

Werk

Label: Table of literature references

Jahr: 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0102 | log88

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

If $A_1A_2A_3$ is an equilateral triangle and X another point of the plane then XA_1 , XA_2 , XA_3 form lengths of sides of a triangle iff X does not belong to the circumscribed circle of $A_1A_2A_3$.

We shall generalize now this theorem as follows:

Theorem 8. Let A_1, \ldots, A_{n+1} be vertices of a regular n-simplex Σ in E_n . If X is a point in E_n then there exists an n-simplex with vertices B_1, \ldots, B_{n+1} such that edges B_iB_k ($i \neq k$, $i, k = 1, \ldots, n+1$) have lengths proportional to $(\varrho(A_i, X), \varrho(A_k, X))^{-1}$ iff X does not belong to the circumscribed (n-1)-sphere of Σ .

Proof. Assume first that X belongs to the circumscribed (n-1)-sphere of Σ . If $X = A_i$ for some i, the n-simplex clearly does not exist. If $X \neq A_i$ for all i = 1, ..., n + 1, the equivalence of 7° and 1° in Thm. 7 shows that the realization of the points B_i leads to a complete isodynamic system which is linearly dependent.

Assume now that X does not belong to the circumscribed (n-1)-sphere of Σ . Let $\mathscr I$ be any inversion with centre X. If B_i are points which correspond to the points A_i in $\mathscr I$, we have similarly as in the proof of $5^\circ \Rightarrow 6^\circ$ in Thm. 7,

$$\varrho(B_i, B_k) = k(\varrho(A_i, X) \varrho(A_k, X))^{-1}.$$

Moreover, the points B_i do not belong to a hyperplane since this would correspond in \mathcal{I} to the circumscribed sphere of Σ and this would contain the centre of inversion X, a contradiction. The proof is complete.

References

- [1] N. A. Court: Sur le tétraedre isodynamique. Mathesis 49 (1935), 345-351.
- [2] S. R. Mandan: Isodynamic and isogonic simplexes. Annali di Matematica pura ed appl. Ser. IV., 53 (1961), 45-56.
- [3] K. Menger: Untersuchungen über allgemeine Metrik. Math. Annalen 100 (1928), 75-163.

Author's address: 115 67 Praha 1, Žitná 25 (Matematický ústav ČSAV).