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GRADUAL PARTITION OF A GRAPH INTO COMPLETE GRAPHS

Joser VOLDRICH, Praha
(Received March 31, 1977)

INTRODUCTION

In this paper we investigate properties of the amalgamation operation of graphs.

Obviously every graph can be obtained by a gradual amalgamation of certain
family of complete graphs. We are interested in the properties of this procedure.
For every graph G we define the depth of G as a measure of amalgamation ineffi-
ciency of G. We prove that there are graphs of arbitrarily large depth and that for
every n there exists a uniquely determined graph G, with depth n and with a
minimal number of vertices. We prove also that the depth of a planar graph is <4
which is best possible.

The paper has 2 parts:

In §1 we introduce the notion of a gradual partition of a graph into complete
graphs and state basic properties of this notion.

In § 2 we introduce and investigate the depth of a graph.

The results of this paper extend the results which were obtained at the Seminar
of Applied Combinatorics at Charles University, Prague by the authors of [0].

1. GRADUAL PARTITIONS OF GRAPHS

1.1. In this paper we consider finite undirected graphs without loops and multiple

edges. Explicitly, a graph G is a pair (V, E) where V is a finite set and E < ;/ =

= {e < V; |e| = 2}. We shall use also the notation G = (V(G), E(G)).
Graph (V, C/)) is called the complete graph on the set ¥ and is denoted by K.

STUDENTS’ RESEARCH ACTIVITY AT THE FACULTY OF MATHEMATICS AND
PHYSICS, CHARLES UNIVERSITY. This paper was a part of a collective work awarded the
2% prize in the Faculty Students’ Research Work Competition, secticn Algebra and Topology,
in the year 1976. Scientific adviser: Professor J. NESETRIL.
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Put K, = Ky 3, where [1,n] = {1,2, ..., n}. The graph K, = K, = (0, 9) will be
denoted sometimes shortly by @; this graph is called the void graph.

1.2. Definition. Let G, G’ be graphs. A mapping f: ¥(G) - V(G) is called an
embeding of G into G’ if

1) fis a 1-1 mapping

2) {f(x), f(»)} € E(G') = {x, y} € E(G).

1.3. Definition. Graph G is a subgraph of G’ if V(G) = V(G’) and the inclusion is
an embeding. This fact is denoted by G < G'. Explicitly: G = (¥, E) is a subgraph

of G =(V,E)if V=V and E' n (:) =E.
If G £ G'and G # G’ then we write G < G'.
Obviously a subgraph G = (V; E) of G’ = (V', E’) is determined by the set of its

vertices. In this case we also say that G is induced by G’ on the set V. We use the
notation G'|, = G.

We shall find it convenient to use the following definitions:

1.4. Definition. Graph G is the union of G; and G, if G; £ G, i = 1,2, and
V(G) = V(G;) L V(G,). In this case we write G = G; Vv G,.

Definition. Graph G is the intersection of graphs G; and G, if G = G;, i =1, 2,
and V(G) = V(G,) n V(G,). The intersection is denoted by G = G; A G,.

Definition. Let G; < G. We say that (V’, E’) is the difference of graphs G and G,
if ¥’ = V(G)\ V(G,) and (V’, E’) < G. This fact is denoted by G — G;.

1.5. Definition. Let G = (¥, E) be a graph, v e V a fixed vertex. Denote by G, the
subgraph of G induced by the set ¥, = {v'; {v, v'} € E}. Denote byG} the subgraph
of G induced on the set ¥, u {v}.

1.6. Definition. Let G, G’ be graphs. Define the graph G + G’ as follows:
V(G + G') = ¥(G) u ¥(G'),
E(G + G') = E(G) v E(G") u {{v, v'}; ve V(G), v'e V(G)}.
Graph G + G’ is called the direct sum of graphs G and G'.

1.7. The following is the principal operation considered in this paper:

Definition. Let G, Gy, G,, G, be graphs. We say that the graph G is partitioned
in graphs G, and G, with respect to the graph G if

1) G, £G, G, <G,

2) G=Gyv G,

3) Gy, = G, A G,.



In this case we write G = (Gy, Gy, G,). We write also G = (Gy, Gy,, G,) if there
exist isomorphisms G ~ G’, G, ~ G}, Gy, ~ G};, G, ~ G, such that G' =
= (G;’ ’12’ GIZ) ‘

If G = (Gy, Gy, G,) then the triple (Gy, Gy,, G,) is called a partition of G.

If G = (Gy, Gy2,G,) and G % Gy, G & G,, then (G, Gy,, G,) is called a proper
partition of G.

1.8. Remarks. 1) Obviously there is not an edge {v;, v,} € E(G) for vy € V(Gy)\
7 V(Gyz), v, € V(G)\V(Gyy).

2) If G is a disconnected graph then G = (G,, 0, G,) for convenient Gy, G,.

The graph (G, 9, G,) is always disconnected.

3) The operation (.,.,.) is the inverse operation to the amalgamation operation:
if G = (Gy, Gy,, G,) then G is an amalgam of G, and G, with respect to Gy, see [3].

4) If G is a complete graph, then there is no proper partition of G (see the above
remark 1). On the other hand if G fails to be a complete graph, then there exists
v e V(G) such that G = (G}, G,, G|y(g)\w)- It suffices to take any vertex » for which
Gly@enw *= G, (which is equivalent to the fact that there exist v’ € V(G), v + v',

{v,v'} ¢ E(G)).

1.9. Remark 1.8.4 shows that every graph G may be gradually partitioned into
a family of complete graphs. This gradual partition into complete graphs is intro-
duced in the following two definitions:

1.10. Definition. A branching partition tree T'is a quadruple (¥, R, R, v) with the
following properties:

1) (V, R U R') is a branching from v,

2) (V, R) is a dyadic tree,

3) every vertex which fails to be a terminal vertex is incident with exactly one edge
of R'.

1.11. Definition. Let G be a graph. A gradual partition of G into complete graphs
with respect to a branching partition tree T = (¥, R, R’, v) is a mapping # : V —» Gra
with the following properties:

1) #(v) = G.

2) If (w, w) € R, (W, w;) € R, (W, w;,) € R’ then R(w) = (R(w,), B(Wy,), B(w,)).

3) If wis a terminal vertex of Tthen 9(w) is complete graph.

If ty, ..., t, are all terminal vertices of T then we say that G is generated by the set
{#(ty), ..., R(t,)}. The set of all graphs generated by a set of complete graphs
{Kauqsy; i €I} will be denoted by [K,); iel].
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1.12. Remark. Denote by Gra the class of all finite graphs. Then
Gra = [K; i =0,...,n] =[K;; ieN] (see Remark 1.8.'4) .
n=1
It is easy to see that [K,, Ky, ..., K,] = Gra (n) where Gra (n) is the class of all
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finite graphs which do not contain a complete subgraph with n+1 vertices. These clas-
ses were studied in [3]. These applications of amalgamation operation provided a
motivation of this research.

1.13. Example. Fig. 1 illustrates a possible gradual partition of graph G with
respect to the tree T = (¥, R, R’). The arrows of R are depicted by straight lines, the
arrows of R’ by dotted lines.

1.14. Remark. Let K!, ..., K", L, ..., I be complete graphs. It is easy to see that
(i) [K', s K" [, oo 2] & [KY 0 K By iy s
@) [KY ... K] n [E, ... ] 2 [{KY ... K} A {L, ..., 7)1
However, if [K',...,K"] # [L',...,["] then [K',..,K"]U[L,..,I"] &
z [KY,....,K", L' ..., "]
L. Ku¢erA and J. NeSETRIL asked when the equality in (ii) is valid. The equality

in (ii) holds in most “simple cases”. The smallest graph for which the equality in
(i) does not hold is in Fig. 2:

Fig. 2.

[4] contains a more detailed discussion of the equality in (ii).

2. DEPTH OF A GRAPH

In this part we introduce the notion of the depth of a gradual partition of a graph.
This number characterizes the “inner” complexity of a graph.

2.1. Definition. Let # be a gradual partition of the graph G with respect to the tree
T = (¥, R, R, v). Denote by (v, x) = {(v, xy), ..., (x,, x)} the path from v to x, x € V.
We say that the vertex x belongs to the k-th level of Z if |(v, x) N R'| = k.

We say that the graph %(x) belongs to the k-th level of 2 if |(v, x) N R'| = k.
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Depth of a tree T = (¥, R, R’, v) is the maximal level of a vertex of T. Depth of
a gradual partition & of a graph G with respect to T is the depth of the tree T and it
will be denoted by dp (R).

2.2. Definition. Depth of a graph G is the minimal depth of a gradual partition %
of a graph G (with respect to a branching tree T).
Depth of the graph G will be denoted by dp(G).

2.3. Remarks. 1) The gradual partition of the graph G in Fig. 1 has depth 2.

2) Obviously dp(G) < max (dp(G,), dp(Gy,) + 1, dp(G,)) for every partition
G = (Gy, Gy,, G,). Moreover, for every graph G, dp(G) > 0 there exists a partition
G = (Gy, Gy,, G,) such that dp(G) = max (dp(G,), dp(Gy,) + 1, dp(G,)).

2.4. Proposition. 1) dp(G) = 0 iff G is a complete graph.

2) dp(G) = 1 iff G does not contain a subgraph which is isomorphic to a cycle
of length >3.

Proof. 1) is obvious.

2) If G contains a cycle C of length >3 as a subgraph, then dp(G) = dp(C) = 2.

Now let G be a graph which does not contain a cycle of length >3 as a subgraph
(graphs with this property are called triangulated graphs). We prove by induction
on |G| that dp(G) < 1. It is well known that every minimal articulation set 4 of
a triangulated graph is a complete graph. Hence there exists a partition G =
= (Gy, Gy,, G,), where Gy, is a complete graph and consequently dp(G) =
= max (dp(G,), 1, dp(G,)) and we may use the induction hypothesis.

In the sequel we establish the basic properties of the depth of graphs. We prove the
existence of graphs with an arbitrarily large depth.

2.5. Theorem. Let G < H. Then dp(G) < dp(H).

Proof. If G = H then dp(G) = dp(H). It suffices to prove the statement of Theo-
rem for G = H — Ky, for every a € V(H).

Let # be a gradual partition of H (into complete graphs) with respect to T =
= (V, R, R', v). Define the mapping %’ : ¥V — Gra by

R'(w) = R(w) — K, if aisavertex of Z#(w),
R'(w) = #(w) otherwise .

Obviously #’ is a gradual partition of G = H — K|, into complete graphs with
respect to the same tree T = (¥, R, R, v). This proves dp(G) < dp(H).

To establish the depth of a direct sum of graphs we shall need the following

2.6. Lemma. Let H, G be non-void graphs. Let H + G = (Fy, Fy,, F;). Then one
of the following possibilities must occur (up to a permutation of symbols):
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1) Fi=Gy+H, F,=G;,+H,F,=G,+Hand G = (Gl,Glz; G,),
2) Fl =G+ Hl’ FIZ =G + H12, Fz =G+ H2 and H =(H1,H12,H2).

Proof. Let G + H = (Fy, Fy,, F,) be a fixed partition. As G + H * (H, F, G)
for any graph F there are vertices a, b such that either a, be V(H) or a, be V(G)
and ae V(Fy — Fy,), be V(F, — Fq3).

Assume without loss of generality that a, b € V(H). Furthermore, assume G £ Fy,.
Then there exists a vertex c e V(G) such that either ce V(F; — Fy,) or ce

€ V(F, — Fy,). We get a contradiction as {a, c} € E(G + H), {b, c} € E(G + H)
and F; v F;+ G+ H ThusGEF{,, Put Hy =F, — G, H,=F, - G, H, =
= Fy, — G. It is easy to check that G + H = (G + H{, G + Hy,, G + H,) and
H = (Hy, Hyy H,).

2.7. Theorem. Let G, H be non-void graphs. Then dp(G + H) = dp(G) + dp(H).

Proof. Obviously dp(G) < dp(G + H), dp(H) = dp(G + H).
First, if G and H are complete graphs then Theorem is true.

Secondly, let H be a complete graph and £ a gradual partition of G with respect
to a tree T = (V, E, E’). Define &' as follows: #'(w) = %(w) + H. Obviously %'(w)
is a complete graph iff #(w) is a complete graph and consequently #’ is a gradual
partition of G + H into complete graphs with respect to T. Hence dp(#) = dp(%’)
and, according to Lemma 2.6, dp(G + H) = dp(G)if H is a complete graph. Finally,
let G, H be a non-complete graphs. In this case we prove by induction on |V(G + H)l
that dp(G + H) = dp(G) + dp(H). The small values of |V(G + H)| are obvious.

Let |V(G + H)| = n + 1 and let the statement of Theorem be valid for all graphs
with <n vertices. Let G + H = (G, + H, Gy, + H, G, + H) where G = (G, G,,,
G,). According to Lemma 2.6 and Remark 2.3 we may assume that

dp(G + H) = max (dp(G, + H), dp(G;; + H)+ 1, dp(G, + H)).

By the induction hypothesis it follows: dp(G + H) = max (dp(G,) + dp(H)
dp(Gy,) + dp(H) + 1, dp(G,) + dp(H)) = dp(H) + max (dp(G,), dp(G,,) + 1,
dp(G,)) = dp(G) + dp(H).

Consequently, it suffices to construct a gradual partition £ of G + H into complete
graphs such that dp(#) = dp(G) + dp(H). Let %, and #,, respectively, be gradual
partitions of G and H into complete graphs with respect to branching partition trees
T, and T, such that dp(#,) = dp(G), dp(®,) = dp(H). Let T; = (V,, E,, E,v"),
i=1,2.Put V; = {v},..., 0, Opsy,..., U, } Where {v],...,v¢} is the set of all end-
vertices of the tree Ty. Define the branching tree T= T, - T, = (V, E, E’, v) by
V=V, u(V, x [1, k])/~ where ~ is the equivalence generated by the set of pairs
{(vi, (v*,1)); i = 1,..., k}. Let [x] denote the equivalence class of ~ containing the
vertex x.
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E = {{[x]. 1} {xy}eEs} v
v {[Ge. D1 [ D)5 @ =i {x, y} € Ea},
E' = {{[x]. [v]}; {x, ¥} e Ei} v
v {[(x, D1 [ )]s 1 =i {x, ¥} € B3},
v = [o*].

Define the mapping £ by

A([x]) =%(x)+H for xeV;,
R([(x,1)]) = R4(v}) + Ry(x) for xeV,

(observe that this definition is consistent: if [x] = [(y, i)] then x is an endvertex of G
and hence #4(x) + H = &,(v]) + Z,(»)). l

If is clear that & is a gradual partition of G + H into complete graphs and hence
dp(G + H) < dp(#) = dp(G) + dp(H).

This proves Theorem.

2.8. Theorem. Let dp(G) = n > 0. Then there exists a subgraph H < G such that

1) dp(H) = n,

2) dp(H,) = n — 1 for every vertex a of H.

Proof. Let H be a subgraph of G such that dp(G) = dp(H) and dp(H’) < dp(G)
for every proper subgraph H’ of H. Then obviously dp(H,) < n — 1 for every
a € V(H) (otherwise H would not be minimal).

Let dp(H,) < n —2 for a vertex ae V(H). As H = (H}, H,, H — {a}) and
dp(H}) = dp(H,) < n — 2 we have dp(H) = dp(H — {a}) which is a contradiction
with the minimality of H.

2.9. Theorem. Let dp(G) = n. Then

1) [V(G)] = 20

2) K, <G.

Proof. We prove both statements by induction on n (the case n = 0 is obvious).

Let G be a graph, dp(G) = n > 0. We may assume that dp(G’) < n for every
¢ 5 G.

Let G = (Gy, Gy, G,) be a proper partition such that dp(G) = max (dp(G,),
dp(G,,) + 1, dp(G,)).

By the minimality of G, it is dp(G) = dp(Gy,) + 1, using the induction hypothesis
and the fact that (Gy, G,,, G,) is a proper partition we have

[V(G) 2 [V(Gyy)| +222.(n— 1) + 1.
This proves 1.

15



	
	Article


