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ON IDEMPOTENT FILTERS

MirosLAv KATETOV, Praha
(Received May 27, 1977)

In [3], the problem of the existence of idempotent filters was posed, i.e. filters #
isomorphic to the product & - #. In what follows, a very simple existence proof is
given, and a rather complicated construction is described.

1.1. We use the standard terminology and notation, with slight modifications.
An ordered pair consisting of x and y will be denoted by {x, y). If M is a set, we put
expM ={X:X c M}, eM = {X : X = M, X is finite}. Letters k, m, n, p; q stand
for natural numbers, letters 9, & (possibly with subscripts, etc.) for a natural number
or for the ordinal w. Sequence (on a set M) means a finite or an infinite sequence
(of elements of M). A finite sequence will be called a string or a word. The void
string will be denoted by 0. The concatenation £ - n of two sequences ¢&, # is defined
if ¢ is finite; in addition, for formal reasons, we put £ - @ = & for any sequence &.
Given a set M, the set of all strings on M will be denoted by wM.

1.2. Let M, S be classes. If a binary operation ¢ : D — S, where D =« M x M,
is given, we introduce the following binary operations ¢’ on exp M and ¢” on
expexp M. If X, Yeexp M, then ¢'(X, Y) = {o{x,y):x€X, yeY}; if , ¥ e
eexp exp M, then ¢"(Z, ¥) = {U(e’{{x}, fx) :xeX): X e Z, fe F*}.

1.3. The operations just introduced will be used below in two cases: (1) M is
a class of sequences and o{¢&, n) = £ - n is the concatenation; in this case, we shall
often write X - Y instead of 6'(X, Y) and & © ¥ instead of 6"(Z, #¥); (2) M is the
universal class and o{x, y> = <{x, y); in this case the standard notation, X x Y,
will be used for 6'(X, Y), and ¢"{Z, #) will be denoted by ¥ ® ¥.

1.4. In the case (2) just mentioned, # ® ¥ isa base of a filter (on A x B) whenever
# and ¥ are filters (on A4 and B, respectively). The filter generated by # ® ¥ is the
product of filters # and ¥, which will be denoted by # - ¥ as usual (see e.g. [1],
§7; a different notation was used in [2], where the multiplication of filters was
introduced apparently for the first time).
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1.5. If &, % are collections of sets, 4 = U%, B = U% and there exists a bijective
f:A - Bsuch that f[%] = %, then Z is said to be isomorphic to % (this includes,
as a special case, the isomorphism of ﬁlters).

2.1. Theorem. Let % be a filter on a set A. Assume that u: A x A — A is bijective
and % < p[ 9 - 9). Then there exists exactly one filter F on A such that (1) 4 < #,
QuF - F]=F,Q)if #isafilteron A, G = H,py[H - H]| = H,then F < KH.

Proof. Put ¥, = 9. If e is an ordinal, & > 0, put 4, = u[ %, %] ifa = B + 1,
%, = U(% : B < a) if a is a limit ordinal. It is easy to see that, for every ordinal
o, 9, is a filter and ¥, = %, whenever « < B. Hence, 4, = 9, for some a. Put
F = 9, Then py[F - F| = F. If # is as in (3), then we get ¥, = o for all a,
hence # < .

2.2. Theorem. On every infinite set, there exists an idempotent filter.

Proof. If A is infinite, put 4 = {4 — X : X finite}. Let p: 4 x 4 — A be bijec-
tive. Clearly ¢ < p[ % - ¢]. Now apply the theorem above.

2.3. An explicit description of an idempotent filter is far more complicated than
the existence proof. It is necessarily so, for an idempotent filter cannot be analytic
(Souslin), cf. [3]. On the other hand, an explicit construction may provide more
insight into properties of such filters.

3.1. The class of all dense linearly ordered sets with a first and no last element
will be denoted by UA. As a rule, letters 4, B, C, possibly with subscripts, will stand
for ordered sets in A. A set of the form {t:ted,a <t} or {t:ted, a<t<b}
will be called an interval of A. The set of all nonvoid intervals of 4 will be denoted
by i(4). We put io(4) = i(4) U {0}.

3.2. A pair (B, C) €i(A4) x i(A) will be called a decomposition of Aif BLU C = A
and x < y whenever xe B, ye C. If (B, C) is a decomposition of 4, we write
B + C = A. :

3.3. A pair x = (T, v), where Te i(A), v < T is finite nonvoid, will be called
a labeled interval of A. The set of all labeled intervals of A will be denoted by 1i(A4).
If x = (T, v) eli(4), we put |x| = T, Lx = v.

. 34.If § =(x,:n < 9) is a sequence on li(4), we put |¢| = U(|x,|:n < 9),
L¢ =U(Lx,:n < 9), X¢ = (IE], LE). If eg. & =(x,y), we also write x + y
instead of Z¢, etc. Clearly, if ¢ € wli(4) and |¢| € i(A4), then Z¢ € 1i(A).
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3.5. If X < wli(4), we put LX = {L¢:¢eX}. If & < exp wli(4), we put LE =
={LX:XeZ}.

3.6. An idempotent filter may be constructed, roughly speaking, in the following
way. Suppose there is defined, for every 4 €, a collection #(4) < exp wli(4) such
that (1) if A is isomorphic to B, then J'(A) is isomorphic to X'(B), (2) Lo#'(A) is
a base of a filter, (3)if B + C = A, then X'(B) © #(C) = #'(A). It may be expected
that if A, B, C are mutually isomorphic, then the filter generated by Lx(A4) is
idempotent, since it is isomorphic to the product of filters generated by LX¥(B),
L¥(C).

4.1. We are going to construct certain collections with the properties mentioned
in 3.6. We shall need a few auxiliary definitions and a number of simple facts con-
cerning subsets of wli(A4), etc.

4.2. A sequence ¢ = (x,:n < 9) on li(4) will be called regular if (1) either
& = 0 or min 4 € |x,|, (2) the sets |x,| are disjoint, (3) |(x, : n < m)| €i(4) for every
m < 9. The set of all regular ¢ € wli(A4) will be denoted by rwli(A4).

4.3. Let ¢, y be mappings of rwli(4) into io(A). Then we put ¥ < ¢ iff Y(&) = ¢(£)
for all £ € rwli(4), and we define @ A ¥ by putting (¢ A ¥) (&) = o(&) N Y(£).

4.4. For any ¢ : rwli(4) —» iy(4), R(¢) will denote the set of all sequences ¢ =
= (x,:n < 9) on li(4) such that |x,| = @(x; : k < n) for every n < 9. We put
S(p) = {¢: E€ R(), ¢ is finite, |¢| = 4}.

4.5. A mapping ¢ : rwli(4) — io(4) will be called a transition rule (on A) if (1)
min 4 € ¢(0), (2) for any ¢ erwli(d), |¢| = A implies (&) = 9, |¢| + A implies
@(8) £ 0, [¢é] 0 (&) = 0, || v @(£) €i(A4). The set of all transition rules on 4 will
be denoted by tr(A4).

4.6. If ¢ = (x, : n < 9) is a regular sequence on li(4) and ¢ € tr(A), then, clearly,
there exists exactly one n = (y; : k < 8) € R(p) such that (1) every y, is of the form
Hxp:m <n<p)(2if n =(y:k < &) satisfies (1), then &' < 4, y; = y, for
k < &'. We shall say that n is the @-reduction of £. The sequence { such that £ =
= a-{, |a| = |n|, will be called the p-remainder of £. If |n| = |¢|, then the ¢-reduc-
tion of ¢ will be called exact.

4.7. A transition rule ¢ on A will be called regular if, for any ¢ e rwli(4) such
that lél is a proper subset of |q| U @(n) where n is the @-reduction of £, we have
@(€) = @(n) — |¢|- The set of all regular ¢ € tr(4) will be denoted by rtr(A).

414



4.8. Put @o(f) = A — |¢| for every &erwli(4). Then ¢ ertr(4) (and even
@, € ntr(A4), see 5.1 below).

4.9. Let g ertr(d), £eR(p). Then ¢ is regular; if &-{erwli(4), |¢| = @(¢),
|C| + @(£), then ¢ is the @-reduction of & - {, hence ¢(¢ - {) = (&) — ICI ’

4.10. Let g ertr(A), Y etr(A), ¥ < ¢, (€ R(Y). Let n and { be, respectively,
the @-reduction and the @-remainder of . Then there occurs exactly one of the
following cases: (1) n is exact, { = 0; (2) n is not exact, { is finite, |C| is a proper
subset of ¢(n), p(&) = o(n) — |é|; (3) n is not exact, { is infinite, [¢] = e(n). If €
is finite, then |&| U @(¢) = |n| v o(n). If £€ S(Y), then ne S(p), LE = Lne LS(¢p).

Proof. Assume that 7 is not exact. Let { = (X, ...). By definition (4.6), |(xp ---
.o» X,)| = @(n) for no n. Suppose |(xp - .-, x,,)| > ¢(n) for some n. Choose the last p
such that ¢(n) — |(x, : m < n < p)| + 0. Since ¢ is regular, we have ¢(x, : n < p) =
= (1) — |(x» : n < p)|, hence, due to ¥ < @, we get |x,| = ¥(x,:n < p) = ¢(n),
|(x,: m < n < p + 1)| = ¢(n), which is a contradiction.

We have shown that every |(x,, ..., X,)| is a proper subset of ¢(1). The rest of the
proof may be omitted. i

4.11. Proposition. If ¢, (p; e rtr(A), then ¢; A @, € rtr(A).

Proof. Put § = @, A @,. Clearly, ¥ € tr(4). Let & e rwli(A4), let n denote the Y-
reduction of ¢ and let |é| c |r1| v o(n), |§| + Ir]I U ¢(n). We are going to prove that
Y(€) = y(n) — ICI Let n;, i = 1, 2, be the ¢;-reduction of 5. Clearly, #; is also the
¢-reduction of £. By 4.10, we have

§)) In| v oin) = |ni| v ein),
hence
©) |n| v ¥(m) = || © odny) -

This implies
(3) ¢ is a proper subset of |n,-| v on).

Since ¢, are regular, we have

4 €| v 0d&) = || v 0in).,
hence, by (1),
® el 040 = bl 0.

This proves that || U Y(&) = |n| U ¥(r), hence (&) = "/’('l) - |¢].
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4.12. If g ertr(A), & € S(p), ne S(g), LE = Ly, then & = n.

Proof. Put £ = (x,:n < p), n = (3 : k < q). Clearly, |x0| = |yo|- Since L& =
= Ln, we gé&t Lx, = Ly,, xo = yo. The proof proceeds by induction.

'5.1. A regular transition rule ¢ on A will be called normal if every & e R(g) is
finite. The set of all normal ¢ € rtr(4) will be denoted by ntr(4). The collection of
all S(¢), ¢ € ntr(A4), will be denoted by (4).

5.2. Proposition. If ¢, ¢, € ntr(A), then ¢; A @, € ntr(A).

Proof. Put ¥ = ¢, A @,. By 4.11, Y € rtr(A). Suppose that & = (x,:n < w)e
€ R(Y). For i = 1,2, let n; and {; be the ¢ reduction and the ¢, remainder of &,
respectively. Since no n € R(p,) is infinite, 4.10 implies that, for i = 1, 2, #; is not
exact, {, is infinite, |C,| < @{n,). We may assume |111| < |na)- Let B = (xo, ..., Xp),s
Iﬁl = l"ll' Then, for i = 1, 2, Iﬂl v o) = lml v o(n;) = |§|, hence lﬂl vy(p) =
D |6|, |(x0, w503 Ko x‘,H) > (€|, which is a contradiction.

5.3. Proposition. If ¢ € ntr(A), then S(¢) + 0.

Proof. Choose a mapping f of the set {¢ : & € rwli(A4), Ifl + A} into li(A) such that
f(f)l = ¢(£). Define a sequence { = (z,) as follows: z, = f(z; : k < n) provided
(z: k< n)| + A; if |(zo, e zp)| = A, then { = (2,,...,z,). Clearly, {e R(¢p),
hence ( is finite, |C| = A.

5.4. Proposition. For any A e, LY (A) (see 5.1, 3.5) is a base of a filter.
This follows at once from 4.8, 5.3, 5.2, 4.10 (last assertion).

5.5. If A€, then the filter on eA (see 1.1) generated by L%(4) will be denoted
by #(A). .

6.1. Let B + C = AU (see 3.2). Let ¢ : rwli(B) — io(B) and, for every & € S(¢),
let Y, : rwli(C) — io(C). For every & = (x, : n < p) € rwli(A) define t(¢) as follows:
(1)if B — || + 0, put (&) = @(¢); (2) if §| > B and, for some 7, {, we have |C| =
=B, ¢ =n-¢ put o(&) = y,(0); (3) if|§ > Band B = |(x,, ‘n< m)| for no m,
put 7(£) = A — || Then 7 is a mapping of rwli(4) into io(4), which will be denoted
by ¢ * (V).

6.2. Let B+ C = AeW. Let ¢ etr(B) and, for every e S(¢), let Y, € tr(C).
Put © = @ » (Y). Then (1) t € tr(A); (2) if @, Y, are regular (normal), then so is t;
(3) if £ € S(¢), n € R(¥¢), then & - n e R(x); (4)if { e R(z), [¢| — B * 0, then { = & -,
where £ € S(¢), n € R(Y).

rd
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Proof. We omit the straightforward proof of (1)—(3) and prove (4) only. Put
{ = (z, : n < 9) and consider the last p such that |z,| = B. Then |(zo, ..., z,)| = B,
for otherwise we should have z,,; = @(z,:n £ p), hence |z,+,| c B. Put ¢ =

= (Zoy en 5 Zeh 1 =(Zgags o+ o)

6.3. Let (B, C) be a decomposition of AeU. Then (1) ¥(B) © ¥(C) (see 1.3)
is equal to the collection of all S(t) where 1 = ¢ *(y;), ¢ entr(B), Y, e ntr(C)
for every & € S(9); (2) #(B) © £(C) = #(A4).

Proof. Let X € #(B) ® #(C). Then there exists a transition rule ¢ € ntr(B) and
a mapping g : S(¢) — ntr(C) such that X consists of all &-#n where ¢ € S(¢), ne
€ S(gé). Put y; = g&, © = ¢ = (Y,). Then, by 6.2, X = S(t). Since, by 6.2, € ntr(4),
we have #(B) © &(C) = #(A).

6.4. For any collections V, W, Z of sets such that v U w e Z whenever ve V, we W,
we denote by u the mapping u : V x W — Z defined by ulv, w) = v u w.

6.5. Proposition. Let (B, C) be a decomposition of A€U. Then u[L¥(B) ®
® L#(C)] = L[#(B) © #(C)].

Proof. I. Let X € #(B) © #(C). Let ¢, g, ¥, be as in the proof of 6.3. Then,
clearly, LX = {L¢ U Ly : £ € S(p), n € S(¥,)}. For every x € LS(¢) there is, by 4.12,
exactly one ¢ € S(¢) such that LE = x; put ¢ = fx. Then LX = u{(x, y) : x € LS(¢),
y€LS(Yy,)}, hence LX eu[L¥(B) @ L¥(C)]. — IL. If Ze u[L¥(B) ® L¥(C)],
then, clearly, there is a @ e ntr(B) and a mapping g : LS(¢) » L¥(C) such that
Z={xuy:xeLS(p), yeg(x)} = {LEu Ly : &€ S(p), ne S(V,)} where LS(;) =
= g(LZ). Hence Z = {L(¢-n):¢€S(p), neS(Y,)} and therefore Z e L[#(B) ©
O #(C)]. This proves the proposition.

6.6. Let B+ C = A€, tertr(A). Define v as follows: for & = (x,:n < p)e
e rwli(A) put ©'(&) = (&) if Bn (&) =0, 7(¢§) = B 1(é) if B (&) + 0. Then
(1) " ertr(A); (2) if &erwli(B), |¢| + B, then ©'(¢) = B; (3) every finite & € R(t')
is of the form & =n-{ where n\ cB, [t|=C; @) if £E=(x,:n < 9)eR(),
then either ¢ € R(x) or, for some m, |Xp—;| = B, |xu| = C, (X0, --» Xm=1 + X ..-) €
€ R(v); (5) LS(z") = LS(x); (6) if = is normal, then so is ©', (7) ' = @ * (Y;), for
some ¢ € ntr(B), Y, € ntr(C).

The proof is straightforward and may be omitted.

6.7. Proposition. Let (B, C) be a decomposition of AeU. Then for every t€
€ ntr(A) there exists a set X € #(B) © #(C) such that LX < LS(z).

Proof. Let 7’ be as in 6.6. Put X = S(¢'). Then, by 6.6, LX = LS(z). By 6.6, (7),
we have S(') e #(B) © #(C).
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