

Werk

Label: Table of literature references

Jahr: 1978

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0103 | log11

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

In order to prove 2) choose $a \in V(G)$ such that $dp(G_a) = n - 1$ (Theorem 2.8). Then $K_{n-1} \leq G_a$ implies $K_n \leq G$.

- **2.10. Theorem.** For every natural number n there exists a unique graph G_n with the following properties:
 - 1) G, has 2n vertices,
 - 2) $dp(G_n) = n$.

The graphs G_n are given as follows: $G_0 = K_{\emptyset}$, $G_1 = (\{1, 2\}, \emptyset)$, $G_n = G_{n-1} + G_1$ for all $n \ge 2$.

Proof. $dp(G_n) = n$ by Theorem 2.7. Proof of the uniqueness of graphs G_n follows easily from the proof of Theorem 2.9.

2.11. Theorem. $dp(G) \leq 3$ for every planar graph G.

Proof. Let dp(G) = 4. By Theorem 2.8 there exists a vertex $a \in V(G)$ such that $dp(G_a) = 3$ and by the same argument there exists a vertex $b \in V(G_a)$ such that $dp((G_a)_b) = 2$. But this means that $(G_a)_b$ contains a cycle C of length > 3 as its subgraph. But $C + K_2$ fails to be a planar graph.

2.12. Remark. There are examples of planar graphs depth 3. These are e.g. $C_k + G_2$ for any $k > 3/C_k$ is the cycle of length k and G_2 is that from Theorem 2.10).

Let us conclude the paper with a problem:

2.13. Neighborhood problem. Let G be a graph such that $dp(G_a) = n \ge 1$ for every vertex $a \in V(G)$. Does it follow dp(G) = n + 1?

References

- [0] Blažek, Borák, Holan, Kordík, Voldřich, Vyhnalík: A report: Students' Research Activity, Fac. of Mathematics and Physics, Charles Univ. 1976.
- [1] F. Harary: Graph theory, Addison-Wesley, Reading, Mass., 1969.
- [2] J. Nešetřil: Theory of Graphs (Czech), SNTL, 1978.
- [3] J. Nešetřil, V. Rödl: Partitions properties of finite relational and set systems, J. Comb. Th. A, 1977.
- [4] S. Poljak, D. Turzik: On amalgam of graphs and essential sets of generators, J. of Graph Theory.

Author's address: 186 00 Praha 8 - Karlín, Sokolovská 83 (Matematicko-fyzikální fakulta UK).