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SOME GLOBAL CHARACTERIZATIONS OF THE SPHERE IN E*

KAREL SvoBODA, Brno
(Received April 25, 1977)

1. Let M be a surface in the 4-dimensional Euclidean space E*. Let {U,} be
a covering of M such that in any domain U, there is a field of orthonormal frames
{M; vy, v, v3, 04} such that vy, v, € T(M), vj, v, € N(M), T(M), N(M) being the
tangent and the normal bundle of M, respectively. Then we have

(1) dM = o'v + 0y,

2 4 2 3 4
dvl = (01172 + a)iv3 + wlv4 s dvz = —'(Dlvl + w2U3 + (0204 s
3 3 4 4 4 4.,
dvy; = —wijv; — w30, + w3v,, dvy, = —iV; — WV, — W3V;;
(2) do' = o’ A 0}, dol =} A of,

ol+oj=0, o =0*=0.

Using the exterior differentiation and applying Cartan’s lemma, we get from (2) the
existence of real functions a;, b; (i = 1,2,3); 0, B, (i = 1,2, 3,4); 4;, B;, C;, D, E;
(i = 1, 2) in each U, such that

(€)) 0} = a,0' + a,0%, o3 = a0 + a;0?,
o} = byjo! + b,0?, w} = b,0! + byw?;
4 da, — 24,0} — b0} = 0,0 + 0,07,

da, + (a; — a;) @7 — b0} = w0 + 0307,
da; + 2a,0} — b0} = a;0' + au0?,
db, — 2b,0? + a,0% = 0! + B,0?,
db, + (b; — b;) 0} + a,0% = 0" + B30?,
db; + 2b,0% + a;0% = By + fi0?;
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(%) do; — 3,0} — B 0w} = A;0' + (B; — a,K — 3b.k) 0?,
da, + (¢, — 203) 0] — B0} = (B; + a,K + 3b,k) o' +
- +(Cy + aK — 3byk) ?,
doy + (20, — ag) @] — Bsws = (C; + a;K + 3byk) 0! +

+ (Dy + a;K — 1bsk) @?,
day + 3ey0] — B0 = (D; — a,K + 3b3k) o' + E 02,
dB, — 3,0} + yw; = 4,0' + (B, — b,K + }a k) 0?,
dB, + (By — 2B;) i + a,0% = (B, + b,K — }a,k) o' +
+ (C; + byK + }a,k) 0?,
dBs + (2B, — Bs) 0F + asw§ = (C, + b3K — }ak) o' +
+ (D, + bK + }a3k) 0?,

dBs + 3Bs0% + aywi = (D, — b,K — }a;k) o' + E,0?,
where

K=a1a3_a§+blb3—b§, k=(al_a3)b2—(b1—b3)az.
Denote further as usual
H = (a1 + a3)2 + (bl + b3)2 .

The invariants K, H are the Gauss and the mean curvature, respectively.
Now, let us introduce some elementary remarks necessary in the following.
As mentioned in [1], a normal vector field X = xv; + yv, is parallel, if

(6) dx — yo} =0, dy + x0} =0.

In this case we can choose orthonormal frames {M; v,, v,, v3, v,} in each U, in
such a way that . '

k=0.

Further, let v, v, € T(M) generate an orthogonal conjugate net of lines on M.
Then it is easy to see that

a, =0, by=0, k=0

on M. Hence, because of (4), we see that w] is the mean 1-form and there are real
functions g, o such that

(7 o? = ! +.00?,
a; = o(a; — as), ay =o(a; — a3),
B, = Q(bl - ba)s Bs = U(b1 = bs)-
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Now, let us revert to the object of our consideration.
Let f : M — 2 be a function. Its covariant derivatives f;, f;; to U, for each a with
respect to the frames {M ; U1» Uz, U3, v4} are defined by the formulas

(8) df = fio' + f,0°,
df, —fzwf =f11‘91 +f1zw2’ df, +f1wf =f12(1’1 + f220° -“

In all following proofs we use the maximum principle in this form:
Let M be a surface in E* and 0M its boundary. Let f be a function on M and

fi fi; its covariant derivatives. Let (i) f 2 0 on M; (ii) f = 0 on 0M; (iii) f satisfy
in U, the equation

ay1fis + 2a12f12 + az2f22 + a1f1 + axf, +agf = a
with a;;x'x’ positive definite, ap < 0 and a = 0. Then f = 0 on M.
2. In the following consider the mean curvature vector field
(9) é = (al + a3)‘v3 + (bl + b3) U4

on M. Further, vy, v, € T(M) being the tangent orthonormal vector fields, define
normal vector fields ¢;, &;; (i,j = 1,2) by

(10) ¢ = (U1¢)N , &= (Uzﬁ)N 5
(11) i1 = (Ulél)N , €2 = (Uxfz)N » Eo1 = (szl)N, $22 = (vzéz)n,

where (X)V denotes the field of normal components of X. Under this notation
introduce the fields

(12) V41 = (UIUI)N s Ugpy = (UzUz)N .
Now, we are going to get another proof of the assertion mentioned in [2]:

Theorem 1. Let M be a surface in E*. Let

(i) K > 0 on M;
(ii) & be parallel in N(M);
(iii) OM consist of umbilical points.

Then M is a part of a 2-dimensional sphere in E*.
Proof. On M, consider the function
(13) f=H—4K = (a; — a;)* + (b; — b;)* + 4a} + 4b3.

Relations (8) yield for f especially, by virtue of (4), (5),
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(14)  fi1 = —2[(a; — as)a; + (by — bs) by — 4a3 + b3)]K —
— [k + 4(asb, — azby)] k + 2(a; — a3)® + 2(B; — B3)* +
+ 8(c2 + B3) + 2(a; — a3) (4, — C)) + 2(by — b3) (4, — C,) +
+ 8(ayB; + b,B,),
fa2 = 2[(a, — as)ay + (by — b3) by + 4(a3 + b3)]K —
— [k + 4(azby — asby)] k + 2(o; — ag)® + 2(B, — Bu)* +
+ 8(c? + B2) + 2(a; — a3)(Cy — E;) + 2(b; — b3)(C, — E,) +
+ 8(ayD, + b,D,).

-

Adding these equations under the condition (ii) which implies k = 0 on M, we get

(15) fis + faz — 2fK = 2V + 20 + 8¢ + 8(aZ + b3)K

where

(16) V= (= a3)’ + (22 — @)’ + (B — B3)* + (B2 — Ba)® +
+ 4o + a3) + 4Bz + B3),

(17) ® = (a, — a3)(4; — E)) + (b, — b) (4, — E,),

@ = ay(B; + Dy) + by(B, + D,).
Now, we have from (ii) using (4), (6), (9)
(18) ay +0a3=0, a+0a,=0,
Bi+B3=0, B+ Bs=0.
By exterior differentiation of these equations we obtain
(4; + C; + a3;K) o' + (By + Dy) @* + (o + o) @F + (By + B3) 03 =0,
(By + D) @' + (Cy + E; + a;K) @ — () + o3) 0% + (B2 + B4) @3 =0,
(42 + C; + b3K) @' + (B, + D,) ? + ([32. + Ba) @ — (2, + a3) 03 =0,
(B, + Dy) o' + (C, + E; + byK) 0* — (B + Bs) wf — (22 + 2g) @3 =0
and hence using (18)" .
Ai+C;+a;K=0, C;,+E, +aK=0, B, +D, =0,
A, +C,+b;K=0, C,+E,+bK=0, B,+D,=0.
By means of these relations we finally have ¢ = 0 and

® = [(a; — a3)* + (b, — b3)*]1K.
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Thus the equation (15) reduces to
Jin + fo2 — 4K =2V

and the maximum principle yields our assertion.
3. The following theorems are generalizations of this basic result. One of them is

Theorem 2. Let M be a surface in E*. Let

(i) K> 0 on M;

(i) vy, v, € T(M) generate an orthogonal conjugate net on M;
(iii) &, &, € N(M) be parallel in N(M);
(iv) OM consist of umbilical points.

Then M is a part of a 2-dimensional sphere in E*.
Proof. Recall that the condition (ii) implies the relations (7) and
a,=0, b,=0, k=0
on M. Thus the equation (15) has the form
fis + faz — 2K = 2V + 20

where V, @ are the functions introduced in (16), (17) respectively.
Now, we get from (9), (10) using (4)

(19) &y = (o + az)v3 + (By + B3) v4s
&y = (on + a4) v3 + (B2 + Ba) V4
As &, is parallel according to the assumption (iii), we have from (6) using (5)
(4; + C; + asK) o' + (B; + D)) & + (0, + o) @3 =0,
(45 + C; + b3K) ' + (B, + D) w* + (B, + Ba) @] = 0.

Multiply these equations by a, — a3, b; — bj respectively. Then using (7) we get
in particular

(20 (ay — a3)(4; + Cy + a3K) + ay(0; + a4) =0,
(by — b3)(4; + C3 + b3K) + (B + Bs) = 0.
In the same way we obtain from the condition of parallelness of &,
(21) (ay — a3)(Cy + E; + ayK) — as(oy + a3) =0,
(by — b3)(C, + E; + byK) — B3(By + B3) = 0.
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Hence from (20), (21)

(ay — as3)(4; — E;) = (a; — a3)* K — a5(0; + o3) — ay(0; + ),
(by — bs) (4 — E;) = (by — b3)* K — By(B + Bs) — Ba(B + Ba)

and
D = fK — as(a; + a3) — ax(ay + ag) — B3(By + B3) — Ba(B: + Ba) -

Thus we have
Ji1 + f22 — 4K =

= 2V — 2[a(a, + a3) + ay(a; + ag) + Ba(By + B3) + Ba(B: + B4)]
V being the function (16), and further

Jiu + f22 — 4K = %(“g +of + B3+ B3) +
+ 2[(o, — ’}0‘3)2 + (g — %‘12)2 + (B, — 363)* + (Bs — 3B,)*]

so that by means of the maximum principle f = 0 on M. This completes our proof.

4. A generalization of the characterization of the sphere in E* is formulated in the
following

Theorem 3. Let M be a surface in E*. Let
(i) K> 0 on M;
(i) vy, v, € T(M) generate an orthogonal conjugate net on M;
(i) (a) <&11 + S(&12 — &21), v11 — 022> 2 0 0on M where S : M — R is a func-
tion satisfying |S| < 4./(2) — 5 and
(b) &, € N(M) be parallel in N(M);
or
(iii') (a') (=& + S(¢y2 - éZI)’ Vg3 — V30 20 on M where S: M — Z is
a function such that |S| < 4./(2) — 5 and
(b’) &, € N(M) be parallel in N(M);
(iv) each point of M be umbilical.
Then M is a part of a 2-dimensional sphere in E*.

Proof. We are going to prove the case of the assumption (iii), the proof of the
theorem under the condition (iii’) being analogous.
First of all, we get from (19) by means of (5), having in mind that k = 0 on M,

dé, = [(4; + C, + asK)v3 + (4, + C; + b3K) v, ] 0 +
+ [(By + D) vs + (B, + D;) v4] @* + &,01,
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dé, =[(C, + E; + a;K) v3 + (C; + E, + b,K) v,] @* +
+ [(By + Dy) vy + (B, + D) v,] o' — {,wf  (mod vy, v,)
and hence, using (7) implied by (ii) we get from (11)
(22) ¢ = (4, + C; + a3K) v + (4; + C, + b3K) vy + 0,
¢12 = (By + Dy) vy + (B, + D) vy — @&y,
&1 = (By + Dy)vs + (By + Dy) vy + 0&,,
&2 =(Cy + E; + a;K)v3 + (C, + E;, + b;K) vy — 6&; .
Further, we have from (12) directly
(23) vyg — vz = (ag — a3) vy + (by — b3) vy
Assumption (iii) (b) yields immediately, see (21),
(a; — a3)(Cy + E; + a,K) + (b, — b3)(C, + E;, + bK) =
= o3(0; + o3) + B3(By + Ba) -
From (22), (23) using (7) we obtain
(ay — a3)(4; + Cy + a3K) + (by — b3) (4, + C, + b3K) =
= (&1 + S(E12 — E21) D11 — V22D — ax(y + ) — Ba(By + Ba) +
+ S[az(ay + a3) + oa(ay + ag) + Bo(By + Bs) + Ba(B2 + Ba)] -
Hence the relation (17) has the form
@ = &gy + S(&y2 — &3y), 041 — V25 + K —
— og(oty + a3) — ooty + ag) — B3(By + B3) — Ba(B2 + Ba) +

+ S[ax(oy + a3) + as(xz + ag) + Ba(By + Bs) + Bs(B2 + Ba)]
and

(24) i1 + fa2 — 4K = 2{&1 + S(¢12 — &21) V11 — V22D + 2W

where

@25) w=vV- as(oy + a3) — ax(o; + ag) — Ba(By + B3) — Ba(B2 + Ba) +
+ S[oy(ay + o3) + as(az + og) + B2(By + B3) + Ba(B2 + B4)] -
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Now it is easy to see that

(26) _ W= (o — Jos + 3Sw,)? + (04 — 30, + 3S0;3)” +
+ (B — 385 + 1SB,)* + (Bs — 3B, + 1SBs)* +
+ 3[(7 — 52 o2 + 20Swy0; + (7 — S2) 3] +
+ (7 — 5%) B} + 20SB.B;s + (7 — S?) B3] -

The two last terms of (26) are non-negative for each o;, §; (i = 2, 3) because of (iii) (a).
The assumption (iii) (a) and the maximum principle complete again the proof.
As a special case of this assertion, we introduce

Ceorollary 1. Let M be a surface in E*. Assume (i), (ii), (iv) and let
(iii) (@) &y + S(&12 — €21) =0o0n M, S: M — 2 being a function such that
|S| <£4./(2) —50n M and
(b) &, be parallel in N(M)
or
(iii") (') — &22 + S(&;2 — &21) = 0on M where S : M — R is a function satis-
fying |S| £ 4/(2) — 50n M and
(b") &, be parallel in N(M).
Then M is a part of a 2-dimensional sphere in E*.

Other trivial consequences can be obtained by putting S = 0 in Theorem 3 and
Corollary 1.

5. Finally, we are going to prove a more general version of Theorem 3.

Theorem 4. Let M be a surface in E*. Let
(i) K> 0 on M;
(i) vy, v, € T(M) generate an orthogonal conjugate net of lines on M
(iii) <€11 = 22 + S(C12 = &21)s V11 — 022> 20 on M where S:M - R is
a function such that |S| <4./(2) - 50nM;
(iv) each point of OM be umbilical.

Then M is a part of a 2-dimensional sphere in E*.
Proof. From (17), (22) and (23) we have immediately
D =&y — &+ S(flz = 521), vy — 30 + K —
= az(oy + a3) — ap(ay + ) - Bs(B: + B3) — BBz + Ba) +

+ Slay(oy + o3) + as(xz + &g) + B2(By + B3) + Bs(B2 + Ba)]
and hence"

i1 + fas — 4K = 2{&;; — &5 + S(&12 — &21)s V11 — 22D + 2W
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