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1. INTRODUCTION AND NOTATION

If x, y are reals, x < y, then [x, y], (x, y) denote respectively the closed and the
open interval with the endpoints x, y, (x, y] = (x, y) U {y}. N will always denote the
set of positive integers, @ the empty set etc.

Let T be a positive real number or co. The letters u, v, w will always denote map-
pings of the interval (0, T) into (0, T). For every such mapping w(x) and every
nonnegative integer n define

w(x)=x if n=0, w(x)=ww"'(x)) if neN,
W(x) = wo(x) + w'(x) + wi(x) + ...,

and quite analogously for u, U or v, Vinstead of w, W.

The function W(x) is a mapping of (0, T) into (0, o) U {o0}. By [1]; a function
w(x) is said to be small on (0, T), 0 < T' < T, if W(x) < oo for all x € (0, T").
A function w(x) is said to be small if it is small on (0, T). The aim of our paper is to
give conditions for a function w(x) to be small. V. Ptik suggested to study small
functions in connection with his results concerning generalizations of the Banach
fixed-point theorem and the closed graph theorem.

The main results of this paper are contained in Sections 4 and 5. Sections 2 and 3
contain some lemmas necessary in the proofs of the results in Sections 4 and 5.
Section 6 contains examples and counter-examples showing that it is impossible to
delete some assumptions in the theorems and lemmas of the previous sections.

All infinite series in the paper consist of nonnegative members and hence their
sums always exist; of course, they can be equal to co. Analogously all integrals are
integrals of nonnegative Lebesgue measurable functions, hence they exist but may
be equal to co. Measurability of functions is mentioned in theorems and lemmas if
necessary but it is not mentioned in their proofs if it is consequence of other as-
sumptions.
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2. INFINITE SERIES

2.1. Lemma. Let (ao, ay, a,,...) be a decreasing sequence of positive reals,
let k> 1 and

< o0.

ia 1n (an - an+1) + k'(an—l - an)
n=1 " a,, = a"+1

Then a; + a; + a3 + ... < 0.

Proof. Denote ¢,_; = a,_, — a, for all n € N. Then we have a, = (¢, + ¢,+1 +
+ Cp4y + ...) + a, where a = lim a,; the limit obviously exists and is nonnegative.

n—+o
We prove that it is equal to 0. If @ > 0 then
. G k.c,-
Zlng < ©
n=1 Cp
However, lim ¢, = 0 and hence ¢, < ¢,_, i.e.
n— oo

Ilc,,+k.c,,_l

1 > 1In (1 + k)

for infinitely many »n € N, which is a contradiction.
Obviously ¢, < ¢, for almost all n € N; for the sake of simplicity we assume that
¢, < ¢ for all n e N. Then we have

[+9]
0>Ya, Itk G

n=1 Cp

¢ +k.c c k.

=(¢1+Cz+03+...).1n—l——°+(cz+c3+...).lnz—u+
Cqy c,
k.
+(c,+c4+...).lnu+...=
. G
=c,.ln———c‘+k'c°+02.ln c‘+k'c°.c2+k'cl>+

€1 ¢y )

ot c1+k.co.cz+k.c1'c3+k.c2 .
31 €2 C3

=c1.1nc‘+k'c°+c2.ln<c‘+k'c°.c2+k'c‘-)+
Cq Cy (1

+c3.ln<cl+k'c°.62+k'cl.c3+k'c2)+...g.
\ C3 €1 C2
20.c;,. Ink+1.c;.Ink+2.c3.Ink+...=(a,+a;+a,+..).Ink.
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Hence a, + a3 + a4 + ... <oo and then also a; + a, + a; + ... < ©, q.e.d.

2.2. Lemma. Let (ay, a,, a3, ...) be a decreasing sequence of positive reals, let

)

Y a, < w0 and

n=1
aa; < asla, < aglas < ...
Then '

lee)

Ay — Qny1
Ya,, /2 < 0.
n=1 Apt+1 — Qut2

Proof. For an arbitrary non-decreasing sequence b = (by, by, b, ...) of positive
reals less than 1 and an arbitrary i € N define

F(b) =1+ bl + blbz + b1b2b3 + ...,

l_bl+b1b2.1_b2+b1b2b3.i—b3

1—b2 - U3 - Ya

G(b)=b1. +.'.,

F{b) = F(by, by, <5 by bys by, o) 5
Gl(b) = G(bl: bz, ceey bi! bi’ bi’ ...’) 5

Up to a finite number of members, Fy(b) and G,(b) are geometrical series with the
quotient b;, hence they are convergent. By an easy computation we can verify that

biyy — b

Fi+l(b) ~ F(b) = byb, ... bi-(l —b).(1 - bi+1) ’

o (2= b) . (birs = b))
Giyy(b) — G(b) = byb, ... b;. (1= b). (1= bisy)

Hence for all i € N we have
0= G,H(b) - G,(b) <2. (F,-“(b) - F,-(b)).

Comparing term by term the infinite series F(b), F(b) we obtain F(b) < F(b) for
alli € N. On the other hand, F(b) is greater than the i-th partial sum of F(b) and hence
lim F(b) = F(b). The i-th partial sum of G(b) is less than G (b) and hence lim G,(b) =
i—w i=

= G(b). (The limit exists but it may be co.)

Now we can prove the lemma. Without loss of generality we may assume a, = 1.
Denote b, = a,.,/a, for every ne N. The sequence b = (by, b,, b, ...) is non-
decreasing and b, € (0, 1) for all n e N. It holds

a, — a, 1-0,
a"+1 . ’_—L = b1b2 ces b"..l o« T a—
Aniy1 — Op+2 1 = Byuq
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for all ne N — {1}. Hence it remains to prove that F(b) < oo implies G(b) < co.
However,

©6() S 1imG(b) = i) + 3, (G1ni(8) ~ Gib) 3
<2.Fyb) +¢§12 (Fisa(b) = F(b) = 2. F(b) < w0, qeed.

2.3. Lemma. Let k > 1, let (a,, a,, a, ...) be a decreasing sequence of positive
reals, let

Ya, <o
n=1
and let forallneNa,,, — @yiy < k.(a, — Gy41). Then

k.(a, — ay4y)

Api1 — Qpy2

Y apyq.In < .
n=1

Proof. Denote b, = a, — a,, for all n e N. Then obviously a, = b, + b,,, +
+ b,4+2 + ... for all n e N. Without loss of generality we may assume b, = 1 and
b,+1 < 1for all n e N. Then we have

o0 — o0
Sty dn O =) _w Bl
n=1 An+1 — Qni2 n=1 bys1
= (b, + b3 + by + ...).lnk'bl + (bs + by + ...).ln%’—z+
2 3
+ (by + bs +...).lnk'b3 + .=

4

=b2.lnk'b1 +b3,.<lnk'b1 +lnk—°—b—2)+
2 b, b,
+1b4.(lnﬂ)+lnk'—b2+lnl—c'—b3‘)+... =
b, bs 4

élnk.za,+l+2n:(b,,+l+e—")=
n=1 n=1
=(1+mk).Y ap; +Yn.e" <.
n=1 n=1 '
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We have used the inequality
b.|lnb|<n.(b+e" forall be(0,1) and neN.

To verify it, let us distinguish two cases. If Inb = —n then b.|lnb| < n.b. If
Inb < —n then we have b.|lnb| =|Inb|.e”!"™ < n.e™", since the function
x . e~ is decreasing on [1, ©), q.e.d.

3. OTHER LEMMAS

3.1. Lemma. Let a,b,ce(0,T), a<b <c, let wx)<x for all xe[b,c],
w(c) = b, w(b) = a and k > 1.

a) If w(y) — w(x) £ k.(y — x) for all x, ye[b, c], x < y then
¢ x.dx b

j,, x—wx) k

b) If w(y) — w(x) = —k.(y — x) for all x, ye[b, c], x < y then

c x.dx _ b ]n(b—a)+(k+1).(c—b)
J‘bx—w(x)=k+1' b—a '

v

Proof. a) Let u(x) = b + k.(x — c). Then w(x) 2 u(x) for all xe[b, c] and

hence
J‘c x.dx > ¢ x.dx _ ¢ dx ZJ‘C dx =2'
px—wx) Jpx—ux) J,1—ulx)x J,1—ub)b &k

b) Let u(x) = a — k. (x — b). Then w(x) = u(x) for all x € [b, ¢] and hence

¢ x.dx * x.dx ¢ x.dx :
px—wx) Jyx—ux) J,(k+1).x—k.b—-a’
by an easy computation we obtain the required expression, q.e.d.

3.2. Lemma. Let a,b,ce(0,T), a < b < ¢, let w(x) < x for all xe[b, c], let
w(c) = b, w(b) = a and let k be a real.

a) If ke (0, 1) and w(y) — w(x) 2 k.(y — x) for all x, ye[b, c], x < y then

J‘ x.dx §£.
»x —w(x) Kk

b)If k>1 and 0 = w(y) —w(x) S k.(y —x) for all x,ye[b.c], x<y

then
f x.dx §c+b.1n(c-b)'k.
» X — w(x) b—a
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c) If the function w(x)[x is non-increasing on [b, c] then

¢ x.dx éb.c—b.
» X — W(x) b—a

-

Proof. a) Let u(x) = b + k.(x — c). Then w(x) < u(x) for all xe [b, c] and
since u(x)/x is monotone on [b, c] we have

[ o[t s, s8).

. )
=max|—, ¢
(&

b) Let d = b + (b — a)/k and u(x) = b + k.(x — d) for xe[b,d], u(x) = b
for x € (d, c]. Then w(x) < u(x) for all x € [b, ¢] and therefore

il e o ek

b—a

IIA

£
-

c—b

)=c+'b.1n

b—a

§d+<c—d+ b.ln

c¢) We have

¢ x.dx _ € dx _[f_dx =bc—b -y
pXx—wx) Jyl—wkx)/x J,1—alb ‘b—a’

3.3. Lemma. Let w(x) <x for all xe(0,T), let k> 1 and w(y) — w(x) <
Sk.(y—x) forall x,ye(0,T), x <y or w(y) — w(x) 2 —k.(y — x) for all
x,y€(0, T), x < y. Let there be be (0, T) such that the point [b, b] is a limit
point of the graph of w(x). Then there are a, c€ (0, T), a < ¢ such that

¢ x.dx
—_— = 00
a X — W(x)
Proof. Let e.g. w(y) — w(x) £ k.(y — x) for x < y and let the point [b, b]

be a limit point of the graph of w(x). It can be easily shown that b — w(x) <
< k.(b — x) for all x €(0, b). Take ¢ = b and a € (0, ¢). Then

¢ x.dx k a.dx
= : = ©
aXx—wx) Jo(k—1).(b—x) _
If w(y) — w(x) 2 —k.(y — x) for x < y, the proof is similar. We choose a = b
and ce (b, T). Qed.
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3.4. Lemma. Let w(x) < x for all xe(0, T), let w(x) be Lebesgue measurable
on (0, T) nad let no point [b, b], b€ (0, T) be a limit point of the graph of w(x).
Then for all a,c€(0,T), a < c,

¢ x.dx
= . <.
j‘a x = w(x)
Proof. Take a, c€(0, T), a < c. Then there exists a positive number ¢ such that
w(x) < x — ¢ for all x € [a, c] and hence
x.dx = c.dx < oo. Q.ed.
a X — W(x) . &
3.5. Lemma. Let at least one of the functions u(x), u(x) be non-decreasing on
(0, 1), let u(x) < v(x) for every x € (0, t). Let a, b € (0, T), V(b) < oo and lim u"(a) =

= 0. Then U(a) < 0.

Proof. Without loss of generality we may assume a < b < t. Now we can prove
u"(a) < v"(b) by induction. If n = 0 then obviously u"(a) = a < b = v"(b). For
n € N we have '

w(a) = u(u'X(a)) < X < (" 1(b) = o(b)

where X = u(v""!(a)) if u(x) is non-decreasing and X = v(u""*(a)) if v(x) is non-
decreasing. Comparing U(a), ¥(b) term by term we obtain U(a) < V(b) < w0,
q.e.d.

4. CRITERIA OF SMALLNESS

Let t be a fixed element of (0, T); it is suitable to imagine it small. An obvious
necessary condition for a function w(x) to be small is

(4.0) lim w'(x) = 0 forevery xe(0,T);

this condition will be called the zero-condition for the function w(x). It is easy to

see that if a function w(x) satisfies the zero-condition and is small on (o, t) then it

is small (i.e. small on the whole (0, T)). The problem whether a function w(x) is

small is usually much more difficult than the problem whether w(x) satisfies the zero-

condition. Therefore it is usually reasonable first to verify (4.0) and only if it holds

to find out whether w(x) is small. Hence it is suitable to investigate smallness on (0, t).
We shall also assume

(4. w(x) < x forall xe(0,1]

in most theorems. The condition (4.1) is obviously very natural even if it is not
necessary for w(x) to be small (see Example 6.5). Our basic result is the following
theorem.

371



4.1. Theorem. Let w(x) satisfy (4.1) and (4.0), let there be a real k such that

(42) wy) —wx) £ k.(y —x) forall x,ye(0,t], x<y
or
(4.3) w(y) —w(x) 2 k.(y —x) forall x,ye(0,1], x<y,
and let

fox.dx
(44) [ ==

Then the function w(x) is small.

Proof. We may obviously assume |k| > 1 and prove only W(a) < oo for all
a € (0, t). Denote a, = w"(a) for all ne Nu {0}. The sequence (ao, aj, a,, ...) is
decreasing and its limit is 0. Now let us distinguish two cases.

If (4.2) holds then using Lemma 3.1a for b = a,, ¢ = a,_, we obtain

an-1

W(a)=ao+2an§ao+2k.J 21 -
n=1 n=1

w X = W)

a t
=ao+k. —x"i.{‘"._ao'i‘k —x-ﬁ—<w.

0 X — w(x) 0 X — w(x)

Let (4.3) hold. Using Lemma 3.1b we obtain
a e Gn-1

oo>'[ x.dx =ZJ‘ x.dx >

ox —w(x) n=1), x—wx)

> But1 . 4o (@ = @usr) + (—k + 1) .(ay—y — a) .
-k +1 ’ a, — ap44q

Now we can use Lemma 2.1. It implies that a; + a, + a3 + ... < o and hence
W(a) = ao + a; + a; + ... < ©, q.e.d.

Theorem 4.1 shows that (4.4) is a sufficient smallness condition for a rather large
class of functions w(x). Generally speaking, it is not a necessary condition (see
Example 6.7). However, (4.4) can turn out to be a necessary and sufficient smallness
condition if we restrict the class of functions w(x) considered. Some convenient
restrictions are given in the next three theorems. In their proofs the necessity of (4.4)
is verified only, the sufficiency being obvious consequence of Theorem 4.1.

4.2. Theorem. Let w(x) satisfy (4.0) and (4.1), let there be a positive real k such
that (4.3) holds. Then the function w(x) is small if and only if (4.4) holds.
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Proof. We may obviously assume k < 1. Let w(x) be small. Denote a, = w"~'(f)
for all n € N. By Lemma 3.2 we have

J" x.dx =§J’“" x . dx éian=W(t)<oo_ Q.ed.

sy X — W(X) a=1 N

4.3. Theorem. Let w(x) satisfy (4.0) and (4.1) and let the function w(x)/x be non-
increasing on (0, t]. Then the function w(x) is small if and only if (4.4) holds.
Proof. Let w(x) be small. Denote a, = w"~!(¢) for all n € N. Then

J" x.dx i “ x.dx O Gy — Qg
x —wx) =1 )g,, X — W(xX) #=1G,4y — Guys

IA

2 lpyy < O

the first inequality follows from Lemma 3.2c and the other from Lemma 2.2, q.e.d.

4.4. Theorem. Let w(x) satisfy (4.0) and (4.1), let w(x) be non-decreasing and let
there be a real k such that (4.2) holds. Then w(x) is small if and only if (4.4) holds.

Proof. We may obviously assume k > 1. Let w(x) be small. Denote a, = w"~(t)
for all n e N. It holds

f’_&=§r» §§<an+an+l.ln("—"L‘)'k>=

an+1 W(X) A Api1 — Quia

=Y a, +Za,,;rl ln———————( —a’f“)'k<oo.

n=1 Any1 — Qpy2

The first inequality follows from Lemma 3.2b, the second from W(f) < oo and
Lemma 2.3. Q.e.d.

Up to now we have tried to find smallness conditions which were as general as
possible. Now we are going to give some more easily applicable conditions. We
begin with a simple theorem for verifying (4.0).

4.5. Theorem. A continuous function w(x) satisfies the zero-condition if and
only if w(x) < x for all x € (0, T).

Proof. Let w(x) < x for all x € (0, T), and a € (0, T). Denote a, = w"(a) for all
neNuU {0}. The decreasing sequence (ao, ay, a,, ...) has a limit b 2 0. If b is
positive then w(b) = b, which contradicts the assumption. Therefore b = 0.

Conversely, let w(a) 2 a for some a € (0, T). We have to find b such that W(b) =
= o0. If W(a) = oo take b = a. Otherwise there is n € N such that w*(a) 2 w"**(a),
w"(a) < a. Denote ¢ = w"(a). It holds w(c) < ¢, w(a) 2 a, and therefore thereis
b € [c, a] such that w(b) = b. Then obviously W(b) = o, qed.
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Now we shall reformulate Theorems 4.1 —4.4 for the functions w(x) which have
the first derivative on (0, f). The proofs of both reformulated theorems are very
easy and wg shall“omit them.

4.6. Theorem. Let w(x) satisfy (4.0) and (4.1), let w'(x) exist for all x € (0, t],
let there be a real k such that w'(x) < k for all x (0, t] or w'(x) 2 k for all x€
€(0, t] and let (4.4) hold. Then the function w(x) is small.

4.7. Theorem. Let k be a positive real, let w(x) satisfy (4.0) and (4.1), let w'(x)
exist for all x € (0, t] and let at least one of the following conditions hold:
(i) w'(x) = k for all x€(0, t]; '
(ii) w'(x) £ w(x)/x for all x€(0, t];
(iii) 0 = w'(x) £ k for all x€(0, t].
Then the function w(x) is small if and only if (4.4) holds.

4.8. Corollary. Let a function w(x) satisfy (4.0) and (4.1), let r be a real, t < e™*
and let for all x € (0, t) either

w(x) = x — x>7"
or
w(x) = x — x> . |Inx[**"
or
w(x) = x — x*. |In x| . (In |In x[)**".

Then w(x) is small if and only if r > 0.

Proof. Let e.g. w(x) = x — x*. |In x|**". Then

fox.dx _ t dx _ [ 4y
oXx —wx) Jox.|mx** o) V2T

The last integral converges if and only if r > 0. Now it suffices to use Theorem 4.7.
The other two cases for w(x) are similar. It is also clear how to continue the sequence
of formulae for w(x); then the number e~ must be replaced by a smaller number
depending on the considered formula. Q.e.d.

4.9. Corollary. Let a function w(x) satisfy (4.0) and (4.1) and let
wx)=ci.x+c3.x*+¢c3.%° + ...

for all x (0, t] where c, are real constants. Then w(x) is small if and only if
¢ < 1.

The corollary is an immediate consequence of Theorem 4.7. Notice that if w(x) =
=co + €y .% + ¢y .x* + ... then w(x) can satisfy (4.1) only if ¢, = 0.
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5. COMPARATIVE CRITERIA

In the preceding section we have given a list of small functions. Now we give
some theorems which enable us to conclude that a given function is small if it is
related in a certain way to some other small functions. As in Section 4, t denotes
a fixed element of (0, T).

5.1. Theorem. Let u(x) satisfy the zero-condition, let at least one of the functions
u(x), v(x) be non-decreasing on (0, t), let u(x) < v(x) for every x € (0, t) and let the
function v(x) be small on (0, t). Then the function u(x) is small.

Proof. Take an arbitrary x € (0, T). The zero-condition implies that there is n € N
such that a = u"(x) (0, t). Obviously U(x) < o if and only if U(a) < oo. Since
the function v(x) is small on (0, ) it holds ¥(a) < co. Then by Lemma 3.5 (used for
b = a) we have U(a) < o, and hence U(x) < o, g.e.d.

Another corollary of Lemma 3.5 follows by taking u(x) = v(x) = w(x).

5.2. Theorem. Let w(x) satisfy the zero-condition and be non- -decreasing on
(0, t]. Then w(x) is small if and only if W(t) < o.

If we want to use Theorem 5.1 it is sometimes useful to extend the list of small
functions by the theorem below.

5.3. Theorem. Let w(x) satisfy the assumptions of Theorem 4.7, re (0, 1), let
u(x)=r.x+ (1 —r).w(x) for allx € (0, t] and let u(x) satisfy the zero-condition.
Then u(x) is small if and only if w(x) is small.

Proof. The function u(x) also satisfies the assumptions of Theorem 4.7 and

fx.dx 1 ' ox.dx
ox—ux) 1—r Jox—wx)
The integral on the left converges if and only if the intégral on the right converges.

Now it is sufficient to use Theorem 4.7. Q.e.d.
We give one example how to use Theorem 5.3.

5.4. Corollary. If w(x) satisfies the zero-condition, r > 0 and

lim inf x = w(x) 0
1?-21 x*.|lnx|.(In |In xl)1 P

then the function w(x) is small.

The assumption that at least one of u(x), o(x) is non-decreasing cannot be omitted
in Theorem 5.1. (See Examples 6.3, 6.4.) However, it can be replaced by the continuity
of v(x). We shall see that from the following theorem. :
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5.5. Theorem. (J. Smital). Let a continuous function w(x) be small and let for all
x€(0,T)

‘ u(x) = sup {w(y); y (0, x]}.
Then the function u(x) is small.

Proof. Let b €(0, T). There is the least real a, satisfying w(a,) = w(b). Denote
a, = u"(a,) for all ne N. Since w(x) is continuous and small, we have w(x) < x

for all x € (0, T). Then u(x) < x for all x € (0, T), u(x) being continuous. Therefore
u(x) satisfies the zero-condition.

Denote by G, the set of all x € (0, T) such that u(x) is constant in a (sufficiently
small) neighbourhood of x. Further, denote for all n e N

G, = {xe(0, T); u"(x) e Go},
Ao=[a1,ao]—Go, An=A”_l'—G".

All sets Ay, A, A,, ... are closed and Ay 2 A, 2 A, 2 .... We shall show A, + 0

for all n e N U {0}. If we denote u"(X) = {u"(x); x € X} for every X < (0, T) then it
holds

(5.1) u"*1(A,) = [ans2, Gnie] »
(5.2) u"(A)Nn G, =90.

For n = 0, (5.1) and (5.2) obviously hold. Let they be true for some n; we prove
them for n + 1. It holds w"*!(A,,,) = u"*Y(A, — G,11) S [Gp+2, @nss] — Go,
hence u"*!(A,;,) N Go = 0. Further, we have u"*%(A,,,) = u"**(A, — G,,,) =
= u(“"+1(An - Gn+1)) =2 u(u"+1(An) - u"+1(Gn+l)) = u([an+2s an+l] - GO) =
= [@,+3, a,+2]- The converse inclusion is obvious: u"**(A,,,) < u"**([a,, ao]) =
= [an+3’ n+2]

We have proved (5.1) and (5.2). (5.1) 1mp11es A, + 0 for all ne N and since A; 2

2 A, 2 A; 2.... are closed sets we have n A, += 0. Take ce n A,. It holds w"(c)

= u"(c) for all ne Nu {0}. Therefore U(c) W(c) < oo. Now we use Theorem
5 2. Since u(x) is obviously non-decreasing and satisfies (4.1), it is small, g.e.d.

5.6. Corollary. A continuous function w(x) is small if and only if w(x) < x for
all xe(0, T) and W(t) < oo.

5.7. Corollary. Let 1(x) be a continuous small function and let u(x) < v(x) for
all x € (0, T). Then the function u(x) is small.
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6. EXAMPLES AND REMARKS

6.1. Example. A function w(x) such that w(x) < x for all x € (0, T) which does
not satisfy the zero-condition.

Let w(x) = x/2 for x€(0, t], w(x) = (x + t)/2 for xe(t, T). Then obviously
w(x) < x for all x € (0, T). However, for every a € (t, T) it holds lim w"(a) = ¢t > 0,
hence w(x) does not satisfy the zero-condition.

Remark. The just constructed function w(x) is continuous from the left on (0, T).
From Theorem 4.5 we know that it cannot be continuous. It is easy to see that it
cannot be even continuous from the right on (0, T).

6.2. Example. A function w(x) satisfying the zero-condition, w(x) < x for all
x€(0, T) and W(t) < oo which is not small on (0, ¢).

Choose r € (0, t) such that r/t is irrational (e.g. r = t/\/2) and for all x € (0, T)
define w(x) = r/(r/x + 1) if r/[xe N, w(x) = x[2 otherwise. The function w(x)
obviously satisfies (4.0) and w(x) < x. It holds also W(t) = t + t[2 + t[4 + t[8 + ...
... < w. However, W(r)=r+r[2+r[3 + r[4 + ... = oo, hence w(x) is not
small on (0, 7). :

6.3. Example. Functions u(x), v(x) satisfying the zero-condition and u(x) <
< »(x) < x for all x € (0, T), such that (x) is small and U(x) = oo for all x € (0, T).
Let for all ne N

u(t/(2m)) = 1](4n + 1), o(t/(2n)) = 1[(4n),
u(t/2n — 1)) = t/2n + 1), o(t/(2n — 1)) = t/(2n)
and for all x € (0, T) such that t/x ¢ N let
u(x) = t/(2n + 3), o(x) =1t/(2n + 2),

where n is the integer part of ¢/x. Then for every x € (0, T) there is m € N such that
u(x) = t/2m + 1), vo(x) = t/(2m) and we have

U(x) = x + U(u(x)) = x + t/2m + 1) + t|2m + 3) + t[2m + 5) + ... = 0,
V(x) = x + V(o(x)) = x + t[2m) + t/(4m) + t/(8m) + ... < .
Remark. Neither u(x) nor v(x) can be non-decreasing, and 1(x) cannot be con-

tinuous.

6.4. Example. A small function v(x) and a continuous but not small function u(x)
satisfying the zero-condition and u(x) < »(x) for all x € (0, T).
Letforall neN

u(t)@n — 1)) = t)@n + 3), u(t)(2n)) = )(4n + 2),
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let u(x) = /5 for all x € (, T) and let u(x) be defined by linear interpolation on each
interval (t/(n + 1), t/n), ne N. Let for allne N

: (i) = f(4n),
o(x) =t/(2n + 2) for xe(t/(2n + 1), t/2n — 1)] — {t/2n}

and let o(x) = #/2 for x (t, T). Then obviously u(x) is continuous and u(x) <
< v(x) < x for all x € (0, T). It is easy to verify that v(x) is small. However, u(x)
is not small because U(f) = ¢ + 1[5 + t[9 + t/13 + ... = co.

Remark. If we replace the linear interpolation by a finer construction we can reach
e.g. that u(x) has all derivatives on (0, T).

6.5. Example. A small function w(x) such that w(x) > x for all but countably
many x € (0, T). :
Let (to, ty, ta, .. )be an increasing sequence, t, = t and lim¢, = T. Denote t_

n—> o

=t[2"forallneN, Z = U {t_, t,} and for all integers n and all x € (0, T)
n=0

Wx) = tyyy if x€(t-rsty), W)=ty if x=1,.

Then for all x € (0, T) — Z we have w(x) > x. In spite of that the function w(x) is
small: For each x, W(x) converges if and only if ¢t_; + t_, + t_3 + ... <oo, which
obviously holds.

6.6. Example. A function w(x) satisfying (4.0), (4.1) and (4.4) which is not small.
Let for all xe (0, T)

wx) =x/2 if t/lx¢N, wx)=t/t[x+1) if t/xeN.

Then w(x) satisfies (4.0) and (4.1). It also satisfies (4.4) because w(x) can be replaced
by x/2 in the integral. However, w(x) is not small since W(f) =t + t2 + t[3 + ...
.. =00,

Remark. The function w(x) just constructed is not continuous. However, a con-
tinuous function with all the mentioned properties can be found. It could be con-
structed as an “approximation” of the function w(x). Therefore in Theorem 4.1 the
conditions (4.2) or (4.3) cannot be replaced by continuity of w(x).

6.7. Example. A non-decreasing small function w(x) satisfying (4.0) and (4 1)
which does not satisfy (4.4), ,
Denote a, = t[2" for all ne N, and define

W(x) = ay4y for all xe(a,+y,a,], wx)=a, forall x>a,.
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