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SINGULAR SUPPORTS I

V0LASTIMIL PTAK, Praha, V. S. RETACH (B. C. PETAX), MoCckBa
(Received May 3, 1977)

The present paper, the first of a series, represents the first part of an investigation
of abstract convolution equations. A preliminary communication [8] appeared
already in the Soviet Doklady in 1974. .

The aim of these investigations is to develop a functional-analytic theory of
Hormander’s results on convolution equations. It is obvious that such a theory must
contain two essential parts. The first task is to find a suitable abstract analogue of
the notion of “singular support” of a distribution. This line of research started with
the 1966 paper [5] and was pursued further in [11], [1] and [8], [8"]. The second
step consist in formulating criteria for F’' = (limF N E,) or F =limF nE,
where E, is a sequence of Fréchet spaces and F < E = lim E, Results in this direc-
tion have been obtained in [9].

We shall use the following terminology and notation. An F, space will be a locally
convex space the topology of which is given by a sequence of pseudonorms; it follows
that a separated and complete F, space is a Fréchet space.

Given two topologies u, and u, on a set T we say that u, is coarser than u, or
that u, is finer than u, if u; < u,. In other words, a finer topology has more open
sets and gives, accordingly, smaler closures. We shall denote by u; v u, the topology
generated by the union u, U u,, in other words, the coarsest topology which is finer
than both u, and u,.

(1,1) Lemma. Let F be a linear space and w, and w, two convex topologies on F.
Letu = wy; v w,. Then (F,u) = (F,w,) + (F,w,).

Proof. The mapping x —» [x; x] is an algebraically and topologically isomorphic
injection of (F,w; v w,) into (F, w,) @ (F, w,). Its adjoint mapping takes the
pair [fy, o] € (F, w,) ® (F, w,) into its sum.

(1,2) Proposition. Let (E,, u,), (E,, u,), (Es, u3) be three F, spaces. Let
T: (En “1) - (Es, us)v,
A: (Ey uy) = (Ep uy)
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be two continuous linear mappings. Let U be a fixed closed absolutely convex
neighborhood of zero in (Ey, u,). Denote by u the topology on E, generated by the
set U and suppose that (E,, u) is a normed space.

Then the following conditions are equivalent
1° A'E) = T'E; + (E,, u).
2° A is continuous from (Ey,u v T~ 'uy) into (E,, u,); in other words: if x, — 0
in (Ey, u) and Tx, — 0 then Ax, — 0.
3° If x, is sequence such that x, is Cauchy in (E;, u) and Tx, is Cauchy in (E;, u3)
then there exists a sequence x, such that x, — x, - 0 in (E,, u), Tx, — Tx, > 0
in (E3, u3) and Ax, is Cauchy in (E,, u,); furthermore, if z, — 0 in (E,, u),
Tz, - 0 in (E;, u3) and Az, is Cauchy in (E,, u;) then Az, — 0 in (E,, uy).
4° If x, is sequence such that x,, is Cauchy in (E;, u) and Tx, is Cauchy in (E;, us)
then there exists a sequence x, such that x,, — x, —» 0in (E,, u) and Ax, is Cauchy
in (E,, u,); at the same time, if z, — 0 in (Ey, u), Tz, = 0 in (E3, u;) and Az,
is Cauchy in (E,, u,) then Az, — 0 in (E,, u,).

Proof. According to lemma (1,1) we have
(Ey,u v T 'us) = (Ey,u) + TEj.

Condition 1° may thus be restated as follows: the mapping A is continuous in the
weak topologies corresponding to u v T~ 'uj; and u,. All spaces in question being F,,
spaces weak and strong continuity coincides. This establishes the equivalence of 1°
and 2°. ;

For the rest of the proof, it will be convenient to introduce some notation. Let T,
and A, be the mapping from (E,, u) respectively into (E,, ;) and (E,, u,) which
coincide with T and 4 as mappings of linear spaces, hence T = Tyv and A = Agv
where v is the injection of (E;, u,) into (Ej, u).

Denote by G(T,) and G(A,) their graphs in (E,, u) x (E;, u3) and (Ey, u) x
x (E,, u,). Denote by A" the mapping of G(T,) into G(4,) defined as follows

AP[x, Tx] = [x, 4x] .
We set
T~ = TP, | G(Tp) = P,TY, A~ = AP,|G(T,) = P,A".

The implications 2° — 3° — 4° are immediate. Suppose now that condition 4° is
satisfied. J

Consider the set M = (E,u)" x E; x E3 defined as follows: The triple [e,, 3,
e,] belongs to M if and only if [e;, e;] € G(T,)™ and at the same time [ey, e,] €
€ G(A4o)~. Here the closures are taken in the completions of the spaces in question.
It follows from the definition of the set M that it is closed in (Ey, )" x E3 x Ej.
It follows from the second part of assumption 4° that the inclusion [0, 0, e,] € M
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implies e, = 0. The set M is, therefore, the graph of a mapping from G(T,)~ into E3.
Hence the mapping A" is closable. Let us show that the domain of M is the whole
of G(T,)”. Indeed, let [e,, e5] € G(T,)™. It follows that there exists a sequence
x, € E, such that x, - e, in (E,,u)" and Tx, — e; € (E3, u3)". According to 4°
there exists a sequence x, € E such that x, — x, —» 0 in (E,, u) and Ax, is a Cauchy
sequence in E,. It follows that x, — e, in (E,, u) and Ax, — e, for a suitable e, €
€ (E,, u,)" so that [e;, e;] € G(4,)~; hence [e,, 3, e,] € M. To sum up; the closure
of AU is again a mapping and is defined on the whole of G(T,)". It follows from the
closed graph theorem that A is continuous so that A~ = P,A4" is continuous as
well. We complete the proof by proving the implication 4° — 1°.
Since the mapping

A~ = P,A" : [x, Tx] — Ax

is continuous from G(T,) into (E,, u,), it follows that, for each e} € (E,, u,)’ the
function
[x, Tx] > {4x, €3>

is continuous on G(T,). Hence there exist two functionals e} € (E;, u)’ and ej €
€ (Es, u;)’ such that

(Ax, e3) = (x, €'Y + {Tx, e3> = {x,¢ + T'e3)

whence A'e; = ¢’ + T'ey €(E,, u)’ + T'Ej. This proves 1°.

Conditions 3° and 4° may be restated in the form of statements about domains
of definition of certain mappings. We shall use the following notation. If G is the
graph of a mapping from F, into F, we shall denote by D(G~) the projection on F{
of the closure G~ in F{ x F3. The set D(G ™) will be called the domain of definition
of G™; of course, in the general case, G~ need not be the graph of a mapping from F{
into F3.

First of all, let us notice that the second part of conditions 3° and 4° asserts that
the mapping A~ is closable. Using this fact, condition 3° assumes the following form
5° The mapping 4 is closable and

G6(T)~ = D(G(A™)").

Since clearly D(G(T~)~) = G(T,)", we have the following equivalent form of 3°
6° The mapping A~ is closable and

D(G(T7)7) = D(G(47)7) -

Let us turn to condition 4°. Its second part may be interpreted as the closability of 4°.
In view of this condition 4° may be restated in each of the two following equivalent
forms

7° The mapping A" is closable and G(T,)~ = D(G(A")"),
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8° The mapping A" is closable and

D(G(T,)™) = D(G(4o)7) -

In the sequel we shall often identify G(T,) with the space (E,, if) where @ =
= u v T lu;. Accordingly, T~ and A~ will be taken as the mappings T and A
considered as mappings of (E,, #) into (Ej, u;) and (E,, u,) respectively.

(1,3) Proposition. The following conditions are equivalent:

1° If x,€ U and Tx, — 0 then Ax, tends to zero in the weak topology of E,.
2° For every ¢ > 0, the set A'E}, is contained in T'E} + eU°.
3° The mapping A~ is continuous and

KerT™" <« Ker A™".

4° The mapping A~ is continuous and Ker Ty = Ker (T, @ A,)".

5° The mapping A~ is continuous and if &€ (E,u)" annihilates (E,u) n T'E}
then & annihilates (E, u)’ n (T'Ey + A'E}).

6° The mapping A~ is continuous and the subspace (E,u) n (T'Ej + A3E3) is
contained in the closure of (E,u) n T'Ej in the strong topology of the space
(E, u). _

7° The weak topology on E, generated by A'E; is coarser than that generated
by T'E} when restricted to U; in other words

“o(E,, A'E;) | U < o(E,, T'E}).

8° The weak topology on E, generated by A'E), is coarser than the topology T 'u,
when restricted to U; in-other words if Wis an arbitrary neighbourhood of zero

in the topology o(E,, A'E}) then there exists a neighbourhood of zero U, in
(E3, u3) such that

UnT 'U;cW.

Proof. Suppose that condition 1° is satisfied and that a positive number ¢ is given.
Let us prove that A'(E,, u,)’ = T'(Es, u3) + eU° If not, then there exists a go €
€ (E,, u,) such that, for each n, the point A'gg lies outside the set eU°® + T'W,’ where
W, runs over a fundamental system of neighbourhoods of zero in (Ej, u5). The sets
eU° + T'W, being o((E,, u,)’, E;) compact, there exists, for each natural number -
n, an element x, € E,; such that {x,, eU° + T'W?) < ¢ and {x,, A'go) > &.

In particular, {x,, U°) <1 whence x,e U® = U and (Tx,, W) £ 1 so that
Tx, € W,. It follows from condition 1° that Ax, tends to zero weakly in (E,, u,);

however, {Ax,, go> = {x, A'goy > € which is a contradiction. This proves condi-
tion 2°.
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Now assume condition 2°. It follows that A'E; = T'Ej + (E,, u)’ = (E,, @)’ so
that A is continuous as a mapping of (E,, if) into (E,, u,). Suppose now that ¢ e
€ (E,, )" = ((E,, @), B((E,, @), E,))’ is given and that T"¢ = 0. It follows that
(¢, T'(E3, us)'> = 0. Now let us denote by P¢ the restriction of & to (E,, u)'. Since &
is bounded on the polar B® of some set B bounded in (E,, @), ¢ is bounded on U°®
since B = AU for some A. It follows that P may be considered as an element of the
second dual of the normed space (E;, u). Let § be a number greater than |P€|, the
norm of P¢ in (E,, u)".

Now let g’ € (E,, u,)' and a positive ¢ be given. According to our assumption,
there exists an f’ € (E,, u;)' and an x’ € (E,, u)’ such that A'g’ = T'f’ + x’ and
x’l < ef™1. Tt follows that <& A'g"> = (& Tf") + (& x') = (P x"y whence
CE, A’g'>| < &. Since ¢ was an arbitrary positive number, we have proved that
(¢ A'g") = 0 for every g’ € (E,, u,)’ or, in other words that 4"¢ = 0.

Let us prove that condition 3° implies 1°. Let x, € U and suppose that Tx, — 0.
Denote by M the set of all elements of the sequence x,. Since M is bounded in
(E,, @) and 4 is continuous, the set AM is bounded in (E,, u,). Let g’ € (E,, u,) be
given and suppose that {Ax,, g’> does not tend to zero. The sequence {A4x,, g')
being bounded, there exists a subsequence y, of the sequence x, such that {Ay,, g’>
converges to a limit different from zero. Since y, € M there exists a cluster point #
of the sequence y, in the topology o((E,, @)", (E,, i)). Let us prove that 77 = 0.
Indeed, if f' € (E;, us) is given, the product <{n, T'f") is cluster point of the sequence
D T'f'> = {Ty,, f'> = 0. 1t follows that <{n, T'f'> = 0. Since f’ was arbitrary we
have T"n = 0. It follows from our assumption that 4”7 = 0 so that, in particular,
{n,A'g’) =0.

Now (n, A’g’) is a cluster point of the sequence {y,, A'g’> because 4 is con-
tinuous. This sequence, however, tends to a limit different from zero, a contradiction.
This proves condition 1° hence the equivalence of the first three conditions.

Conditions 5° and 6° are equivalent by the Hahn-Banach theorem. Let us prove
the implications 2° — 5° — 1°. .

Suppose 2° satisfied. It follows from Proposition (1,2) that 4 is continuous. Con-
sider a ¢ e (E,, u)" which annihilates T'E; n (E,, u)’. Suppose that ¢’ = T'e} +
"+ A'e; € (E,, u)’ and let € > 0 be given. According to 2°, we have a decomposition

Ae,=Tf3+9
where g € (E;, u)’ and |g| < t-:|£|‘1 if &€ & 0. Hence
e =Tey+Tf3+g.
Since ¢’, g €(E,,u)’, we have T'(e; + fg)etEl, u) so that, by our assumpti-on,
<& T'(e5 + f3)> = 0. Hence [(¢ eD| = <& g)| s | lg| < e Since ¢ was an

arbitrary positive number, (£, ¢’) = 0 and 5° is established.
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Now assume 5° satisfied and let x,e U, Tx, — 0. Let e} € (E,, u,)’ be given.
Since 4 is continuous, there exists, by Proposition (1,2), a decomposition

Aey, =Tes+ f

with f € (E,, u)'. It follows that f'e (A'E; + T'E3) n (E;, u)’. Suppose that {Ax,, €3>
does not tend to zero. Then <x,, f) does not tend to zero. Otherwise we would have
(Ax,, e3) = {x,, A'ey) = {x,,, T'e3> + {x,, f» — 0 which is a contradiction. There-
fore there exists a cluster point & € (Ey,u)"suchthat<{¢, /) + 0. If he T'Ey n (Ey, u)
then h = T'e} for a suitable e} € Ej.

Since h € (E, u)’, the number (&, h) is a cluster point of the sequence {x,, T'e}).
We have, however, {(x,, T'e3> = (Tx,, e3> — 0. Since h was an arbitrary element
of the intersection T'E3 N (E;,u)’, wesee that £ annihilates T'E3 N (Ey, u)'. It follows
from our assumption that ¢ annihilates (T'Ej + A'Ej) N (El, u) in particular,
¢ annihilates f. This is a contradiction.

Clearly the conditions 5° and 6° are equivalent by the Hahn-Banach theorem.

Let us prove now the equivalence of 4° and 5°. If S is linear mapping from a locally
convex space P into another locally convex space Q and if £ € P” we write £ € Ker S”
if and only if ¢ annihilates the range of S’. The range of S’ is the set of all x" € P’
such that

(8x, y'> = <x, x')

for a suitable y’ € Q' and all x € D(S). The equivalence of 4° and 5° will therefore be
established if we show that

R(Ty) = (Ey, u) n T'Ej,
R((T, ® A4o)) = (E;, u) A (T'Ejy + A'Ey).

First of all, x’ € R(Ty) if and only if there exists an e} such that

<T0xs e’3> = <xv x,>

for all x € Ey; in other words if and only if x' = T'e} or x’ € (E,, )’ n T'Ej. Simi-
larly, x" € R((To, @ Ao)') if and only if there exist e} and e} such that

{Tox, e3> + {Aox, e3) = {x,x")

for all x e E,; in other words if and only if x’ = T'ej + A'e; or x’ € (E,, u)' N
N (T'E; + A'E}).

This completes the proof of the equivalence of 4° and 5°.

To complete the proof, we intend to prove the implications 2° — 7° — 8° — 1°,
First of all, the inclusion

o(Ey, T'E3) = T 'u,
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