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PERIODIC VIBRATIONS OF AN EXTENSIBLE BEAM

MARIE KoPACKOVA AND OTTO VEIVODA, Praha
(Received May 11, 1977)

1. INTRODUCTION

In the last years both free and forced vibrations of an extensible elastic beam have
been studied by several authors ([1]—[6]). Under certain conditions forced vibrations
of such a beam are described by the equation

Uty X) + Uty x) + aul(t, x) — Pu (2, x) J nu?(t, &)d¢ = f(t, x) .
0

We are interested in the existence of periodic solutions to this equation. In the pres-
ence of damping (¢ > 0) this problem is examined in the paper of V. LOVICAR [9].
It may be shown (correspondingly to [8]) that there exists a sequence of free vibrations
of undamped beam with hinged ends. However, in the case of f # 0 we are not able
to solve this problem for « large. Thus limite ourselves to looking for a solution of
the equation

(1) Z"(t, x) + zxxxx(t’ x) = g(t’ x) +
+¢ [f(t, x) + Zy(t, X) J.:zg(t, &)dé + e F(z) (1, x)]

with homogeneous boundary conditions

(2 2(t,0) = z(t, 1) = z,,(t,0) = z,(t,®) = 0

and the condition of periodicity

(3) (t, x) = z(t + o, x). _

We make use of the results of the paper by N. KryLovA, O. VEsvopa [7].
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2. NOTATION AND AN AUXILIARY LEMMA

Let H™ be the Hilbert space of real functions u(x) on [0, =] which have generalized
square integrable derivatives ¥)(x), j = 0, 1, ..., m equipped with the norm

elin = %, [T 0.

Denote by °H?™ the space of functions from H?™ satisfying the conditions u*(0) =
=u®)(n) =0,j=0,1,...,m — 1, with the norm |u|,,, = [4®*™|go. Denoting

= (2[=)'/? J. u(x) sin kx dx ,

let h™ be the space of real sequences {u,; k = 1, 2, ...}) in the sequel, we write u =
o}

= {u,}) for which |u|2 =Y k*™u < +o0. The spaces °H*" and h®™ are isometric
k=1

and isomorphic.
The solution of the equation (1) will be sought in the space % = {u € C(R, °H*) n
n CY(R, °H?*) n C*(R, H®); u(t + w) = u(t), t € R} with the norm

|u|q, = mztax |u(t)[4 + max Iu,(t)lz + mflx lu,,(t)[o =
t

= max (3, [k* u(t)]’)"* + max [ ¥ (k* ui(1))’]"* + max [} (ui(1))’]"* .
t k=1 t k=1 t k=1
Then z € % satisfies the equation (1) in the sence of H for all t € R. The right hand
sides of (1) will be elements of the space ¢ = {u € C(R, °H?); u(t + @) = u(f), te R
with the norm |uly = max |u(t)|, = max (Y, k* ui(r))*/2}.
t t k=1
For a while, let us investigate the limit problem given by (1), (2), (3) withe =0

and g € 4. Looking for a solution z in the form z(t, x) = 2 z)(t) sin kx we find
easily that z,(f) must satisfy the equation

(4 z(t) + k* z(1) = gi(1) ,

for k = 1,2, .... By a well-known theorem from the theory of ordinary differential
equations this equation has an w-periodic solution if and only if g is orthogonal to
the every w-periodic solution to the corresponding homogeneous equation.

If k satisfies the relation k?w = 2nn (n integer) then the homogeneous equation
(4) has two linearly independent w-periodic solutions cos k*t, sin k?t. Denote by S
the set of such k. For the other k there exists no w-periodic solution. Hence, the
orthogonality conditions read

B) J gx(t) cos k*t dt =0, J g(t)sink?*tdt =0, keS.
0 0
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Clearly, if v = 2rnw ™! is rational the set S is infinite. On the other hand, if v is irra-
tional the set S is empty, but we can not study this case in the sequel, because by the
theorem 6.4 from [1] the nonlinearity in (1) includes derivatives of too high order.
If these conditions are fulfilled the w-periodic solution of (4) is of the form

t
(6) z(t) = a, cos k*t + b, sin k*t + k'zj gi(7) sin k*(t — 1) dt
0

(k =1,2,...), where a, b;, Y k®aj + Y k®b; < oo are arbitrary for ke S and

a, = [2k?sin (k* )] 1 ngk(t) cos k*(1w — 1) dr,
0

b, = —[2k* sin (k* 3w)] " J. gi(t) sin k* (3o — 7)dr
)
for k€ S.
Let g € 4, satisfy (5) for ke S and let z°(t, x) be the solution to (1), (2), (3) for
¢ = 0 of the form z°(t, x) = ¥ zJ(t) sin kx, where z(t) is given by (6) with a, = b, =
k=1

= Ofor k € S. Then the problem (1), (2), (3) may be reduced to that of finding a func-
tion u satisfying the equation

(1’) uﬂ + uxxxx =¢& F(“)

and the conditions (2), (3), where
) Fu) (6 %) = (22 + u)en (1, %) I :(z° + ) (s, &) dE +

+f(tx) +eF° +u)(t,x), z=u+2°.
Hence we have easily
Lemma 1. Let F(u): % — 9, F(u)(t,x) = iF,,(u) (O)sinkx, ue, u(t,x) =
= iu,(t) sin kx. Then u(t, x) is a solution of Ei—-’s, (2), (3) if and only if there exist
a,.kI: IE h* such that

(8) 5 : G(“: a, b’ 8) =0 s
where ‘
G = (Gl’ Gz, G3) s

9 Gulu, a, b, &) (f) = —u(t) + a; cos k*t + by sin K*t +

t
+ ak'zj‘ Fy(u)(z)sin k*(t — 7)de, for k=1,2,...,

0

358



(10)  Gu(u, a, b, ) = —a, + &(2k? sin (k* $w)) ! J‘:Fk(u) (t) cos k*(3w — 7)dr,

Gy(u, a, b, £) = b, + &2k? sin (k* $w))™! J. Fy(u) (7) sin K*(3w — 7)d7,
0
for k€S,

(11) Gu(u,a.b,¢) = k'ZJmF,‘(u) (7) cos (k*7) dt ,

V]

Gyu, a, b, ¢) = k‘ZJ‘ Fi(u) (7) sin (k*7) d7,
0
for ke S.

Note, that
Q0 L]
u(0, x) = (2[m)'/2 Y. a sin kx, u0, x) = (2[r)'/* Y. k*b, sin kx .
k=1 k=1
These equation will be solved by means of the following implicit function theorem

Theorem 1. Let the following assumptions be fulfilled:

(a) G(v, €) is a mapping from Banach space B, x [—¢,, ¢,] into Banach space B,;
(b) the equation G(v, 0) = 0 has a solution v, € B; ‘

(¢) the mapping G(v, €) is continuous in & and has G-derivative G(v, &) continuous
in v, & for Iv - vol,,l <K, Isl < 8

(d) [Gifvo, 0] ! exists, is bounded and maps B, on B,.

Then there exists &, > 0 such that the equation G(v, &) = 0 has a unique solution
(¢) € B, for e € —[&o, &0] which is continuous in & and such that v(0) = v,.

3. MAIN RESULTS

For the sake of simplicity of calculations we shall find solution to the problem (1),
(2), (3) only for g of the form

(12)  g(t, x) = cos (vkot) {g1[1 — (vKk3)] sin x + g;[3* — (vk3)] sin 3x},

where k is a positive integer such that vk,  3if 1€ S, vk, + Sif lor3 € S, vk, + 4
if 1 or 2 or 3 € S. In that case

(13) 2°(t, x) = cos (vkot) (g, sin x + g, sin 3x).

We prove the following

Theorem 2. Let g be of the form (12), fe &, |f|, + |g|, > 0, w rational. Let
F(u) : % — ¥ have a continuous G-derivative in %.
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Then there exists &, > 0, u® € % such that the problem (1), (2), (3) has a unique
solution z(g) € U for e e[ —&o, €] which is continuous in & and such that z(0) =
= z° + 4% a° is a solution of the equation G(u, a, b, 0) = 0,

(14) u%(t, x) = Y. [ay cos (k*f) + by sin (k)] sin kx .
keS
First, we shall prove two lemmas.

Lemma 2. Let 6 2 0,0, 20, 0, = 0 for k + 1,3, Y k%(pi + qi) < + 0. Then
keS
the system of algebraic equations

(15) . a[k*(a? + b2) + 2(c + 6)] = pr,

b[k*(ai + b) + 20 + 0)] = g,
has a unique solution ay(c), b(c), ke S, Y k%[ai(o) + bi(0)] < +o0 for ¢ > 0,
the function A(o) Ek}; k*[az(o) + b,f(a)]kesis strictly decreasing on (0, + o),

0 < A(0) < + oo and lim A(c) = 0.

g~

Proof. The equations (15) imply
ak=0©p,‘=0, bk=0¢‘h=0-

Hence we may suppose p; + g > 0. Substituting a, = pVi, bi = @y k€S
into (15), these equations reduce to the equations

W+ w.[2c+a)k Xpi +ai) '] -k 2(pf +9i) ' =0, keS
for y,, which have a unique real root for every k € S, namely
y(e) = B{[(1 + (4Bi(c + 0,)[3)*)'/* + 1]*° —
— [(1 + (4By(o + 0,)[3)%)"/* — 1]/} where B, = [2k*(p + q7)]"*/*.
As y(0) < 3[2(c + 0;)] ! the following estimate holds
ar + b; < 9[2(c + )] * (p? + g7) which implies

Y k%ai + bf) < Ca™2y k%(p? + q7).
Kes Kes

Since y;(¢) < 0 for o > 0, y,(o) is strictly decreasing on (0, + o) for k€ S and‘so
is A(0). As y,(0) = 2B, for k # 1, 3 and

n0) = B{[(1 + (4Byoy[3)°)* + 1]'° - [t + (4Biaf3)°)/2 — 1]'7°
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for k = 1,3, we have 0 < A(0) < C[ Y k%(p? + 42)]'* < + 0. Finally, the ine-
keS
quality A(c) < Co™2 Y k*(p? + q;) implies lim A(c) = 0 if ¢ - oo.

Lemma 3. Let Y k%(r; + s7) < + o0, D, = 2(¢ + o) + k*(ai + b2), ay, by, 0, 0
be from Lemma 2. Then the system of linear equations for ¢, dy, k€ S

(16) Dyc, + [2Y j%(ajc; + bjd;) + K*(aex + bidi)] ax = 7,
Jjes
Dyd, + [2) j*(ajc; + bjd;) + K*(axex + bdy)] by = s, keS
JjesS

has a unique solution ¢, d,, k € S and the following estimate holds
(17) Z k¥(ci + d}) < Cz K&(ri + 7).
Proof. If a; = b, = 0 then
¢t + di = D*(ri + s7)

Now, let ag + bj > 0. Multiplying the first equation of (16) by a, the second by b,
multiplying the first equation of (16) by b, and second by a, we get an equivalent
system to (16)

(18)  [Dy + 2k*(az + b2)] (axei + bidy) + 4(ag + b,f) o' = ra, + by,
D,‘(bkck = a,,dk) = rkb,‘ — Sy keS
where ¢’ = Z]z(a icj + b i)

Multlplymg the first equation by k*[D, + 2k*(a; + b;)]~* and summing it for
k € S we have
0" = z kz(r,‘ak + skbk) [Dk + 2kz(ak + bk)] 1
kes

AL + 4Y k*(a? + b7) [Dy + 2k*(af + b7)]7*} 7!
keS
which implies the following estimate (using the Holder inequality)
(19) |o')? < ¢ YKkX(ri + s2)
Further, from (18) we get
(a: + b:) (C,‘ + dk) = (rkbk - S,,a,‘) Dk
+ [rax + sibe — 4az + b7) 0']? [D, + 2k*(af + bk)] *,

from which follows

K(ci + di) < [ri + st + 16(a; + b}) (o')*] D; 2.

This estimate together with (19) imply (17).
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Proof of Theorem 2. It suffices to show that the operator G defined by (9), (10),
(11) satisfies the assumptions of Theorem 1 with B, = B, = % x h* x h*. The
assumptions {(a) and (c) are fulfilled in virtue of Lemma 1 and of the assumptions of
Theorem 2. To verify the assumption (b) requires to show that the system

(20) —uy + aycos k*t + b, sink?t =0, k=1,2,...,
ak = 0,
bk = 0, kG S .

(21) k"j Fi(u, 0) (1,) cos k*rdr = 0,

. 0

k"ZI F(u,0)(z,)sink*tdt =0, keS

0

has a unique solution (u°, a° b°)e % x h* x h*, which means, in fact, that the
equations (21) have a solutions ay, by, ke S, Y k®[(a})* + (b7)*] < + 0. Inserting
keS

(7), (20) into (21) we get after some calculation the equations
(22) afgi + 943 +j§;j2(af + b)) + K¥ai + b}) + o] = f%,

bgl + 993 + X j%(a] + b)) + K*(ai + b7) + o] = fi, keS,
where a

fi= Z(nkz)‘lj j. f(t, x) cos k*t sin kx dx dt,
0J0

fi = 2Ank?)~! I I f(t, x) sin k*t sin kx dx dt,
odo

o= kg, for k=13, a,=0 for k=+1,3.

In the case of more general function g(t, x) the equation (22) will be more complicated.
By Lemma 2 (putting p, = f¢, gi = fi, o = g} + 993 + Y. j*(a} + b)) this
system has a solution if and only if the equation o

o =gi + 995 + A(0)

has a real solution oy > 0. However this is an immidiate consequence of Lemma 2.
Thus a; = a,(0,), by = by(0,), k€ S from Lemma 2 are the solutions to (22). By
Lemma 2 Y k®. [(af)* + (b)?] is finite for fe & and hence a°, b° = {ay, b, for
keS ay = b} =0, for k€S} and u° are the solutions of (20), (21), a°, b° € h*
and u° is of the form (14).

To prove (d) let us show that the system

Glu,am(u® a% b°,0) (@, @, b) = (f, P, 7)
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