estimates which have the form  $\sum_{k=0}^{\infty} c_k a_{t-k}$ . We say that  $\hat{Z}_t(g)$  is the best linear extrapolation of  $Z_{t+g}$  if

$$E[\hat{Z}_{t}(g) - Z_{t+q}]^{2} \leq E[Z_{t}(g) - Z_{t+q}]^{2}$$

where both  $Z_t(g)$  and  $\hat{Z}_t(g)$  are of the type  $\sum_{k=0}^{\infty} c_k a_{t-k}$ .

Let us suppose that there exists such a polynomial  $\Psi(B) = 1 + \Psi_1 B + \Psi_2 B^2 + \dots$  that

(3) 
$$Z_t = \Psi(B) a_t = a_t + \sum_{i=1}^{\infty} a_{t-i} \Psi_i$$

holds for every integer t.

Under these assumptions, Box and Jenkins proved that the best linear extrapolation is

(4) 
$$\hat{Z}_{t}(g) = \Psi_{g}a_{t} + \Psi_{g+1}a_{t-1} + \dots$$

Formula (2) implies

$$\varphi(B) (1 - B)^d \Psi(B) = \Theta(B)$$

and it is easy to find the coefficients  $\Psi_1, \Psi_2, \ldots$  of the polynomial  $\Psi(B)$ . Also the problem of extrapolation is solved in this way.

The basic problem, however, is that the series

$$a_t + \sum_{k=1}^{\infty} a_{t-k} \Psi_k$$

may not converge, as we can see from the following simple example. If  $\varphi(B) = 1 = \Theta(B)$ , d = 1, then

$$(1-B)Z_t=a_t$$

and we have

$$Z_t = a_t + Z_{t-1} = \dots = \sum_{i=1}^{\infty} a_{t-i}$$

Since  $a_t, a_{t-1}, \ldots$  are independent random variables with the same positive variance, the sum  $\sum_{i=0}^{\infty} a_{t-i}$  does not exist.

## 2. A MODIFIED MODEL

To avoid the problems mentioned above we shall assume that the process  $\{Z_t\}$  just starts at a fixed moment, say at t = 1.

Let the random variables  $Z_1, ..., Z_p$  and  $a_{p-q+1}, ..., a_p, ...$  be given. Then it is possible to define  $Z_t$  for t > p by a formula

(5) 
$$\varphi(B) Z_t = \Theta(B) a_t$$

recurrently. The symbols  $\{a_t\}$ ,  $\{Z_t\}$ ,  $\varphi(B)$ ,  $\Theta(B)$  are the same as in (1), but this time we put no condition on the polynomial  $\varphi(B)$ .

Inserting t + 1 instead of t we get

(6) 
$$Z_{t+1} = \varphi_1 Z_t + \varphi_2 Z_{t-1} + \ldots + \varphi_p Z_{t-p+1} + \Theta(B) a_t.$$

This formula enables us to express  $Z_{p+q}$  in terms of  $Z_1, ..., Z_p$  and  $a_t$ . First, we can see that

$$Z_{p+g} = \varphi_1 Z_{p+g-1} + \ldots + \varphi_p Z_g + \Theta(B) a_{p+g}.$$

After g steps we have the wanted formula.

If we denote (after k steps)

$$Z_{p+g} = \varphi_k^k Z_{p+g-k} + \ldots + \varphi_{k+p-1}^k Z_{g-k+1} + \Theta(B) F^k(B) a_{p+g}$$

then after inserting for  $\varphi_k^k Z_{n+q-k}$  from (6) we get

$$\begin{split} Z_{p+g} &= \left( \varphi_k^k \varphi_1 + \varphi_{k+1}^k \right) Z_{p+g-k-1} + \ldots + \left( \varphi_k^k \varphi_{p-1} + \varphi_{p+k-1}^k \right) Z_{g-k+1} + \\ &+ \varphi_k^k \varphi_p Z_{p-k} + \Theta(B) \left[ \varphi_k^k B^k + F^k(B) \right] a_{p+g} \,. \end{split}$$

Put  $\varphi_i^k = 0$  for i < k and for  $i - k \ge p$ .

Comparing these formulas we see that

$$\varphi_i^{k+1} = \varphi_k^k \varphi_{i-k} + \varphi_i^k$$

for i = k + 1, ..., k + p and

(8) 
$$F^{k+1}(B) = \varphi_k^k B^k + F^k(B) = \dots = \sum_{i=0}^k \varphi_i^i B^i$$

where  $\varphi_0^0 = 1$ ,  $\varphi_i^1 = \varphi_i$ .

After the g-th step we come to

(9) 
$$Z_{p+q} = \varphi_q^q Z_p + \ldots + \varphi_{q+p-1}^q Z_1 + \Theta(B) F^q(B) a_{p+q}$$

where  $\varphi_i^g$  and  $F^g(B)$  are defined recurrently in (7) and (8).

Now, we shall investigate how to express  $Z_{p+N+T}$  in the form

(10) 
$$Z_{p+N+T} = L_1(Z_1, ..., Z_{p+N}) + L_2(a_{p-q+1}, ..., a_{p-1}, a_p) + L_3(a_{p+N+1}, ..., a_{p+N+T}),$$

where  $L_1$ ,  $L_2$ ,  $L_3$  denote linear combinations of the members written in the brackets. Inserting p + N and T instead of p and q we get

(11) 
$$Z_{p+N+T} = \varphi_T^T Z_{p+N} + \ldots + \varphi_{T+p-1}^T Z_{N+1} + S(B) a_{p+N+T}$$

where

$$\Theta(B) \sum_{i=0}^{T-1} \varphi_i^i B^i = S(B) = 1 - s_1 B - \ldots - s_{q+T-1} B^{q+T-1}.$$

If we denote

(12) 
$$A = s_T a_{p+N} + s_{T+1} a_{p+N-1} + \dots + s_{q+T-1} a_{p+N-q+1}$$

then

$$S(B) a_{p+N+T} = a_{p+N+T} - \ldots - s_{T-1} a_{p+N+1} - A.$$

To get  $Z_{p+N+T}$  in the form (10) we must decompose  $a_{p+N}, ..., a_{p+1}$  (i.e., the expressions in A for  $N \ge q$ ) into terms containing  $Z_1, ..., Z_{p+N}$  and  $a_{p-q+1}, ..., a_p$ . The fundamental formula (5) yields easily

$$a_{t+1} = \Theta_1 a_t + \ldots + \Theta_q a_{t-q+1} + \varphi(B) Z_{t+1}$$
.

Put  $\Theta_0^0 = 1$  and define  $\Theta_i^j$  recurrently by

(13) 
$$\Theta_i^{n+1} = \Theta_n^n \Theta_{i-n} + \Theta_i^n$$

where  $\Theta_i^1 = \Theta_i$ . Then for any positive integer g we have

(14) 
$$a_{p+q} = \Theta_g^g a_p + \Theta_{g+1}^g a_{p-1} + \ldots + \Theta_{g+q-1}^g a_{p-q+1} + \varphi(B) L^g(B) Z_{p+g}$$

where  $L^g(B) = \sum_{i=0}^{g-1} \Theta_i^i B^i$ .

Inserting (14) into (12) gives

$$A = \sum_{i=0}^{q-1} s_{T+i} \left[ \Theta_{N-i}^{N-i} a_p + \ldots + \Theta_{N-i+q-1}^{N-i} a_{p-q+1} + \varphi(B) L^{N-i}(B) B^i Z_{p+N} \right].$$

Putting

(15) 
$$T_{j}^{N} = \sum_{i=0}^{q-1} s_{T+i} \Theta_{N-i+j}^{N-i},$$

(16) 
$$D^{N}(B) = d_{0}^{N} + d_{1}^{N}B + \dots + d_{p+N-1}^{N}B^{p+N-1}$$
$$= \sum_{i=0}^{q-1} s_{T+i} \varphi(B) L^{N-i}(B) B^{i},$$

we can write

(17) 
$$A = T_0^N a_p + T_1^N a_{p-1} + \ldots + T_{q-1}^N a_{p-q+1} + D^N(B) Z_{p+N}.$$

According to (12), this implies

(18) 
$$Z_{p+N+T} = (\varphi_T^T + d_0^N) Z_{p+N} + \dots + (\varphi_{T+p-1}^T + d_{p-1}^N) Z_{N+1} + d_p^N Z_N + \dots + d_{p+N-1}^N Z_1 - T_0^N a_p - T_1^N a_{p-1} - \dots - T_{q-1}^N a_{p-q+1} + a_{p+N+T} - s_1 a_{p+N+T-1} - \dots - s_{T-1} a_{p+N+1}.$$

#### 3. EXTRAPOLATION IN THE MODIFIED MODEL

Suppose that the variables  $Z_1, ..., Z_{p+n}$  and  $a_{p-q+1}, ..., a_p$  are known. Let  $a_j$  be independent of  $Z_i$  for j > i. For a given positive integer T we are going to construct an extrapolation of  $Z_{p+N+T}$  based on the values  $Z_1, ..., Z_{p+N}$  and  $a_{p-q+1}, ..., a_p$ .

Denote

(19) 
$$\hat{Z}_{p+N}(T) = z_0^N Z_{p+N} + z_1^N Z_{p+N-1} + \dots + z_{p+N-1}^N z_1 - T_0^N a_p - \dots - T_{q-1}^N a_{p-q+1},$$

(20) 
$$\varepsilon_{p+N}(T) = a_{p+N+T} - s_1 a_{p+N+T-1} - \dots - s_{T-1} a_{p+N+1},$$

where

$$z_i^N = \varphi_{T+i}^T + d_i^N$$
 for  $i = 0, ..., p - 1$ ,  
 $z_i^N = d_i^N$  for  $i = p, ..., p + N - 1$ ,

and  $\varphi_i^T$ ,  $s_i$ ,  $T_i^N$ ,  $D_i^N$  are defined respectively in (7), (11), (15) and (16).

**Theorem 1.** The variable  $\hat{Z}_{p+N}(T)$  is the best linear extrapolation for  $Z_{p+N+T}$  based on the given  $Z_t$  and  $a_t$ .

Proof. Denote

$$Z_{n+N}(T) = z_0 Z_{n+N} + \ldots + z_{n+N-1} Z_1 - t_0 a_n - \ldots - t_{n-1} a_{n-n+1}$$

and put

$$L = (z_0^N - z_0) Z_{p+N} + \dots + (z_{p+N-1}^N - z_{p+N-1}) Z_1 - (T_0^N - t_0) a_p - \dots - (T_{q-1}^N - t_{q-1}) a_{p-q+1}.$$

The variables L and  $\varepsilon_{p+N}(T)$  are independent because  $a_j$  and  $Z_i$  are independent for j > i and  $a_j$  and  $a_i$  are independent for  $j \neq i$ . It implies

$$E[Z_{p+N+T} - \hat{Z}_{p+N}(T)]^{2} = E[\varepsilon_{p+N}(T)]^{2},$$

$$E[Z_{p+N+T} - Z_{p+N}(T)]^{2} = E[L + \varepsilon_{p+N}(T)]^{2} = EL^{2} + E[\varepsilon_{p+N}(T)]^{2}.$$

This completes the proof.

The variable  $\hat{Z}_{p+N}(T)$  contains  $a_p, a_{p-1}, ..., a_{p-q+1}$ . However, the variables  $a_p, a_{p-1}, ...$  are usually not known and, moreover, it is even hardly possible to derive any good estimates for them. Under some assumptions concerning the roots of the polynomial  $\Theta(B)$  we prove that the influence of those variables rapidly decreases if the length of the realization grows. Usually, the variables  $a_{p-q+1}, ..., a_p$  are neglected and we insert zeros instead of them. We shall show that this substitution does not influence the result too much if the number of the known variables  $Z_t$  is sufficiently large.

**Theorem 2.** If all the roots of the polynomial  $\Theta(B)$  are outside the unit circle, then  $\Theta_N^N \to 0$  for  $N \to \infty$ , where  $\Theta_N^N$  is defined in (13).

Proof. According to (13) we have

$$\Theta_N^N = \Theta_{N-1}^{N-1}\Theta_1 + \Theta_N^{N-1}.$$

Since  $\Theta_j^I = 0$  for I > j and for  $j - I \ge q$ , we obtain

(21) 
$$\Theta_N^N = \sum_{i=1}^q \Theta_i \Theta_{N-i}^{N-i}.$$

Denote

$$\mathbf{M} = \begin{pmatrix} 0, & 1, & 0, & \dots, & 0 \\ 0, & 0, & 1, & \dots, & 0 \\ & & & & & \\ \Theta_{q}, & \Theta_{q-1}, & \Theta_{q-2}, & \dots, & \Theta_{1} \end{pmatrix}$$

and introduce

$$\Gamma_n = (\Theta_n^n, \Theta_{n+1}^{n+1}, \ldots, \Theta_{n+q-1}^{n+q-1})'$$
.

Formula (21) gives

$$\Gamma_{n+1} = M\Gamma_n$$

so that

$$\Gamma_{n+1} = \mathbf{M}^n \Gamma_1.$$

It is well known that

(23) 
$$|\mathbf{M} - \lambda \mathbf{I}| = (-1)^{q+2} \lambda^q \Theta(1/\lambda)$$

and we see that all the roots of the matrix **M** are smaller then 1 in absolute value.

According to Perron's formula we get

(24) 
$$\|\mathbf{M}^{n}\| \leq \sum_{k=1}^{s} \left[ (\lambda_{k})^{n} \|\mathbf{Z}_{k_{1}}\| + \ldots + \frac{n!}{(n-m_{k}+1)!} (\lambda_{k})^{n-m_{k}+1} \|\mathbf{Z}_{k_{m_{k}}}\| \right]$$

where | A | is a norm of the matrix A defined by

$$\|\mathbf{A}\|^2 = \sum_{i,j} a_{ij}^2$$
.

Denote

(25) 
$$\lambda = \max_{\substack{1 \le k \le s \\ 1 \le k \le s}} |\lambda_k|,$$

$$m = \max_{\substack{1 \le k \le s \\ 1 \le k \le s}} (m_k - 1),$$

$$\|\mathbf{Z}\| = \max_{\substack{1 \le k \le s \\ 1 \le k \le s}} (\|\mathbf{Z}_{k_1}\| + \dots + \|\mathbf{Z}_{k_{m_k}}\|).$$

Then from (24) we obtain

(26) 
$$\|\mathbf{M}^n\| \leq \frac{s\|\mathbf{Z}\| \ n! \ \lambda^{n-m}}{(n-m)!}.$$

Put

$$a_n = \frac{s \|\boldsymbol{Z}\| \ n! \ \lambda^{n-m}}{(n-m)!}.$$

We see from (25) that  $0 \le \lambda < 1$ . Then for any sufficiently small  $\varepsilon > 0$  we have

$$\lambda(1+\varepsilon)<1$$

and for any  $n \ge n_0$  we have also

$$\frac{m}{n+1-m}<\varepsilon.$$

This yields

$$\left|\frac{a_{n+1}}{a_n}\right| < \lambda(1+\varepsilon) < 1.$$

Denote

$$(1 + \varepsilon) \lambda = \lambda^*.$$

Then we see that

$$\left|a_{n_0+r}\right| < \left|a_{n_0}\right| \left(\lambda^*\right)^r.$$

Formulas (26), (28), (22) give

$$\|\mathbf{M}^n\| < a_n \le |a_n| < \frac{|a_{n_0}|}{(\lambda^*)^{n_0}} (\lambda^*)^n, \quad \Gamma_{n+1} = \mathbf{M}^n \Gamma_1.$$

We see that

(29) 
$$|\Theta_{j+n}^{j+n}| \leq ||\Gamma_{n+1}|| \leq ||\mathbf{M}^n|| \, ||\Gamma_1|| < \frac{||\Gamma_1|| \, |a_{n_0}|}{(\lambda^*)^{n_0}} (\lambda^*)^n$$

for j = 0, ..., q - 1.

We can choose such a small  $\varepsilon$  that  $\lambda^* = \lambda(1 + \varepsilon)$  is also smaller than 1. We see from (29) that  $\Theta_N^N$  exponentially converges to zero.

**Theorem 3.** If all the roots of  $\Theta(B)$  are outside the unit circle then  $T_j^N$  converges exponentially to zero for  $N \to \infty$ .

Proof. From recurrent formula (13) we easily get

(30) 
$$\Theta_{N+\alpha}^{N} = \sum_{i=\alpha+1}^{q} \Theta_{N+\alpha-i}^{N+\alpha-i} \Theta_{i}.$$

Since  $\Theta_{N+\alpha-1}^{N+\alpha-1}$  converges exponentially to zero, we see that for any fixed  $\alpha$  the coefficients  $\Theta_{N+\alpha}^{N}$  also converge exponentially to zero. As

$$T_{j}^{N} = \sum_{i=0}^{q-1} s_{T+i} \Theta_{N-i+j}^{N-i} ,$$

it is clear that  $T_j^N$  also converges exponentially to zero. The proof is complete.

# 4. MULTIDIMENSIONAL MODEL

We have used a modified Box-Jenkins model for the scalar case. In this section we generalize the results to the vector case.

Suppose that  $\boldsymbol{a}_{p-q+1}, \ldots, \boldsymbol{a}_p, \ldots$  and  $\boldsymbol{Z}_1, \ldots$  are k-dimensional random vectors. We shall assume that

$$E\boldsymbol{a}_i = 0$$
, var  $\boldsymbol{a}_i = \boldsymbol{A}$ ,  
 $\operatorname{cov}(\boldsymbol{a}_i, \boldsymbol{a}_j) = \boldsymbol{0}$  for  $i \neq j$ ,  
 $\operatorname{cov}(\boldsymbol{a}_i, \boldsymbol{Z}_i) = \boldsymbol{0}$  for  $i > j$ .

Define  $Z_t(t \ge p)$  recurrently by

$$\varphi(B) \mathbf{Z}_t = \Theta(B) \mathbf{a}_t$$

where

$$\varphi(B) = I - \varphi_1 B - \dots - \varphi_n B^p$$
,  $\Theta(B) = I - \Theta_1 B - \dots - \Theta_n B^q$ ,

and  $\varphi_i$ ,  $\Theta_i$  are matrices of the type (k, k).

Let *M* be the set of the random vectors

$$\{z_0 \mathbf{Z}_{p+N} + \ldots + z_{p+N-1} \mathbf{Z}_1 - t_0 \mathbf{a}_p - \ldots - t_{q-1} \mathbf{a}_{p-q+1}\}$$

where  $z_k$  and  $t_j$  are arbitrary real numbers. Let  $\hat{Z}_{p+N}(T)$  be a fixed element from  $\mathcal{M}$ . If the difference

$$\operatorname{var}\left[\boldsymbol{Z}_{p+N}(T)-\boldsymbol{Z}_{p+N+T}\right]-\operatorname{var}\left[\boldsymbol{\hat{Z}}_{p+N}(T)-\boldsymbol{Z}_{p+N+T}\right]$$

is a positive semidefinite matrix for all  $Z_{p+N}(T) \in \mathcal{M}$ , we say that  $\hat{Z}_{p+N}(T)$  is the best linear extrapolation for  $Z_{p+N+T}$ .

It is easy to see that  $\hat{Z}_{p+N}(T)$  defined quite analogously as in (19) is the best linear extrapolation for  $Z_{p+N+T}$ .