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FUNDAMENTAL VECTOR FIELDS ON ASSOCIATED FIBER BUNDLES

IvaN KoLAR, Brno
(Received February 18, 1977)

If G is a Lie groupoid and Yis a fiber bundle associated with G, then every section
of the Lie algebroid LG of G determines a vector field on Y, which we call a funda-
mental vector field on Y. After deducing certain basic properties, we study the
prolongations of the fundamental vector fields in connection with the general
prolongation theory of projectable vector fields on arbitrary fibered manifolds,
[2], [4], and with the prolongation theory of Lie algebroids, [5], [6]. We also
develop a general point of view to Lie differentiation. Our consideration is in the
category C®.

1. Given two manifolds M, N and diffeomorphisms ¢ : M—> M, y: N - N,
we define an induced diffeomorphism (¢, )" on the space J'(M, N) of all r-jets of M
into N by

(1) Jef Pl ofoe™h).

If £ is a vector field on M, n is a vector field on N and &,, n, are the corresponding
flows, then (&,, #,) is a one-parameter family of diffeomorphisms of J"(M, N). This
determines a vector field (&, #)” on J(M, N) called the r-th prolongation of the pair
(¢, n). In coordinates, if £ = &(u) (8/0u*) and n = n°(v) (6/3v"), then

F o  for , 9 )\o
2 M=l —+r—+ (= - =1},
@) Gny=2¢ " o (60‘ * T ')au;

where v} = 8v*/du* are the additional coordinates on J'(M, N), k, I = 1, ..., dim M,
s,t =1,...,dim N. (In principle, the coordinate formula for (£, n)" can be deduced
by iterating (2) and by the standard inclusions of the theory of non-holonomic jets.)

Consider further a fibered manifold n: Y — X. Let £ be a projectable vector
field on Y, i.e. there is a unique vector field &, on X that is n-related with £. The
space J"Y of all r-jets of the local sections of Yis a subset of J'(X, Y) invariant with

419



respect to (&, £)". The restriction p"¢ of (&, £)" to J'Y is the r-th prolongation of &
in the sense of [2], [4]. Let

x, ysi,j,...=1,...,n=dimX, pgq,...=1,..,dimY - dimX,

be local fiber coordinates on Y and ¢ = &¥(x) (8/ox’) + &%(x, y) (0/ay”). Specializing
(2), we obtain

; 0 0 oEr  9Er o0&l 0
3 Ipm Bt — pfr g 2g v g8 % Y
) Pes=e ox' . ay? <6x‘ ay* ¢ ox' Yi oyt

where yf = dy?[ox’, cf. [4].

2. Let G be a Lie groupoid over X with source projection a and target projection b.
Denote by LG the vector bundle (over X) of all a-vertical tangent vectors on G at the
units, i.e. every element of (LG),, x € X, is of the form j§ y(f), where y(t) is a curve
on G satisfying a y(t) = x for all ¢ and y(0) = e, = the unit over x. Assume further
that G acts on the left on a fibered manifold # : Y — X (in other words, Yis a fiber
bundle associated with G), [9]. Every section ¢ : X — LG determines a vector field gy
on Y by

) ox(z) = jo(x(1) - 2) »

n(z) = x, o(x) = j& 7(r), which will be called the fundamental field (or G-field) on Y
determined by .

Example 1. Let E - X be a vector bundle and G the groupoid of all linear iso-
morphisms between the fibers of E. A G-field on E will be called a linear vector
field. In linear fiber coordinates on E, the coordinate form of a linear vector field is

©) £) o + B

Example 2. Similarly one introduces the affine vector fields on affine bundles.
In particular, it is well-known that J'Y — Y is an affine bundle for any fibered
manifold Y.

Proposition 1. The first prolongation p'¢ of any projectable vector field ¢ on Y
is an affine vector field on J'Y - Y.

Proof is straightforward.

The target projection of G determines a fibered mahifold G, := (b : G - X)
and G acts on G, by the left multiplication. The fundamental field on G, defined by
a section ¢ : X — LG will be denoted by gg. Such a field is characterized by the
property that it is both a-vertical and right-invariant (i.e. every g€ G, ag = x,
bg = y determines a mapping a~!(y) - a~!(x), g’ — ¢’ . g and gg is invariant with
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respect to all these mappings). If 7 : X — LG is another section, then the bracket
[ec, 6] is also both a-vertical and right-invariant, so that there is a unique section
{o, 1} : X — LG satisfying {0, t}¢ = ¢, 7]- This endows LG with a Lie algebroid
structure, [7].

Proposition 2. If Y is a fiber bundle associated with G and @, © are two sections
of LG, then the corresponding G-fields on Y satisfy

(6) Lo, tv] = {e. 7}y -

Proof. The source projection defines another fibered manifold G, := (a : G - X)
and the action of G on Y is a mapping ¥ : G, @ Y — Y, where @ means the fiber
product over X. The zero vector field Oy of Y and g determine a vector field gg @ Oy
on G, @ Y. According to (4), g¢ @ Oy is x-related with gy, which proves Proposition 2.

Locally, G is isomorphic to R" x H x R", where H is a Lie group and the multi-
plication is given by

(7) (x3, hz, x2) . (xz, hl! xl) = (x3, hzhl, xl) >

the product h,h, being defined in H. Further, Y is locally of the form R" x F,
where F is a left H-space and the action of G on Yis given by

(8) (x2’ h’ xl)'(xl, y) = (xz’ h}’) s
the latter product being determined by the action of H on F. Let
h*, o p,...=1,..,dimH,

be local coordinates on H in a neighbourhood of the unit and let e, be the induced
basis of the Lie algebra of H. Then a section ¢ of LG can be locally written as

©) 0= ¢ + e,

and the coordinate formula for {g, 7} is

_ ot 00"\ 0 o® ; 00° .
(1)  {et}t= (e’ Sea a—,.) o (Qig,ﬁ -+ cpye"r’) €

provided —cj, are the structure constants of H, [8]. Further, let AZ(y) 6/0y® be the
vector fields on F determined by e,, [3]. Then we deduce by (8) the coordinate formula
of gy

(11) or = 0'(x) % + A7) Q’(x)si;.

By Proposition 2 and (11), we conclude that the mapping @ — gy is a Lie algebroid
homomorphism of LG into the Lie algebroid of all projectable vector fields on Y.
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3. Denote by I(g, t) the flow of the vector field gs and set y(x, t) = I'(e,, t).
Since I is also right-invariant, we have

(12) . I'(g,t) = y(bg, 1) .9,

i.e. I' is determined by the values at the units of G.

The r-th prolongation G” of G is a Lie groupoid over X deﬁned as follows. The
underlying set of G" is the subset of all elements A € J'G, ( the r-th jet prolongation
of fibered manifold a : G — X) such that bA is an invertible r-jet of X into X, while
the multiplication in G” is given by

(13) Jx 9(w) < J; h(v) = j3[g(b h(v)) . K(v)],

provided b h(y) = X, [1] As gg is a-vertical, it is a-related with the zero vector field
of X and we can construct its r-th prolongation p"gg on J'G,. Obviously, G" is an
invariant subspace of p'og.

Proposition 3. The restriction ng| G" is a fundamental field on G, i.e. there
exists a unique section " : X — LG" such that gg- = pog I G
Proof. According to (12), the flow I'" induced by I on G" is given by

(14) r'(jz g(u), 1) = j2[n(b g(u), 1) - g(w)] -

Multiplying on the right by j} h(v), we obtain

(13) 55[¥(bg(b h(v)), 1) - g(b h(v)) - h(v)] -

Using (13) we prove that I" is a right-invariant flow, so that p'gs | G” is a right-
invariant vector field. Clearly, p ch G" is also vertical with respect to the source
projection of G", QED.

In the above construction, ¢(x) is fully determined by j%¢ € J(LG). This defines
an identification J"(LG) ~ LG'"; a detailed proof can be found in [6].

On the other hand, G" acts on J'Y by

(16) J2 () - jz o(w) = ;;[e((bg) ™" (2)) - o((bg) ™" (v))],

where y = b g(x) and (bg)™! means the inverse map of a local diffeomorphism
u — b g(u) of X into itself, [1]. Hence ¢" induces a G"-field gj-y on J'Y.

Proposition 4. The latter field coincides with the r-th prolongation of gy, i.e.

(17) P(er) = ey -

Proof consists in comparing (1), (4), (14), (16), QED.
For r = 1, we now deduce the coordinate expressions. Locally, we have G} =
= R" x H, x R", [1], and the underlying manifold of Hj is the product of T,'H
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(= the space of all n'-velocities on H) and L}, = GL(n, R). The induced coordinates
h°, h% = 0h°|ox’ on T!'H and the canonical coordinates on L, determine a basis
€, €5, € of the Lie algebra of H,. Using (3) and Proposition 3, we find the following
coordinate expression of ¢! : X — LG*

L3 J
Q'—(?— + Q%, + a—Q-ei + aie}.

18 1
(18) ¢ ox* ox! ox*

i

On the other hand, J'Y is locally of the form R" x T,'F, [1]. According to [3],
the vector fields on T'F corresponding to e,, e, e,‘ are

p
a

o  o04F 0 0 0
R Ar ay‘il_" :'—’ _.V§"—1
oy?  0y*" oy} oy? oy?
provided y? are the additional coordinates on T,'F. Hence the coordinate form
of Q}ly is

9 o [o4r o 00"\ @
19 iy =0 — + At — + (Yt + A= — =) —.
(19)  enr=o' -+ 4 o g Y i Vo) oy
On the other hand, we also obtain this formula by applying (3) to (11), which yields
another proof of Proposition 4.

4. First we introduce a general concept needed in Proposition 5. Let M be a mani-
fold and p,, : TM — M the tangent bundle of M. There are two natural projections
of TTM into TM, namely the bundle projection pr, and the tangent map Tpy.
Consider further the canonical involution i of TTM. Let A, B € TTM satisfy pTM(A) =
= Tpu(B) and Tpy(A) = pry(B). Then iB lies in T,TM, v = prp(A), and one verifies
directly that the difference A — iB belongs to the tangent space of the vector space
T:M, x = py(v). Hence 4 — iB is identified with an element of T,M, which will
be called the strong difference of A and B and denoted by A = B. In coordinates,
if x, X' = dx’ are local coordinates on TM and A4 = (x, X', dx’, dX* = a’), B =
= (x', dx, X, dX’ = b’), then

(20) A~-B= (x', al — b‘) .

Consider now a projectable vector field £ on Y = X over &, and a section ¢ of Y.
Taking into account the corresponding flows ¢, and ¢,,, we construct a curve

(21) t > 07 (o(00dx)))

in the fiber Y,, whose tangent vector (L,0) (x) € T,)(Y;) will be called the Lie deriva-
tive of o with respect to ¢ at x. Evaluating (21), we find

(22) Lcd' = 0'.60 o 500’,
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where 0.&, is the image of &, by the differential of ¢. In coordinates, if & = &(x).
. (0ox") + &(x, y) (8/0y?) and ¢ = 6”(x), then

(23) Lo = Z;;’: E(x) — &%(x, a(x)) .

In particular, if Yis a fiber bundle associated with a Lie groupoid G and g is a section
of LG, then we write Lo instead of L,,0. Geometrically, (L,0) (x) is the tangent
vector to the curve y~!(x, t). o(b y(x, t)), where y has the same meaning as in (12).
In coordinates,

(29 L = 25 '(x) = AXo() ')

Let T(Y/X) be the bundle of all vertical tangent vectors on Y. This is a vector
bundle over Y, but it can be also considered as a fibered manifold over X. Similarly
to § 1, every projectable vector field £ on Y is prolonged into a projectable vector
field € on T(Y/X) — X. Taking into account the inclusion TY = J'(R, Y), we deduce
by (2) (with zero vector field on R) that
i + Q;_P Y? i

; 0
25 = ' — 4 EP ,
23) {=¢ ox' : oy 8y? oYP

provided Y? = dy?. Consider another projectable vector field n on Y. Since L.
is a section of T(Y/X) — X, we have defined the Lie derivative Ly(L.0). If we con-
struct conversely Ly(L,0), then the vectors L;(L:0) (x), Ly(L,0) (x) € T T(Y,) satisfy
the conditions of the definition of the strong difference. By direct evaluation, we prove

Proposition 5. It holds
(26) 4 Ly(Ly0) = Ly(Ly0) = Ly 0 -

Given a vector bundle E — X, every element 4 € T(E,) is identified with a vector
tA € E,. In particular, tL.o is now a section of E as well. Moreover, if ¢ and n are
linear vector fields on E, then (5), (25) and (26) imply

This formula generalizes a result by QUE, [8], and includes the classical case of the
first order tensor bundles. However, we underline that (27) does not hold for general
projectable vector fields on E.

5. The product X x X with the trivial partial composition (x3, x) . (x2, X,) =
= (x3, X, ) is a special Lie groupoid over X. The r-th prolongation of X x X is the
groupoid IT'X of all invertible r-jets of X into X. The Lie algebroid (X x X)
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