

Werk

Label: Article Jahr: 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0102 | log83

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

PERIODIC VIBRATIONS OF AN EXTENSIBLE BEAM

MARIE KOPÁČKOVÁ AND OTTO VEJVODA, Praha (Received May 11, 1977)

1. INTRODUCTION

In the last years both free and forced vibrations of an extensible elastic beam have been studied by several authors ([1]-[6]). Under certain conditions forced vibrations of such a beam are described by the equation

$$u_{tt}(t, x) + u_{xxxx}(t, x) + \alpha u_t(t, x) - \beta u_{xx}(t, x) \int_0^{\pi} u_{\xi}^2(t, \xi) d\xi = f(t, x).$$

We are interested in the existence of periodic solutions to this equation. In the presence of damping $(\alpha > 0)$ this problem is examined in the paper of V. LOVICAR [9]. It may be shown (correspondingly to [8]) that there exists a sequence of free vibrations of undamped beam with hinged ends. However, in the case of $f \neq 0$ we are not able to solve this problem for α large. Thus limite ourselves to looking for a solution of the equation

(1)
$$z_{tt}(t, x) + z_{xxxx}(t, x) = g(t, x) +$$

$$+ \varepsilon \left[f(t, x) + z_{xx}(t, x) \int_{0}^{\pi} z_{\xi}^{2}(t, \xi) d\xi + \varepsilon \, \tilde{F}(z)(t, x) \right]$$

with homogeneous boundary conditions

(2)
$$z(t, 0) = z(t, \pi) = z_{xx}(t, 0) = z_{xx}(t, \pi) = 0$$

and the condition of periodicity

$$z(t,x)=z(t+\omega,x).$$

We make use of the results of the paper by N. KRYLOVÁ, O. VEJVODA [7].

2. NOTATION AND AN AUXILIARY LEMMA

Let H^m be the Hilbert space of real functions u(x) on $[0, \pi]$ which have generalized square integrable derivatives $u^{(j)}(x)$, j = 0, 1, ..., m equipped with the norm

$$|u|_{H^m}^2 = \sum_{j=0}^m \int_0^{\pi} [u^{(j)}(x)]^2 dx$$
.

Denote by ${}^{0}H^{2m}$ the space of functions from H^{2m} satisfying the conditions $u^{(2j)}(0) = u^{(2j)}(\pi) = 0, j = 0, 1, ..., m-1$, with the norm $|u|_{2m} \equiv |u^{(2m)}|_{H^0}$. Denoting

$$u_k = (2/\pi)^{1/2} \int_0^{\pi} u(x) \sin kx \, dx$$

let h^m be the space of real sequences $\{u_k; k = 1, 2, ...\}$) in the sequel, we write $u \equiv \{u_k\}$ for which $|u|_m^2 \equiv \sum_{k=1}^{\infty} k^{2m} u_k^2 < +\infty$. The spaces ${}^0H^{2m}$ and h^{2m} are isometric and isomorphic.

The solution of the equation (1) will be sought in the space $\mathscr{U} = \{u \in C(R, {}^{0}H^{4}) \cap C^{1}(R, {}^{0}H^{2}) \cap C^{2}(R, H^{0}); u(t + \omega) = u(t), t \in R\}$ with the norm

$$|u|_{\mathfrak{U}} \equiv \max_{t} |u(t)|_{4} + \max_{t} |u_{t}(t)|_{2} + \max_{t} |u_{tt}(t)|_{0} =$$

$$= \max_{t} \left(\sum_{k=1}^{\infty} [k^{4} u_{k}(t)]^{2} \right)^{1/2} + \max_{t} \left[\sum_{k=1}^{\infty} (k^{2} u'_{k}(t))^{2} \right]^{1/2} + \max_{t} \left[\sum_{k=1}^{\infty} (u''_{k}(t))^{2} \right]^{1/2}.$$

Then $z \in \mathcal{U}$ satisfies the equation (1) in the sence of H^0 for all $t \in R$. The right hand sides of (1) will be elements of the space $\mathscr{G} \equiv \{u \in C(R, {}^0H^2); u(t+\omega) = u(t), t \in R \}$ with the norm $|u|_{\mathscr{G}} \equiv \max_{t} |u(t)|_{2} = \max_{t} (\sum_{k=1}^{\infty} k^4 u_k^2(t))^{1/2} \}$. For a while, let us investigate the limit problem given by (1), (2), (3) with $\varepsilon = 0$

For a while, let us investigate the limit problem given by (1), (2), (3) with $\varepsilon = 0$ and $g \in \mathcal{G}$. Looking for a solution z in the form $z(t, x) = \sum_{k=1}^{\infty} z_k(t) \sin kx$ we find easily that $z_k(t)$ must satisfy the equation

(4)
$$z_k''(t) + k^4 z_k(t) = g_k(t),$$

for k = 1, 2, ... By a well-known theorem from the theory of ordinary differential equations this equation has an ω -periodic solution if and only if g is orthogonal to the every ω -periodic solution to the corresponding homogeneous equation.

If k satisfies the relation $k^2\omega = 2\pi n$ (n integer) then the homogeneous equation (4) has two linearly independent ω -periodic solutions $\cos k^2 t$, $\sin k^2 t$. Denote by S the set of such k. For the other k there exists no ω -periodic solution. Hence, the orthogonality conditions read

(5)
$$\int_{0}^{\omega} g_{k}(t) \cos k^{2}t \, dt = 0, \quad \int_{0}^{\omega} g_{k}(t) \sin k^{2}t \, dt = 0, \quad k \in S.$$

Clearly, if $v = 2\pi\omega^{-1}$ is rational the set S is infinite. On the other hand, if v is irrational the set S is empty, but we can not study this case in the sequel, because by the theorem 6.4.1 from [1] the nonlinearity in (1) includes derivatives of too high order. If these conditions are fulfilled the ω -periodic solution of (4) is of the form

(6)
$$z_{k}(t) = a_{k} \cos k^{2}t + b_{k} \sin k^{2}t + k^{-2} \int_{0}^{t} g_{k}(\tau) \sin k^{2}(t - \tau) d\tau$$

(k = 1, 2, ...), where $a_k, b_k, \sum k^8 a_k^2 + \sum k^8 b_k^2 < \infty$ are arbitrary for $k \in S$ and

$$a_k = \left[2k^2 \sin\left(k^2 \frac{1}{2}\omega\right)\right]^{-1} \int_0^\omega g_k(\tau) \cos k^2(\frac{1}{2}\omega - \tau) d\tau,$$

$$b_k = -\left[2k^2 \sin\left(k^2 \frac{1}{2}\omega\right)\right]^{-1} \int_0^\omega g_k(\tau) \sin k^2 \left(\frac{1}{2}\omega - \tau\right) d\tau$$

for $k \in S$.

Let $g \in \mathcal{G}$, satisfy (5) for $k \in S$ and let $z^0(t, x)$ be the solution to (1), (2), (3) for $\varepsilon = 0$ of the form $z^0(t, x) = \sum_{k=1}^{\infty} z_k^0(t) \sin kx$, where $z_k^0(t)$ is given by (6) with $a_k = b_k = 0$ for $k \in S$. Then the problem (1), (2), (3) may be reduced to that of finding a function u satisfying the equation

$$(1') u_{tt} + u_{xxxx} = \varepsilon F(u)$$

and the conditions (2), (3), where

(7)
$$F(u)(t, x) \equiv (z^{0} + u)_{xx}(t, x) \int_{0}^{\pi} (z^{0} + u)_{\xi}^{2}(t, \xi) d\xi + f(t, x) + \varepsilon \tilde{F}(z^{0} + u)(t, x), \quad z = u + z^{0}.$$

Hence we have easily

Lemma 1. Let $F(u): \mathcal{U} \to \mathcal{G}$, $F(u)(t, x) = \sum_{k=1}^{\infty} F_k(u)(t) \sin kx$, $u \in \mathcal{U}$, $u(t, x) = \sum_{k=1}^{\infty} u_k(t) \sin kx$. Then u(t, x) is a solution of (1'), (2), (3) if and only if there exist $a, b \in h^4$ such that

(8)
$$G(u, a, b, \varepsilon) = 0,$$

where

$$G=\left(G_1,\,G_2,\,G_3\right),$$

(9)
$$G_{1k}(u, a, b, \varepsilon)(t) = -u_k(t) + a_k \cos k^2 t + b_k \sin k^2 t + \varepsilon k^{-2} \int_0^t F_k(u)(\tau) \sin k^2 (t - \tau) d\tau, \text{ for } k = 1, 2, ...,$$

(10)
$$G_{2k}(u, a, b, \varepsilon) \equiv -a_k + \varepsilon (2k^2 \sin(k^2 \frac{1}{2}\omega))^{-1} \int_0^\omega F_k(u) (\tau) \cos k^2 (\frac{1}{2}\omega - \tau) d\tau ,$$

$$G_{3k}(u, a, b, \varepsilon) \equiv b_k + \varepsilon (2k^2 \sin(k^2 \frac{1}{2}\omega))^{-1} \int_0^\omega F_k(u) (\tau) \sin k^2 (\frac{1}{2}\omega - \tau) d\tau ,$$

for $k \in S$,

(11)
$$G_{2k}(u, a. b, \varepsilon) \equiv k^{-2} \int_0^{\omega} F_k(u) (\tau) \cos(k^2 \tau) d\tau ,$$

$$G_{3k}(u, a, b, \varepsilon) \equiv k^{-2} \int_0^{\omega} F_k(u) (\tau) \sin(k^2 \tau) d\tau ,$$

for $k \in S$.

Note, that

$$u(0, x) = (2/\pi)^{1/2} \sum_{k=1}^{\infty} a_k \sin kx, \ u_t(0, x) = (2/\pi)^{1/2} \sum_{k=1}^{\infty} k^2 b_k \sin kx.$$

These equation will be solved by means of the following implicit function theorem

Theorem 1. Let the following assumptions be fulfilled:

- (a) $G(v, \varepsilon)$ is a mapping from Banach space $B_1 \times [-\varepsilon_1, \varepsilon_1]$ into Banach space B_2 ;
- (b) the equation G(v, 0) = 0 has a solution $v_0 \in B_1$;
- (c) the mapping $G(v, \varepsilon)$ is continuous in ε and has G-derivative $G'_v(v, \varepsilon)$ continuous in v, ε for $|v v_0|_{B_1} \le K$, $|\varepsilon| \le \varepsilon_1$;
 - (d) $[G'_{\nu}(v_0, 0)]^{-1}$ exists, is bounded and maps B_2 on B_1 .

Then there exists $\varepsilon_0 > 0$ such that the equation $G(v, \varepsilon) = 0$ has a unique solution $v(\varepsilon) \in B_1$ for $\varepsilon \in -[\varepsilon_0, \varepsilon_0]$ which is continuous in ε and such that $v(0) = v_0$.

3. MAIN RESULTS

For the sake of simplicity of calculations we shall find solution to the problem (1), (2), (3) only for g of the form

(12)
$$g(t, x) = \cos(vk_0t) \{g_1[1 - (vk_0^2)] \sin x + g_3[3^4 - (vk_0^2)] \sin 3x \},$$

where k_0 is a positive integer such that $vk_0 \neq 3$ if $1 \in S$, $vk_0 \neq 5$ if 1 or $3 \in S$, $vk_0 \neq 4$ if 1 or 2 or $3 \in S$. In that case

(13)
$$z^{0}(t, x) = \cos(vk_{0}t)(g_{1}\sin x + g_{3}\sin 3x).$$

We prove the following

Theorem 2. Let g be of the form (12), $f \in \mathcal{G}$, $|f|_{\mathcal{G}} + |g|_{\mathcal{G}} > 0$, ω rational. Let $F(u): \mathcal{U} \to \mathcal{G}$ have a continuous G-derivative in \mathcal{U} .

Then there exists $\varepsilon_0 > 0$, $u^0 \in \mathcal{U}$ such that the problem (1), (2), (3) has a unique solution $z(\varepsilon) \in \mathcal{U}$ for $\varepsilon \in [-\varepsilon_0, \varepsilon_0]$ which is continuous in ε and such that $z(0) = z^0 + u^0$, z^0 is a solution of the equation G(u, a, b, 0) = 0,

(14)
$$u^{0}(t, x) = \sum_{k \in S} \left[a_{k}^{0} \cos(k^{2}t) + b_{k}^{0} \sin(k^{2}t) \right] \sin kx.$$

First, we shall prove two lemmas.

Lemma 2. Let $\sigma \ge 0$, $\sigma_k \ge 0$, $\sigma_k = 0$ for $k \ne 1$, 3, $\sum_{k \in S} k^8 (p_k^2 + q_k^2) < +\infty$. Then the system of algebraic equations

(15)
$$a_{k}[k^{2}(a_{k}^{2} + b_{k}^{2}) + 2(\sigma + \sigma_{k})] = p_{k},$$
$$b_{k}[k^{2}(a_{k}^{2} + b_{k}^{2}) + 2(\sigma + \sigma_{k})] = q_{k}$$

has a unique solution $a_k(\sigma)$, $b_k(\sigma)$, $k \in S$, $\sum_{k \in S} k^8 [a_k^2(\sigma) + b_k^2(\sigma)] < +\infty$ for $\sigma > 0$, the function $A(\sigma) \equiv \sum_{k \in S} k^2 [a_k^2(\sigma) + b_k^2(\sigma)]$ is strictly decreasing on $(0, +\infty)$, $0 < A(0) < +\infty$ and $\lim_{\sigma \to \infty} A(\sigma) = 0$.

Proof. The equations (15) imply

$$a_k = 0 \Leftrightarrow p_k = 0$$
, $b_k = 0 \Leftrightarrow q_k = 0$.

Hence we may suppose $p_k^2 + q_k^2 > 0$. Substituting $a_k = p_k y_k$, $b_k = q_k y_k$, $k \in S$ into (15), these equations reduce to the equations

$$y_k^3 + y_k \cdot [2(\sigma + \sigma_k) k^{-2}(p_k^2 + q_k^2)^{-1}] - k^{-2}(p_k^2 + q_k^2)^{-1} = 0, \quad k \in S$$

for y_k , which have a unique real root for every $k \in S$, namely

$$y_k(\sigma) = B_k \{ [(1 + (4B_k(\sigma + \sigma_k)/3)^3)^{1/2} + 1]^{1/3} - [(1 + (4B_k(\sigma + \sigma_k)/3)^3)^{1/2} - 1]^{1/3} \} \text{ where } B_k = [2k^2(p_k^2 + q_k^2)]^{-1/3}.$$

As $y_k(\sigma) \leq 3[2(\sigma + \sigma_k)]^{-1}$ the following estimate holds

$$a_k^2 + b_k^2 \le 9[2(\sigma + \sigma_k)]^{-2} (p_k^2 + q_k^2)$$
 which implies
$$\sum_{k \in S} k^8 (a_k^2 + b_k^2) \le C \sigma^{-2} \sum_{k \in S} k^8 (p_k^2 + q_k^2).$$

Since $y'_k(\sigma) < 0$ for $\sigma > 0$, $y_k(\sigma)$ is strictly decreasing on $(0, +\infty)$ for $k \in S$ and so is $A(\sigma)$. As $y_k(0) = 2B_k$ for $k \neq 1$, 3 and

$$y_k(0) = B_k\{[(1 + (4B_k\sigma_k/3)^3)^{1/2} + 1]^{1/3} - [(1 + (4B_k\sigma_k/3)^3)^{1/2} - 1]^{1/3}$$

for k = 1, 3, we have $0 < A(0) < C\left[\sum_{k \in S} k^8(p_k^2 + q_k^2)\right]^{1/3} < +\infty$. Finally, the inequality $A(\sigma) \le C\sigma^{-2} \sum_{k \in S} k^2(p_k^2 + q_k^2)$ implies $\lim_{k \to \infty} A(\sigma) = 0$ if $\sigma \to \infty$.

Lemma 3. Let $\sum k^8(r_k^2 + s_k^2) < +\infty$, $D_k \equiv 2(\sigma + \sigma_k) + k^2(a_k^2 + b_k^2)$, a_k , b_k , σ , σ_k be from Lemma 2. Then the system of linear equations for c_k , d_k , $k \in S$

(16)
$$D_{k}c_{k} + \left[2\sum_{j \in S} j^{2}(a_{j}c_{j} + b_{j}d_{j}) + k^{2}(a_{k}c_{k} + b_{k}d_{k})\right] a_{k} = r_{k}$$

$$D_{k}d_{k} + \left[2\sum_{j \in S} j^{2}(a_{j}c_{j} + b_{j}d_{j}) + k^{2}(a_{k}c_{k} + b_{k}d_{k})\right] b_{k} = s_{k}, \quad k \in S$$

has a unique solution c_k , d_k , $k \in S$ and the following estimate holds

(17)
$$\sum_{k \in S} k^8 (c_k^2 + d_k^2) \le C \sum_{k \in S} k^8 (r_k^2 + s_k^2).$$

Proof. If $a_k = b_k = 0$ then

$$c_k^2 + d_k^2 = D_k^{-2}(r_k^2 + s_k^2)$$

Now, let $a_k^2 + b_k^2 > 0$. Multiplying the first equation of (16) by a_k , the second by b_k , multiplying the first equation of (16) by b_k and second by a_k we get an equivalent system to (16)

(18)
$$[D_k + 2k^2(a_k^2 + b_k^2)] (a_k c_k + b_k d_k) + 4(a_k^2 + b_k^2) \sigma' = r_k a_k + s_k b_k,$$

$$D_k (b_k c_k - a_k d_k) = r_k b_k - s_k a_k, \quad k \in S$$

where
$$\sigma' = \sum_{i \in S} j^2 (a_j c_j + b_j d_j)$$
.

Multiplying the first equation by $k^2[D_k + 2k^2(a_k^2 + b_k^2)]^{-1}$ and summing it for $k \in S$ we have

$$\sigma' = \sum_{k \in S} k^2 (r_k a_k + s_k b_k) \left[D_k + 2k^2 (a_k^2 + b_k^2) \right]^{-1}.$$

$$\cdot \left\{ 1 + 4 \sum_{k \in S} k^2 (a_k^2 + b_k^2) \left[D_k + 2k^2 (a_k^2 + b_k^2) \right]^{-1} \right\}^{-1}$$

which implies the following estimate (using the Hölder inequality)

(19)
$$|\sigma'|^2 \leq c \sum k^2 (r_k^2 + s_k^2).$$

Further, from (18) we get

$$(a_k^2 + b_k^2)(c_k^2 + d_k^2) = (r_k b_k - s_k a_k)^2 D_k^{-2} + + [r_k a_k + s_k b_k - 4(a_k^2 + b_k^2) \sigma']^2 [D_k + 2k^2(a_k^2 + b_k^2)]^{-2},$$

from which follows

$$k^{8}(c_{k}^{2}+d_{k}^{2}) \leq \left[r_{k}^{2}+s_{k}^{2}+16(a_{k}^{2}+b_{k}^{2})(\sigma')^{2}\right]D_{k}^{-2}.$$

This estimate together with (19) imply (17).

Proof of Theorem 2. It suffices to show that the operator G defined by (9), (10), (11) satisfies the assumptions of Theorem 1 with $B_1 = B_2 = \mathcal{U} \times h^4 \times h^4$. The assumptions (a) and (c) are fulfilled in virtue of Lemma 1 and of the assumptions of Theorem 2. To verify the assumption (b) requires to show that the system

(20)
$$-u_{k} + a_{k} \cos k^{2}t + b_{k} \sin k^{2}t = 0, \quad k = 1, 2, ...,$$

$$a_{k} = 0,$$

$$b_{k} = 0, \quad k \in S.$$
(21)
$$k^{-2} \int_{0}^{\infty} F_{k}(u, 0) (\tau,) \cos k^{2}\tau d\tau = 0,$$

$$k^{-2} \int_{0}^{\infty} F_{k}(u, 0) (\tau,) \sin k^{2}\tau d\tau = 0, \quad k \in S$$

has a unique solution $(u^0, a^0, b^0) \in \mathcal{U} \times h^4 \times h^4$, which means, in fact, that the equations (21) have a solutions $a_k^0, b_k^0, k \in S$, $\sum_{k \in S} k^8 [(a_k^0)^2 + (b_k^0)^2] < +\infty$. Inserting

(7), (20) into (21) we get after some calculation the equations

(22)
$$a_k [g_1^2 + 9g_3^2 + \sum_{j \in S} j^2 (a_j^2 + b_j^2) + k^2 (a_k^2 + b_k^2) + \sigma_k] = f_k^c,$$

 $b_k [g_1^2 + 9g_3^2 + \sum_{j \in S} j^2 (a_j^2 + b_j^2) + k^2 (a_k^2 + b_k^2) + \sigma_k] = f_k^s, \quad k \in S,$

where

$$f_k^c = 2(\pi k^2)^{-1} \int_0^\omega \int_0^\pi f(t, x) \cos k^2 t \sin kx \, dx \, dt \,,$$

$$f_k^s = 2(\pi k^2)^{-1} \int_0^\omega \int_0^\pi f(t, x) \sin k^2 t \sin kx \, dx \, dt \,,$$

$$\sigma_k = k^2 g_k \quad \text{for} \quad k = 1, 3 \,, \quad \sigma_k = 0 \quad \text{for} \quad k \neq 1, 3 \,.$$

In the case of more general function g(t, x) the equation (22) will be more complicated. By Lemma 2 (putting $p_k = f_k^c$, $g_k = f_k^s$, $\sigma = g_1^2 + 9g_3^2 + \sum_{j \in S} j^2(a_j^2 + b_j^2)$) this system has a solution if and only if the equation

$$\sigma = g_1^2 + 9g_3^2 + A(\sigma)$$

has a real solution $\sigma_0 > 0$. However this is an immidiate consequence of Lemma 2. Thus $a_k^0 = a_k(\sigma_0)$, $b_k^0 = b_k(\sigma_0)$, $k \in S$ from Lemma 2 are the solutions to (22). By Lemma 2 $\sum k^8$. $[(a_k^0)^2 + (b_k^0)^2]$ is finite for $f \in \mathcal{G}$ and hence a^0 , $b^0 = \{a_k^0, b_k^0, \text{ for } k \in S \ a_k^0 = b_k^0 = 0$, for $k \in S$ and u^0 are the solutions of (20), (21), a^0 , $b^0 \in h^4$ and u^0 is of the form (14).

To prove (d) let us show that the system

$$G'_{(u,a,b)}(u^0, a^0, b^0, 0)(\bar{u}, \bar{a}, \bar{b}) = (\bar{f}, \bar{p}, \bar{q})$$