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1. INTRODUCTION

Notation used in this paper is clear. In particular, R denotes the real line, D(4)
denotes the domain of an operator 4 and x, — x or x, - x means that a sequence x,,
converges weakly to the element x in a Banach space B.

Let H, be a separable Hilbert space (with an inner product denoted by (+,*)o and
the corresponding norm denoted by |°|0 and let A be a positive definite selfadjoint
operator in H,. For « > 0 we shall denote by A* the positive a-th power of 4 and
by H, the (separable) Hilbert space D(4%) (with the inner product (x, y), =
= (A%, A%y)o (x, y € D(A%)) and the corresponding norm II,) Further, let F be
a continuous operator on on R x H; x H,into H,. Under the (generalized) solution
of the equation

(1) u'(t) + A% u(t) = F(1, u(?), u'(t))

on an interval [a, b] = R )we understand a function u € C'([a, b]; Ho) N
n C([a, b]; H,) for which

(2 u(t) = cos A(t — a)u(a) + A~ " sin A(t — a) u'(a) +

+ J"A" sin A(t — s) F(s, u(s), u’(s)) ds

a

holds for t € [a, b].

Remark 1. It may be easily verified that if u € C*([a, b]; Ho) n C([a, b]; H,) n
n C([a, b]; H,) satisfies the equation (1) in the classical sense then it is a (generalized)
solution of (1). (More about (generalized) solutions of the equation (1) is found e.g.
in [3] (putting y = 0 in the notation of the paper [3]).)
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Remark 2. If u is a solution of (1) on [a, b] then

(3) u'(f) = —Asin A(t — a) u(a) + cos A(t — a) u'(a) +

+ f'cos A(t — ) F(s, u(s), u'(s)) ds

holds for t € [a, b].

Remark 3. If ue C([a, b]; H;) and ve C([a, b]; Hy) are such that u(t) =
= cos A(t — a)u(a) + A™'sin A(t — a) v(a) + [; A" sin A(t — s) F(s, u(s), v(s)) ds
and ot) = —A sin A(t — a) u(a) + cos A(t — a) v(a). + [; cos A(t — s) F(s, u(s),
1(s)) ds hold for t € [a, b] then u is a solution of (1) on [a, b] and v’ = v.

The aim of this paper is to find assumptions on the operator F under which there
exists at least one w-periodic (generalized) solution of (1), i.e. such a solution u on
the interval [0, ®] for which u(0) = u(w) and u'(0) = u'(w). The basic tool for
obtaining this result is the following well known fixed point theorem which is a cose-
quence of the Schauder-Tichonov Fixed Point Theorem (see e.g. [1], p. 456):

Proposition. Let B be a separable reflexive Banach space, K a nonempty closed
bounded convex subset of B and T a weakly continuous operator on K into K (i.e.
x, €K and x, = x implies T(x,) = T(x)). Then T has at least one fixed point in K,
i.e. there exists x, € K such that T(x,) = X,. ~

To prove the existence of an w-periodic solution of (1) we shall show that there
exists a nonempty closed bounded convex set K = H; x H, such that to any
(x, ¥) €K there exists a unique solution u of (1) on [0, w] with initial values (x, y)
(i.e. u(0) = x, u’(0) = y). Further, the operator T defined by T(x, y) = (u(), u'(»))
is a weakly continuous operator on K and maps K into K. Thus according to Proposi-
tion, T has at least one fixed point which will prove the main result. This method
was used in fact e.g. in [4].

The assumptions on F and the main theorem are stated in Section 2. In Section 3
some Lemmas are given from which the main theorem immediately follows. An
example showing the applicability of the main theorem is given in Section 4. (This
example deals with the equation of an extensible beam, see e.g. [5].)

2. MAIN THEOREM

We shall suppose that the right hand side of the equation (1) satisfies the following
assumptions:

(4) F is continuous operator on R x H; x H, into Hy; to any r > 0 there exists
a constant ¢(r) such that

|F(t, X1, }’1) - F(t, X2, .Vz)lo = C(r)'(lxl - x2|1 + LVI - Y2|o)
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holds-for te R, x;€ H,, |x,-|1 < r, y;€H,, |y,-|0 sr(j=12).
(5) There exist G, g, d, p, Bo and r, such that

(5a) G is a continuous operator on H, into H;

(5b) g is a continuous convex real functional on Hy;

(5¢) g is Gateaux differentiable on H, and g'(x) (v) = 2 Re (G(x), ), holds for
any x, ye€ Hy;

(5d) d = min {|x|} + g(x); xe H,};

(5¢) p is a real nondecreasing continuous function on [d, o) which is locally
Lipschitzian on (d, ©);

(5F) 2 Re (F(t, x, y) + G(x) + 2Boy + B3x, ¥ + Box)o + 2B, g(x) —
— 2Bo(G(x), x)o < p(|x|3 + |y + Box| + g(x)) holds for te R, x € H, and
y € Ho;

(58) 7o > d and —2Bgry + p(ro) < 0.

(6) If x, € Hy, x, 1= x, y, € Hy, y,"°= y then F(t, x,, y,) " = F(t, x, y) for all
teR.

Theorem. Let @ > 0. Let H, be a separable Hilbert space, A a positive definite
selfadjoint operator in Hy, Hy = D(A) and let F be an operator on R x H, x H,
into H, which satisfies the assumptions (4), (5) and (6). Then there exists an w-
periodic solution of the equation (1).

The proof of Theorem follows immediately from Lemmas 5 and 6 (see next
section) and from the above Proposition.

Remark 4. Obviously, it suffices to suppose that F is defined only on [0, @] x
x H, x H,. We shall use this fact in Section 4.

3: AUXILIARY LEMMAS

Lemma 1. Let F satisfy the assumption (4). Then to any r >0 and a,beR
there exists 6 > 0 such that for (x,y)e H, x H, with lxll <r |y|o <r and
to € [a, b] there exists a solution u of (1) on the interval [t,, t, + 8] with u(ty) = x
and u'(ty) = y.

Lemma 2. Let F satisfy the assumption (4) and let u,, u, be solutions of (1) on an
interval [a, b] < R with u,(a) = u,(a) and ui(a) = u3(a). Then u, = u,.

The above assertions may be proved in the same way as the analogous results
from the theory of ordinary differential equations (the essential means being Banach
Contraction Principle and Gronwall’s Lemma). Therefore their proofs are omitted.
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Lemma 3. Let u be a solution of the equation

)] u'(t) + A u(t) = f(1)
on an interval [a, b] = R where fe C([a, b]; H,). Then
® O+ W) + Bufs = e u(@)fi + |u'(a) + Bu(a)s) +

+ ZJ-te_”("‘) Re (f(s) + 2B u'(s) + B* u(s), u'(s) + B u(s))o ds

holds for any Be R and t € [a, b].

Proof. The proof of (8) may proceed in the same way as that for the usual energy
equality. If ue C*([a, b]; H,) n C'([a, b]; H,) n C([a, b]; H,), then denoting
z(s) = |u(s)|f + |u'(s) + Bu(s)|5 onme immediately verifies that z'(s) + 28 z(s) =
= 2 Re (f(s) + 2B u'(s) + B* u(s), u'(s) + B u(s))o holds for any f € Rand s € [a, b].
Multiplying this equality by e~ 2#¢~* and integrating over [a, {] we obtain (8). The
validity of (8) for any solution u is obtained by the usual approximation process.

Lemma 4. Let F satisfy the assumption (4) and let G, g satisfy the assumptions
(5a), (5b) and (5¢). Then for any solution u of (1) on an interval [a, b] < R we have

©) u@IF + [w(®) + Bu(fs + 9(u(®) =

= e‘z"(":"(|u(a)lf + |w'(a) + Bu(a)|5 + g(u(a))) +
" 2.[ te_zp('_’)[Re (F(s, u(s), w'(s)) + G(u(s)) + 2Bu'(s) +
+ B u(s), u'(s) + Bu(s))o + Bg(u(s)) — A(G(u(s)), u(s))o] ds

forany Be R and te [a, b].

Proof. It is easy to see that the function s — g(u(s)) is continuously differentiable
on [a, b] and g(u(-)) (s) = 2 Re (G(u(s)), u'(s))o. The relation (9) follows now
immediately from (8).

Lemma 5. Let F satisfy the assumptions (4) and (5) and let us denote

(10) K = {(x,y)e H, x Ho; |x|} + |y + Box[5 + 9(x) < o} .
Then

1. K is a nonempty closed bounded convex subset of H; x Hy;

2. to any (x, y) €K there exists a solution u of (1) on the interval [0, ®] with
initial values (x, y). Moreover, (u(t), u'(t)) e K for t € [0, ].
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Proof. It is easy to verify 1. To prove 2 it is sufficient to show, with respect to
Lemma 1, that if  is a solution of (1) on [0, ] with (u(0), u’(0)) € K then (u(t), u'(t)) €
€K for te [0, ®]. For te [0, ®] let us denote z(t) = |u(f)|} + |u'(t) + Bo u(t)|5 +
+ g(u(?)), d(r) = z(0) e~ #°¢~9 p(z(s)) ds. Clearly z € C([0, w]) and q € C([0, w]).
With respect to (5f) and Lemma 4 z(f) < ¢(f) holds for ¢ € [0, ®]. Since p is non-
decreasing, q'(t) = —2pB, q(t) + p(z(t)) < —2B, a(t) + p(q(t)) holds for t € [0, w].
The assumption (5g) implies that z(f) < g(f) < r, or, in other words, (u(t), u'(f)) e K
for te [0, o].

For (x, y) € K let us define

(11) T(x, y) = (u(@), w'(«))

where u is a solution of (1) on [0, @] with initial values (x, y). Lemmas 5 and 2 imply
that Tis a single-valued operator which maps K into K.

Lemma 6. Let F satisfy the assumptions (4), (5) and (6) and let K and.T be defined
by (10) and (11). Then T is a weakly continuous operator.

Proof. Let (x,, y,) € K (X, y,) = (x, ). First let us notice that it is sufficient to
show that there exists a subsequence (x,,, y;,) such that T(x,,, y;,) = T(x, y). Let u,
be solutions of (1) on [0, @] with initial values (x,, y,). It is easy to see from the
expressions (2) and (3) that for any z e H, (z € H,) the functions t — (u,(t), z); .
. (t = (u;(1), z)o) are equicontinuous on [0, w]. Hence (with respect to the separability
of the spaces H,, H, and using Cantor’s diagonal method) we obtain that there
exists a subsequence u, such that

(12) u(£) "1 u(t), i, (1) "0 oft) (1€ [0, 0]).

The assumption (6) implies (with respect to theorems of Pettis and of Bochner —
see e.g. [2] p. 131 and 133) that the function ¢t — F(t, u(t), v(f)) belongs to L,(0, w; H,)
and that the relations u(f) = cos Atx + A" 'sin Aty + [( A™'sin A(t — ).
. F(s, u(s), o(s)) ds, v(t) = —Asin At x + cos At y + [§ cos A(t — s) F(s, u(s), u(s)) .
. ds hold for t € [0, ®]. Hence, by Remark 3, the function u is a solution of (1) on
[0, @] with initial values (x, y) and 4’ = v. The relation (12) for ¢t = w says in other
words that T(x,,, »i,) = T(x, y).

4. EXAMPLE

On [0, w] x J (J = [0, 1]) let us consider an equation
(13) u,ft. x) + auft, x) + teealt, x) — b ( J. 1|u,‘(t, &) d{) u(t, x) = f(t, x)
. 0
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