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1. INTRODUCTION

Investigations on linear differential equations started in the middle of the last
century. They were connected with the names of E. E. KUMMER [4], E. LAGUERRE
[5], F. BrioscHi, G. H. HALPHEN, A. R. ForsYTH, P. STACKEL [13], S. Lig, E. J.
WiLczynski [15] and others. Their results, however, were of local character. The
global study began with second order equations about 25 years ago by O. BORUVKA
[1], [2], and results of algebraic character form the essential part of his theory.

Here we describe algebraically the global structure of n-th order linear differential
equations (n = 2). The geometric approach was given in [6] and the importance of
global transformations for studying and understanding asymptotic behavior, pe-
riodicity, boundedness, zeros, oscillatory behavior, disconjugacy and other global
properties of solutions essentially connected with the whole interval of definition was
demonstrated in [6], [8], [9], [10], [11].

2. GLOBAL TRANSFORMATIONS

Let C¥(I, R*) denote the set of all (column) vector functions u : I - R* with con-
tinuous derivatives up to and including the order s, s = 0, let I be an open interval
of R, k 2 1, let u” denote the transpose of u. Coefficients of linear homogeneous
differential equations of the n-th order are supposed to be real and continuous on the
corresponding open (bounded or unbounded) intervals of definition. For n = 2,
P. STACKEL [13] in 1891 derived the most general pointwise transformation that
converts any linear homogeneous differential equation of the n-th order into an
equation of the same type. This transformation consists in changing the independent
variable (x > h(t)) and multiplying the dependent variable by a factor f(t), i.e.
yef(1) y.
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With respect to this result we say that an n-th order linear homogeneous dif-
ferential equation % on I with n linearly independent solutions y,, ..., y, on I is
globally transformable into an equation 2 of the same type on J admitting n linearly
independent solutions z, ..., z, if

1) 2t) = 4. /(1) - y(h(1))

for a real regular n by n matrix 4, fe C"(J,R), he C*(J, I), f(¢) . dh(t)/dt + 0 on J,
and h(J) = I, where (yy, ..., y,)" is denoted by y and called a fundamental solution
~ of the corresponding equation . Similarly z is a fundamental solution of 2.

The global transformation (1) can be expressed as & * « = 2, where a is called
the transformation of ¥ into 2. Since every fundamental solution of % is of the
form Cy, C being an arbitrary regular n by n matrix, the transformation a essentially
depends on f, called multiplier, and h, parametrization.. We shall write & =
== <f ’ h> &z

Let us note that the global character of transformations is achieved by h(J) = I,
and linear independency of coordinates of z in (1) is guaranteed by the conditions -
on A, f, h, and y. For more detail see [7]

Since global transformations form a reflexive, symmetric and transitive relation,
the set of all n-th order linear homogeneous differential equations (n =2) is

decomposed into classes of globally transformable equations. Denote by A the
decomposition.

3. STATIONARY GROUPS

Proposition 1. Let A € A be a class of globally equivalent differential equations.
The set of all global transformations, %(A), between every pair of equations
from A together with the composition rule form a Brandt groupoid.

Proof. A Brandt groupoid is a category each element of which is invertible, and
such that if « and y are its elements, there exists B for which afy is defined, see [3],
p- 81-—83.

Let &, 2, 2 be equations from 4 and let I, J, K denote the corresponding intervals
of definitions. Let L *a =P, Z*f = 3, a e B(4), pe B(4). Define «f € B(4)
by (£ *a)*p =% *(axf). Evidently ,£ = <1,,id;)e is the left unit and ¢ =
= (l,,id,)s is the right unit of a, where 1,:1 — {1} €R, and the associativity
holds. Further, if a = (f, h)¢ and B = (g, kDg, then af = {(fok).g, hok)e
which always defined provided &, = s¢; o denotes the composition of functions.
Evidently «™! = (1/(fo h™*), h™*) 4, where h™! is the inverse to h. For y € B(4)
there always exists g € C'(K, R) and k € C*(K, J) such that g . k'(f) # O on K, k(K) =
= J, where ,&¢ = {lg, idg),. Hence for B := (g, k)4, ay is defined. m

We always consider each B(4) with the structure of Brandt groupoid.
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For each Z € 4 define A(Z) as the set of all global transformations that trans-
form & into itself, A(Z) := {ae B(4); L €4 and £ »a = £}. Evidently A(L)
is a group called the stationary group of £. With respect to (1), & = (f, h), € (L)
if and only if

@ ¥(0) = A.£(). Y(HD) . WD) =1,

for a suitable regular n by n matrix A, where I is the interval of definition and y
is a fundamental solution of Z.

Proposition 2. If L e de A, & xa = P, a € B(A), then
(3) AP) =a ' AL) .

In other words: Each two stationary groups of any pair of globally transformable
differential equations are conjugate.

Proof. For e A(P?) we have L *xafa™ = (P*P)ra ' =Pxa"! = Z or
afat € A(L), hence fea™! A(L)a. For fea™ A(L)a we have afa™! € A(L)
or & *afa”! = & which gives (£ *a) * f = £ o, or P » p = P, hence f € U(2P).
See also [3], [14]. =

An interesting r6le is played by sugroups QIG(.?) of QI(.?), elements of which leave
invariant a certain subspace of solutions of %, G assigning the corresponding sub-
groups of matrices A occuring in (2). In particular, U g (Z), E being the unit matrix,
is characterized by the fact that each solution of & is transformed into itself, or

) (1) = £(t) - y(h(9), H(I) =1.

Transformations o = {f, h), with increasing parametrizations h, b’ > 0, are
important for studying global properties of solutions (like periodicity, boundedness,
asymptotic behavior, I?-solutions, and others, see [6], [8], [9], [10], [11]), since
they often enable us to describe the global behavior of solutions according to their
local character and some information of discrete kind (e.g., conjugate points). Hence
denote B*(4) = {a = {f, h), € B(4); h’' > 0}, and for L €4 also A (L) =
= L) " B*(4) and AL = UG(L) N B*(4). Evidently B*(4) has the struc-
ture of Brandt groupoid, and A*(&), A (L) are groups.

4. NONTRIVIAL STATIONARY GROUPS %*(£) AND Uf;,(2)

‘Functional equations (2) and (4) that correspond to (Z) and W (Z) were
studied in [12]. From the results obtained there we have

Theorem 1. Let £ €4 €A, I being the interval of definition of £. If U*(Z)
is not trivial, i.e., a = {f,h)oe A" (&), a + &, then {tel; h(t) =t} has no
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accumulation point in I. On each maximal subinterval (a, b) = I where h(t) * t,
the equation % restricted on (a, b) is globally equivalent to a differential equation
with periodic coefficients on (— o0, c0).

Theorem 2. If % is globally equivalent to a differential equation with periodic
coefficients on (— 0, ), then its stationary group U* (&) is not trivial.

Theorem 3. Let & € A. ‘21(})(.?) is not trivial if and only if there exists an equa-
tion in A having only periodic solutions on (-— 0, o) with the same period.

5. PHASES AND AMPLITUDES

Let a differential equation &(4) € 4 be assigned to each 4 € A (e.g., called ca-
nonical). For each ¥ €4 we have a e B(4) such that &(4)*a = £. The a =
= {f . h) g4, is called a shift of & with respect to &(4), its multiplier f is an amplitude
and its parametrization, h, is a phase of & (with respect &(4)). The set of all shifts
of all equations from 4 with respect to &(4) will be denoted as ©,. The stationary
group A(&(4)) of &(4) will be called the fundamental group and denoted by & .

Theorem 4. If ¥ € A, then
) L) = a 'Fu,
where o is a shift of .’
Proof follows from Proposition 2. W
Theorem 5. Let Aec A, L €4, Pe A, let a be a shift of & and B a shift of P

(with respect to 8(A)). Then o™ "B is a transformation of £ into P, i.e., & * (¢~'p) =
= @P. All transformations of £ into P form the set

(6) a7 IFB = WL 1p = a B U2P).
Proof. Since &(4) * « = £ and &(4) * p = P, we have & » (¢ !p) = J(A) *p =
= &. Each y such that & *y = 2 satisfies & » yf~'a = &, hence y~'a € A(L),

or y € A(L) «~'B. Conversely, for each y e ?I(.?) o~ !B we get &£ +y = 2. Finally,
using (3) or (5) we obtain (6):

UL)a 1 = a G 'p = o 'F,p = T HUS) pTP. m

~ Theorem 6. For AcA, {F; ac S} is a decomposition of the set S, of all
shzfts from 4, called the right decomposition of S, with respect to the fundamental
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