

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0102|log94

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON IDEMPOTENT FILTERS

MIROSLAV KATĚTOV, Praha (Received May 27, 1977)

- In [3], the problem of the existence of idempotent filters was posed, i.e. filters \mathcal{F} isomorphic to the product $\mathcal{F} \cdot \mathcal{F}$. In what follows, a very simple existence proof is given, and a rather complicated construction is described.
- 1.1. We use the standard terminology and notation, with slight modifications. An ordered pair consisting of x and y will be denoted by $\langle x, y \rangle$. If M is a set, we put $\exp M = \{X : X \subset M\}$, $eM = \{X : X \subset M, X \text{ is finite}\}$. Letters k, m, n, p, q stand for natural numbers, letters θ , θ (possibly with subscripts, etc.) for a natural number or for the ordinal θ . Sequence (on a set θ) means a finite or an infinite sequence (of elements of θ). A finite sequence will be called a string or a word. The void string will be denoted by θ . The concatenation θ of two sequences θ , θ is defined if θ is finite; in addition, for formal reasons, we put θ is θ for any sequence θ . Given a set θ , the set of all strings on θ will be denoted by θ .
- **1.2.** Let M, S be classes. If a binary operation $\sigma: D \to S$, where $D \subset M \times M$, is given, we introduce the following binary operations σ' on $\exp M$ and σ'' on $\exp \exp M$. If $X, Y \in \exp M$, then $\sigma'\langle X, Y \rangle = \{\sigma\langle x, y \rangle : x \in X, y \in Y\}$; if $\mathscr{X}, \mathscr{Y} \in \exp \exp M$, then $\sigma''\langle \mathscr{X}, \mathscr{Y} \rangle = \{\bigcup (\sigma'\langle \{x\}, fx \rangle : x \in X) : X \in \mathscr{X}, f \in \mathscr{Y}^X\}$.
- 1.3. The operations just introduced will be used below in two cases: (1) M is a class of sequences and $\sigma(\xi, \eta) = \xi \cdot \eta$ is the concatenation; in this case, we shall often write $X \cdot Y$ instead of $\sigma'(X, Y)$ and $\mathscr{X} \odot \mathscr{Y}$ instead of $\sigma''(\mathscr{X}, \mathscr{Y})$; (2) M is the universal class and $\sigma(x, y) = \langle x, y \rangle$; in this case the standard notation, $X \times Y$, will be used for $\sigma'(X, Y)$, and $\sigma''(X, \mathscr{Y})$ will be denoted by $\mathscr{X} \otimes \mathscr{Y}$.
- 1.4. In the case (2) just mentioned, $\mathscr{F} \otimes \mathscr{G}$ is a base of a filter (on $A \times B$) whenever \mathscr{F} and \mathscr{G} are filters (on A and B, respectively). The filter generated by $\mathscr{F} \otimes \mathscr{G}$ is the product of filters \mathscr{F} and \mathscr{G} , which will be denoted by $\mathscr{F} \cdot \mathscr{G}$ as usual (see e.g. [1], § 7; a different notation was used in [2], where the multiplication of filters was introduced apparently for the first time).

- 1.5. If \mathscr{X} , \mathscr{Y} are collections of sets, $A = \bigcup \mathscr{X}$, $B = \bigcup \mathscr{Y}$ and there exists a bijective $f: A \to B$ such that $f[\mathscr{X}] = \mathscr{Y}$, then \mathscr{X} is said to be *isomorphic to* \mathscr{Y} (this includes, as a special case, the isomorphism of filters).
- **2.1. Theorem.** Let \mathcal{G} be a filter on a set A. Assume that $\mu: A \times A \to A$ is bijective and $\mathcal{G} \subset \mu[\mathcal{G} \cdot \mathcal{G}]$. Then there exists exactly one filter \mathcal{F} on A such that (1) $\mathcal{G} \subset \mathcal{F}$, (2) $\mu[\mathcal{F} \cdot \mathcal{F}] = \mathcal{F}$, (3) if \mathcal{H} is a filter on A, $\mathcal{G} \subset \mathcal{H}$, $\mu[\mathcal{H} \cdot \mathcal{H}] = \mathcal{H}$, then $\mathcal{F} \subset \mathcal{H}$.

Proof. Put $\mathscr{G}_0 = \mathscr{G}$. If α is an ordinal, $\alpha > 0$, put $\mathscr{G}_{\alpha} = \mu [\mathscr{G}_{\beta} \cdot \mathscr{G}_{\beta}]$ if $\alpha = \beta + 1$, $\mathscr{G}_{\alpha} = \bigcup (\mathscr{G}_{\beta} : \beta < \alpha)$ if α is a limit ordinal. It is easy to see that, for every ordinal α , \mathscr{G}_{α} is a filter and $\mathscr{G}_{\alpha} \subset \mathscr{G}_{\beta}$ whenever $\alpha < \beta$. Hence, $\mathscr{G}_{\alpha} = \mathscr{G}_{\alpha+1}$ for some α . Put $\mathscr{F} = \mathscr{G}_{\alpha}$. Then $\mu [\mathscr{F} \cdot \mathscr{F}] = \mathscr{F}$. If \mathscr{H} is as in (3), then we get $\mathscr{G}_{\alpha} \subset \mathscr{H}$ for all α , hence $\mathscr{F} \subset \mathscr{H}$.

2.2. Theorem. On every infinite set, there exists an idempotent filter.

Proof. If A is infinite, put $\mathscr{G} = \{A - X : X \text{ finite}\}$. Let $\mu : A \times A \to A$ be bijective. Clearly $\mathscr{G} \subset \mu [\mathscr{G} \cdot \mathscr{G}]$. Now apply the theorem above.

- 2.3. An explicit description of an idempotent filter is far more complicated than the existence proof. It is necessarily so, for an idempotent filter cannot be analytic (Souslin), cf. [3]. On the other hand, an explicit construction may provide more insight into properties of such filters.
- **3.1.** The class of all dense linearly ordered sets with a first and no last element will be denoted by \mathfrak{A} . As a rule, letters A, B, C, possibly with subscripts, will stand for ordered sets in \mathfrak{A} . A set of the form $\{t:t\in A,\ a\leq t\}$ or $\{t:t\in A,\ a\leq t< b\}$ will be called an *interval of* A. The set of all nonvoid intervals of A will be denoted by i(A). We put $i_0(A)=i(A)\cup\{\emptyset\}$.
- **3.2.** A pair $\langle B, C \rangle \in i(A) \times i(A)$ will be called a decomposition of A if $B \cup C = A$ and x < y whenever $x \in B$, $y \in C$. If $\langle B, C \rangle$ is a decomposition of A, we write B + C = A.
- **3.3.** A pair $x = \langle T, v \rangle$, where $T \in i(A)$, $v \subset T$ is finite nonvoid, will be called a *labeled interval* of A. The set of all labeled intervals of A will be denoted by i(A). If $x = \langle T, v \rangle \in i(A)$, we put |x| = T, Lx = v.
- 3.4. If $\xi = (x_n : n < \vartheta)$ is a sequence on $\operatorname{li}(A)$, we put $|\xi| = \bigcup (|x_n| : n < \vartheta)$, $L\xi = \bigcup (Lx_n : n < \vartheta)$, $\Sigma \xi = \langle |\xi|, L\xi \rangle$. If e.g. $\xi = (x, y)$, we also write x + y instead of $\Sigma \xi$, etc. Clearly, if $\xi \in \operatorname{wli}(A)$ and $|\xi| \in \operatorname{i}(A)$, then $\Sigma \xi \in \operatorname{li}(A)$.

- **3.5.** If $X \subset \text{wli}(A)$, we put $LX = \{L\xi : \xi \in X\}$. If $\mathscr{X} \subset \text{exp wli}(A)$, we put $L\mathscr{X} = \{LX : X \in \mathscr{X}\}$.
- **3.6.** An idempotent filter may be constructed, roughly speaking, in the following way. Suppose there is defined, for every $A \in \mathfrak{A}$, a collection $\mathscr{K}(A) \subset \exp \operatorname{wli}(A)$ such that (1) if A is isomorphic to B, then $\mathscr{K}(A)$ is isomorphic to $\mathscr{K}(B)$, (2) $L\mathscr{K}(A)$ is a base of a filter, (3) if B + C = A, then $\mathscr{K}(B) \odot \mathscr{K}(C) \subset \mathscr{K}(A)$. It may be expected that if A, B, C are mutually isomorphic, then the filter generated by $L\mathscr{K}(A)$ is idempotent, since it is isomorphic to the product of filters generated by $L\mathscr{K}(B)$, $L\mathscr{K}(C)$.
- **4.1.** We are going to construct certain collections with the properties mentioned in 3.6. We shall need a few auxiliary definitions and a number of simple facts concerning subsets of wli(A), etc.
- **4.2.** A sequence $\xi = (x_n : n < \vartheta)$ on li(A) will be called *regular* if (1) either $\xi = \emptyset$ or min $A \in |x_0|$, (2) the sets $|x_n|$ are disjoint, (3) $|(x_n : n \le m)| \in i(A)$ for every $m < \vartheta$. The set of all regular $\xi \in wli(A)$ will be denoted by rwli(A).
- **4.3.** Let φ , ψ be mappings of rwli(A) into i₀(A). Then we put $\psi \leq \varphi$ iff $\psi(\xi) \subset \varphi(\xi)$ for all $\xi \in \text{rwli}(A)$, and we define $\varphi \wedge \psi$ by putting $(\varphi \wedge \psi)(\xi) = \varphi(\xi) \cap \psi(\xi)$.
- **4.4.** For any $\varphi : \text{rwli}(A) \to i_0(A)$, $R(\varphi)$ will denote the set of all sequences $\xi = (x_n : n < 9)$ on li(A) such that $|x_n| = \varphi(x_k : k < n)$ for every n < 9. We put $S(\varphi) = \{\xi : \xi \in R(\varphi), \xi \text{ is finite}, |\xi| = A\}$.
- **4.5.** A mapping $\varphi : \text{rwli}(A) \to i_0(A)$ will be called a transition rule (on A) if (1) $\min A \in \varphi(\emptyset)$, (2) for any $\xi \in \text{rwli}(A)$, $|\xi| = A$ implies $\varphi(\xi) = \emptyset$, $|\xi| + A$ implies $\varphi(\xi) = \emptyset$, $|\xi| \cap \varphi(\xi) = \emptyset$, $|\xi| \cup \varphi(\xi) \in i(A)$. The set of all transition rules on A will be denoted by tr(A).
- **4.6.** If $\xi = (x_n : n < \vartheta)$ is a regular sequence on li(A) and $\varphi \in tr(A)$, then, clearly, there exists exactly one $\eta = (y_k : k < \delta) \in R(\varphi)$ such that (1) every y_k is of the form $\Sigma(x_n : m < n < p)$, (2) if $\eta' = (y_k' : k < \delta')$ satisfies (1), then $\delta' \le \delta$, $y_k' = y_k$ for $k < \delta'$. We shall say that η is the φ -reduction of ξ . The sequence ζ such that $\xi = \alpha \cdot \zeta$, $|\alpha| = |\eta|$, will be called the φ -remainder of ξ . If $|\eta| = |\xi|$, then the φ -reduction of ξ will be called exact.
- **4.7.** A transition rule φ on A will be called *regular* if, for any $\xi \in \text{rwli}(A)$ such that $|\xi|$ is a proper subset of $|\eta| \cup \varphi(\eta)$ where η is the φ -reduction of ξ , we have $\varphi(\xi) = \varphi(\eta) |\xi|$. The set of all regular $\varphi \in \text{tr}(A)$ will be denoted by rtr(A).

- **4.8.** Put $\varphi_0(\xi) = A |\xi|$ for every $\xi \in \text{rwli}(A)$. Then $\varphi_0 \in \text{rtr}(A)$ (and even $\varphi_0 \in \text{rtr}(A)$, see 5.1 below).
- **4.9.** Let $\varphi \in \text{rtr}(A)$, $\xi \in R(\varphi)$. Then ξ is regular; if $\xi \cdot \zeta \in \text{rwli}(A)$, $|\zeta| = \varphi(\xi)$, $|\zeta| + \varphi(\xi)$, then ξ is the φ -reduction of $\xi \cdot \zeta$, hence $\varphi(\xi \cdot \zeta) = \varphi(\xi) |\zeta|$.
- **4.10.** Let $\varphi \in \text{rtr}(A)$, $\psi \in \text{tr}(A)$, $\psi \subseteq \varphi$, $\xi \in R(\psi)$. Let η and ζ be, respectively, the φ -reduction and the φ -remainder of ξ . Then there occurs exactly one of the following cases: (1) η is exact, $\zeta = \emptyset$; (2) η is not exact, ζ is finite, $|\zeta|$ is a proper subset of $\varphi(\eta)$, $\varphi(\xi) = \varphi(\eta) |\xi|$; (3) η is not exact, ζ is infinite, $|\zeta| \subset \varphi(\eta)$. If ξ is finite, then $|\xi| \cup \varphi(\xi) = |\eta| \cup \varphi(\eta)$. If $\xi \in S(\psi)$, then $\eta \in S(\varphi)$, $L\xi = L\eta \in LS(\varphi)$.

Proof. Assume that η is not exact. Let $\zeta = (x_m, \ldots)$. By definition (4.6), $|(x_m, \ldots, x_n)| = \varphi(\eta)$ for no n. Suppose $|(x_m, \ldots, x_n)| \supset \varphi(\eta)$ for some n. Choose the last p such that $\varphi(\eta) - |(x_n : m \le n < p)| \ne \emptyset$. Since φ is regular, we have $\varphi(x_n : n < p) = \varphi(\eta) - |(x_n : n < p)|$, hence, due to $\psi \le \varphi$, we get $|x_p| = \psi(x_n : n < p) \subset \varphi(\eta)$, $|(x_n : m \le n , which is a contradiction.$

We have shown that every $|(x_m, ..., x_n)|$ is a proper subset of $\varphi(\eta)$. The rest of the proof may be omitted.

4.11. Proposition. If $\varphi_1, \varphi_2 \in \text{rtr}(A)$, then $\varphi_1 \wedge \varphi_2 \in \text{rtr}(A)$.

Proof. Put $\psi = \varphi_1 \wedge \varphi_2$. Clearly, $\psi \in \operatorname{tr}(A)$. Let $\xi \in \operatorname{rwli}(A)$, let η denote the ψ -reduction of ξ and let $|\xi| \subset |\eta| \cup \varphi(\eta)$, $|\xi| + |\eta| \cup \varphi(\eta)$. We are going to prove that $\psi(\xi) = \psi(\eta) - |\xi|$. Let η_i , i = 1, 2, be the φ_i -reduction of η . Clearly, η_i is also the φ_i -reduction of ξ . By 4.10, we have

$$|\eta| \cup \varphi_i(\eta) = |\eta_i| \cup \varphi_i(\eta_i),$$

hence

(2)
$$|\eta| \cup \psi(\eta) \subset |\eta_i| \cup \varphi_i(\eta_i).$$

This implies

(3)
$$\xi$$
 is a proper subset of $|\eta_i| \cup \varphi_i(\eta_i)$.

Since φ_i are regular, we have

$$|\xi| \cup \varphi_i(\xi) = |\eta_i| \cup \varphi_i(\eta_i),$$

hence, by (1),

$$|\xi| \cup \varphi_i(\xi) = |\eta| \cup \varphi_i(\eta).$$

This proves that $|\xi| \cup \psi(\xi) = |\eta| \cup \psi(\eta)$, hence $\psi(\xi) = \psi(\eta) - |\xi|$.

- **4.12.** If $\varphi \in \text{rtr}(A)$, $\xi \in S(\varphi)$, $\eta \in S(\varphi)$, $L\xi = L\eta$, then $\xi = \eta$.
- Proof. Put $\xi = (x_n : n < p)$, $\eta = (y_k : k < q)$. Clearly, $|x_0| = |y_0|$. Since $L\xi = L\eta$, we get $Lx_0 = Ly_0$, $x_0 = y_0$. The proof proceeds by induction.
- **5.1.** A regular transition rule φ on A will be called *normal* if every $\xi \in R(\varphi)$ is finite. The set of all normal $\varphi \in rtr(A)$ will be denoted by ntr(A). The collection of all $S(\varphi)$, $\varphi \in ntr(A)$, will be denoted by $\mathscr{S}(A)$.
 - **5.2. Proposition.** If $\varphi_1, \varphi_2 \in \text{ntr}(A)$, then $\varphi_1 \wedge \varphi_2 \in \text{ntr}(A)$.

Proof. Put $\psi = \varphi_1 \land \varphi_2$. By 4.11, $\psi \in \text{rtr}(A)$. Suppose that $\xi = (x_n : n < \omega) \in R(\psi)$. For i = 1, 2, let η_i and ζ_i be the φ_i -reduction and the φ_i -remainder of ξ , respectively. Since no $\eta \in R(\varphi_i)$ is infinite, 4.10 implies that, for $i = 1, 2, \eta_i$ is not exact, ζ_i is infinite, $|\zeta_i| \subset \varphi_i(\eta_i)$. We may assume $|\eta_1| \subset |\eta_2|$. Let $\beta = (x_0, ..., x_p)$, $|\beta| = |\eta_2|$. Then, for $i = 1, 2, |\beta| \cup \varphi_i(\beta) = |\eta_i| \cup \varphi(\eta_i) \supset |\xi|$, hence $|\beta| \cup \psi(\beta) \supset |\xi|$, $|\chi_0, ..., \chi_p, \chi_{p+1}| \supset |\xi|$, which is a contradiction.

5.3. Proposition. If $\varphi \in \text{ntr}(A)$, then $S(\varphi) \neq \emptyset$.

Proof. Choose a mapping f of the set $\{\xi : \xi \in \text{rwli}(A), |\xi| \neq A\}$ into li(A) such that $|f(\xi)| = \varphi(\xi)$. Define a sequence $\zeta = (z_n)$ as follows: $z_n = f(z_k : k < n)$ provided $|(z_k : k < n)| \neq A$; if $|(z_0, ..., z_p)| = A$, then $\zeta = (z_0, ..., z_p)$. Clearly, $\zeta \in R(\varphi)$, hence ζ is finite, $|\zeta| = A$.

- **5.4. Proposition.** For any $A \in \mathfrak{A}$, $L\mathcal{S}(A)$ (see 5.1, 3.5) is a base of a filter. This follows at once from 4.8, 5.3, 5.2, 4.10 (last assertion).
- 5.5. If $A \in \mathfrak{A}$, then the filter on eA (see 1.1) generated by $L\mathscr{S}(A)$ will be denoted by $\mathscr{F}(A)$.
- **6.1.** Let $B + C = A \in \mathfrak{A}$ (see 3.2). Let $\varphi : \text{rwli}(B) \to i_0(B)$ and, for every $\xi \in S(\varphi)$, let $\psi_{\xi} : \text{rwli}(C) \to i_0(C)$. For every $\xi = (x_n : n < p) \in \text{rwli}(A)$ define $\tau(\xi)$ as follows: (1) if $B |\xi| \neq \emptyset$, put $\tau(\xi) = \varphi(\xi)$; (2) if $|\xi| \supset B$ and, for some η , ζ , we have $|\zeta| = B$, $\xi = \eta \cdot \zeta$, put $\tau(\xi) = \psi_{\eta}(\zeta)$; (3) if $|\xi| \supset B$ and $B = |(x_n : n < m)|$ for no m, put $\tau(\xi) = A |\xi|$. Then τ is a mapping of rwli(A) into $i_0(A)$, which will be denoted by $\varphi * (\psi_{\xi})$.
- **6.2.** Let $B + C = A \in \mathfrak{A}$. Let $\varphi \in \operatorname{tr}(B)$ and, for every $\xi \in S(\varphi)$, let $\psi_{\xi} \in \operatorname{tr}(C)$. Put $\tau = \varphi * (\psi_{\xi})$. Then (1) $\tau \in \operatorname{tr}(A)$; (2) if φ , ψ_{ξ} are regular (normal), then so is τ ; (3) if $\xi \in S(\varphi)$, $\eta \in R(\psi_{\xi})$, then $\xi \cdot \eta \in R(\tau)$; (4) if $\zeta \in R(\tau)$, $|\zeta| B \neq \emptyset$, then $\zeta = \xi \cdot \eta$, where $\xi \in S(\varphi)$, $\eta \in R(\psi_{\xi})$.

- Proof. We omit the straightforward proof of (1)-(3) and prove (4) only. Put $\zeta = (z_n : n < 9)$ and consider the last p such that $|z_p| \subset B$. Then $|(z_0, ..., z_p)| = B$, for otherwise we should have $z_{p+1} = \varphi(z_n : n \le p)$, hence $|z_{p+1}| \subset B$. Put $\zeta = (z_0, ..., z_p)$, $\eta = (z_{p+1}, ...)$.
- **6.3.** Let $\langle B, C \rangle$ be a decomposition of $A \in \mathfrak{A}$. Then (1) $\mathscr{S}(B) \odot \mathscr{S}(C)$ (see 1.3) is equal to the collection of all $S(\tau)$ where $\tau = \varphi * (\psi_{\xi}), \ \varphi \in \operatorname{ntr}(B), \ \psi_{\xi} \in \operatorname{ntr}(C)$ for every $\xi \in S(\varphi)$; (2) $\mathscr{S}(B) \odot \mathscr{S}(C) \subset \mathscr{S}(A)$.
- Proof. Let $X \in \mathcal{S}(B) \odot \mathcal{S}(C)$. Then there exists a transition rule $\varphi \in \text{ntr}(B)$ and a mapping $g: S(\varphi) \to \text{ntr}(C)$ such that X consists of all $\xi \cdot \eta$ where $\xi \in S(\varphi)$, $\eta \in S(g\xi)$. Put $\psi_{\xi} = g\xi$, $\tau = \varphi * (\psi_{\xi})$. Then, by 6.2, $X = S(\tau)$. Since, by 6.2, $\tau \in \text{ntr}(A)$, we have $\mathcal{S}(B) \odot \mathcal{S}(C) \subset \mathcal{S}(A)$.
- **6.4.** For any collections V, W, Z of sets such that $v \cup w \in Z$ whenever $v \in V$, $w \in W$, we denote by u the mapping $u : V \times W \to Z$ defined by $u \langle v, w \rangle = v \cup w$.
- **6.5. Proposition.** Let $\langle B, C \rangle$ be a decomposition of $A \in \mathfrak{A}$. Then $u[L\mathcal{S}(B) \otimes L\mathcal{S}(C)] = L[\mathcal{S}(B) \odot \mathcal{S}(C)]$.
- Proof. I. Let $X \in \mathcal{S}(B) \odot \mathcal{S}(C)$. Let φ , g, ψ_{ξ} be as in the proof of 6.3. Then, clearly, $LX = \{L\xi \cup L\eta : \xi \in S(\varphi), \eta \in S(\psi_{\xi})\}$. For every $x \in LS(\varphi)$ there is, by 4.12, exactly one $\xi \in S(\varphi)$ such that $L\xi = x$; put $\xi = fx$. Then $LX = u\{\langle x, y \rangle : x \in LS(\varphi), y \in LS(\psi_{fx})\}$, hence $LX \in u[L\mathcal{S}(B) \otimes L\mathcal{S}(C)]$. II. If $Z \in u[L\mathcal{S}(B) \otimes L\mathcal{S}(C)]$, then, clearly, there is a $\varphi \in \text{ntr}(B)$ and a mapping $g : LS(\varphi) \to L\mathcal{S}(C)$ such that $Z = \{x \cup y : x \in LS(\varphi), y \in g(x)\} = \{L\xi \cup L\eta : \xi \in S(\varphi), \eta \in S(\psi_{\xi})\}$ where $LS(\psi_{\xi}) = g(L\xi)$. Hence $Z = \{L(\xi \cdot \eta) : \xi \in S(\varphi), \eta \in S(\psi_{\xi})\}$ and therefore $Z \in L[\mathcal{S}(B) \odot \mathcal{S}(C)]$. This proves the proposition.
- **6.6.** Let $B + C = A \in \mathfrak{A}$, $\tau \in \text{rtr}(A)$. Define τ' as follows: for $\xi = (x_n : n < p) \in \text{rwli}(A)$ put $\tau'(\xi) = \tau(\xi)$ if $B \cap \tau(\xi) = \emptyset$, $\tau'(\xi) = B \cap \tau(\xi)$ if $B \cap \tau(\xi) \neq \emptyset$. Then (1) $\tau' \in \text{rtr}(A)$; (2) if $\xi \in \text{rwli}(B)$, $|\xi| \neq B$, then $\tau'(\xi) \subset B$; (3) every finite $\xi \in R(\tau')$ is of the form $\xi = \eta \cdot \zeta$ where $|\eta| \subset B$, $|\zeta| \subset C$; (4) if $\xi = (x_n : n < \emptyset) \in R(\tau')$, then either $\xi \in R(\tau)$ or, for some m, $|x_{m-1}| \subset B$, $|x_m| \subset C$, $(x_0, \ldots, x_{m-1} + x_m, \ldots) \in R(\tau)$; (5) $LS(\tau') \subset LS(\tau)$; (6) if τ is normal, then so is τ' , (7) $\tau' = \varphi * (\psi_{\xi})$, for some $\varphi \in \text{ntr}(B)$, $\psi_{\xi} \in \text{ntr}(C)$.

The proof is straightforward and may be omitted.

6.7. Proposition. Let $\langle B, C \rangle$ be a decomposition of $A \in \mathfrak{A}$. Then for every $\tau \in \operatorname{ntr}(A)$ there exists a set $X \in \mathcal{S}(B) \odot \mathcal{S}(C)$ such that $LX \subset LS(\tau)$.

Proof. Let τ' be as in 6.6. Put $X = S(\tau')$. Then, by 6.6, $LX \subset LS(\tau)$. By 6.6, (7), we have $S(\tau') \in \mathcal{S}(B) \odot \mathcal{S}(C)$.