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0. INTRODUCTION

We are interested in the solutions of
(0.1) xeF(t,x),

which are locally absolutely continuous and fulfil (0.1) almost everywhere. Let X,
be the set of nonempty convex compact subsets of R”, G = R x R" and assume that

(0.2) F:Go A,
(0.3) for almost all ¢ the map F(t, *) is upper semicontinuous

(of course, F(t, *) (x) = F(t, x) if the right-hand side is defined). In order to guarantee
the existence of solutions, some conditions are to be added. For example, analogously
to the ordinary differential equations it may be assumed that

(0.4) for every x the map F(, x) is measurable ,
(0.5) F is bounded (in some sense)

or (0.4) may be replaced by a more general selection property (cf. [1]).

The map F may fulfil (0.2), (0.3) and (0.4) and at the same time behave rather
unreasonably as a function of the pair of variables (¢, x); an example is given in Sec-
tion 4. Nevertheless, if F fulfils (0.3), then (0.1) may be replaced without loss of gener-
ality by
(0.6) x e F(t, x)

where F is in a certaint sense regular as a function of the pair (t, x).
Let X0 = o, v {0}, let Z be a metric space, H:Z — X'y. H is called upper
semicontinuous, if for every open set U < R” the set {z e Z | H(z) = U} is open.
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(This is equivalent to the usual definition if H : Z — X,.) If S < Z, let the map H|s:
S — A be defined by H|s(z) = H(z). Denote by m(B) the Lebesgue measure of
a set B = R. The above statement is made precise in the following

0.1. Theorem. Let F fulfil (0.2), (0.3). Then there exists such an F : G — X', that

(0.7) to every & > O there exists such a measurable set A, = R that m(R — 4,) <

< & and that F|g. 4, xgn is upper semicontinuous,
(0.8) F(t,x) = F(t,x) for (1,x)eG,
(0.9) every solution of (0.1) is simultaneously a solution of (0.6) .

It follows from (0.8) that every solution of (0.6) is simultaneously a solution of (0.1),
so that the sets of solutions of both the equations are identical. Moreover, if the
existence theorem holds for (0.1), then m(B) = 0 by Theorem 3.1, B being the set
of such t € R that (t, x) € G, F(t, x) = @ for some x. Without loss of generality we
may change F on G n (B x R") and obtain that F(t, x) # 0 for (¢, x) € G ((0.7)—(0.9)
being in force simultaneously).

Theorem 0.1 is an immediate consequence of the following more general theorem,
which is not concerned with differential relations but with a selection problem.
Let X be a separable metric space.

0.2. Theorem. Assume that
(0.10) "GcRxX, F:Go X,

and that (0.3) holds. Then there exists a function F : G — ') satisfying (0.8),

(0.11) to every & > O there is a measurable set A, = R such that m(R — A4,) < ¢
and the function F'Gn(A,XX) is upper semicontinuous,

(0.12) if I = R is measurable,u : I — X measurable,(t, u(t)) € G for tel,v:I - R"

measurable, v(t) € F(t, u(t)) for almost all t € I, then w(t) € F(t, u(t)) for almost
all tel.

Theorem 0.2 is proved in Section 1 (see Theorem 1.5). As u in Theorem 0.2 is required
to be measurable (and not continuous) and X is a general separable metric space,
Theorem 0.1 may be extended to differential relations the right-hand sides of which
depend on the values of the solution x or its derivative X with deviated arguments or
on the “portion” x, of x, x, : [—1, 1] > R" being defined by x,(z) = x(t + 7). These
extensions of Theorem 0.1 are not described in more detail, the application of Theo-
rem 0.2 being straightforward.

The conditions (0.7), (0.11) are analogous to that of Scorza-Dragoni which had
been introduced for differential equations [2]. The same condition was used in [3]
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where the result by Scorza-Dragoni was extended to differential relations. The
necessity of admitting F(t, x) = 0 is clear from the following example.

Let M; = R, i = 1,2 be non-measurable sets, m*(M;) = 1 (the asterisk denotes
the outer measure), M; " M, = 0, M; U M, = (0, 1) and put F(¢t, x) = {f()} where
f(t) = 1 for te My, f(f) = O for t € M,. The condition (0.7) implies that F(-, x) is
measurable. However, with regard to (0.8) this is only possible if F(t, x) = 0 for
(t,x)e G n (A x R) where G = (0,1) x {0,1}, m(R — 4) = 0.

0.3. In Section 2, assuming that the metric space X is complete separable and that
the set G is of type F,, we prove that the function F from 0.2 is unique in the following
sense: If F,: G —» o3, i = 1,2 fulfil the conditions (0.8), (0.11), (0.12) with F,
instead of F, then there is a set A = R such that m(R — A) = 0 and F,(t, x) =
= Fy(t, x) for (t, x) € G n (4 x X). (See Note 2.7.)

In Section 3 we prove a theorem which gives sufficient conditions that F(t, x)=90
occurs only for ¢ from a set of measure zero.

The results of Sections 1—3 may be extended to the case when X is a topological
space with some additional properties; e.g. in Section 1 it is sufficient to assume that X
is a topological space with a countable open basis.

0.4. In Section 4 the existence of such functions F, Q : [0, 1] x R — {{0}, [0, 1]}
is proved that Q(t, x) = F(t, x + t) and that

(0.13) for every t € [0, 1] the set {x | F(t, x) = [0, 1]} contains at most one point ,

(0.14) for every x e R the set {t| F(t, x) = [0, 1]} contains at most one point,

(0.15) for every x € [0, 1], the function Q(+, x) is not measurable on any interval
[%8, 0<ax<Bs<1. '

By (0.13) and (0.14) F fulfils (0.3) and (0.4) but Q does not fulfil (0.4) by (0.15). For
this result the authors are indebted to I. VRKOC.

1.

1.1. Definition. Let X be a metric space, R the real line, G = R x X. The metric
in X is denoted by g, the metric § in R x X is given by §((t;, x,), (t2, x;)) =
= max {|t; — 1,], o(x,, x,)}. Let P(G) be the set of such t€ R that (t, x)e G for
some x € X. G(t, *) dénotes the set of such x € X that (¢, x) e G. The set of all
f:G — R such that f(¢, -) is upper semicontinuous for almost all ¢ is denoted by
US%,(G — R); the set of all f : G — R which satisfy the condition

(1.1) to every & > O there is a measurable set 4, = R with m(R — 4,) < & such
that f|g. 4, x) is upper semicontinuous

is denoted by ¥2*(G — R).
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1.2. Theorem. Let X be separable, let fe U#S€,(G — R) have a finite range.
Then there exists f e $9*(G — R) so that

(i) f(t, x) < f(t, x) for (t,x) € G N (A x X) where A = R, m(R — A) = 0;

(ii) if I = R is measurable, u :1 - X measurable, (t,u(t))€ G for tel, v:I - R
measurable and o(t) < f(t, u(t)) almost everywhere (a.e.) in I, then o(t) <
< f(t, u(t)) a.e. in 1.

Proof. Without loss of generality we may assume that the set P(G) is bounded.
Let B be a subset of P(G) such that m(B) = 0 and that f(t, *) is upper semicontinuous
for tel — B. Let a4, a5, ..., o be the values of the function f, a; < a; < ... < 0.
Let us choose numbers f;, i = 1, 2, ..., k so that

o0 < By <ay... <Py <o <pPi.
1t follows from the upper semicontinuity of f(¢, -) that the sets

U(t) = {x|f(t.x) < B}, i=12..,k

are relatively open in G(t, *) for te P(G) — B. Let {V;}, j = 1,2, ... be a countable
open basis of X and

Duy={t|V;nG(t,") cU)}, j=1,2,... i=12..,k.

If D;; is measurable, we denote D;; = E;;; if not, let E;; be a measurable set, D;; =
< Ej;, m*(D;;) = m(E;;) (the asterisk denotes the outer measure). Obviously
0 < m*(Dj;;) < o, as P(G) is bounded.
Let us put
9. - {ai for (t,x)e E;; x V;,
L o otherwise
and define

f(t, x) = inf 8,(t, x) for (t,x)eG.
i,j

We shall prove (i). Let us assume that (t, x)€ G n (C x X), C = P(G) — B and
f(t, x) = a;. Then x € U(t), U(t)is relatively open in G(¢, *) and there exists a positive
integer j such that xe V;, V;n G(t, -) = U(t), ie. te D;; = E;;. Hence (t,x) €
€E; x V;and 9;(t, x) = a,,

f(t, x) = itxle 9,(t, x) < o; = f(t, x)

and (i) holds.

Now let us prove (u) To this aim assume that u : I = X, v : I - R are measurable,
(t,u(t)) e G for tel, o(t) < f(t, u(t)) a.e. in I.
Let us denote '
L={t|u(eV}, j=12...
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Then L; are measurable sets. Let the indices i, j be fixed. Choose an arbitrary t €
€D;;n L, Then u(t)e V;n G(t, *) = U(t), hence f(t,u(t)) < B; and o(f) < o,
Consequently, D;; n L; = H;, where

={t|ut) < a}.
Since E;; was chosen to satisfy m(E;;) = m*(D;;), we have evidently
(1.2) m(E;; n L;) = m¥Dj;n L)).

Moreover, we have D;; n L; = H; and thus m(E;; n L; — H;)) = m(E;; n L;) —
—mEy;nLinH)=m*D;nL)—mE;nL;nH)=m*DjnLnH) —
— m(E;; n L; n H;) £ 0since D;; < Ej;. This means that v(f) < «; a.e. in E;; n L;.

Ori the other hand, if t eI — L, then u(r) ¢ V; by definition, therefore 9;(t, u(f)) =
= oo0. Hence the inequality v(f) < 9;(¢, u(f)) holds in I — N;;, m(N;;) = 0. Putting
N = U N;; we have m(N) = 0 and »(f) < f(t, u(t)) for I — N, which proves (ii).

It remains to show that fe £92*(G — R). Let i, j be fixed. Let us define

§j,-(t)={ui for tekE;;,

o0 otherwise .

Given ¢ > 0, find A’ R, m(R — 4}}) < 27%*D¢ so that §;; is upper semicon-
tinuous on 4;’. (Such sets exist in virtue of Lusin’s theorem.) Put 4, = U 4J’; then
ij

obviously m(R — 4,) < &. We have
9t x) = {‘Zél(t) for xeV;,

otherwise .
Since the sets ¥, are open, it is easily seen that 3;; are upper semicontinuous on
Gn (4, x X).
By definition, f(t, x) = inf 8;(t,x) for (t,x)e G. Consequently, flonu,xx) is
1J

upper semicontinuous which completes the proof of the theorem.
1.3. Theorem. Let X be separable, let fe US%€,(G — R). Then there exists
e DG — R) such that (i), (ii) from Theorem 1.2 holds.

Proof. Without loss of generality we can assume that f (G) = [0, 1]. Let us define
functions ¥, : G —» [0, 1] for k =1,2,..,1=1,2,...,2 — 1 by

% it 7, %) < El*
ll’k'(t,.x) =, 1
1 if f(t, X) = ?
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and put fi(t, x) = min (s, x). Then evidently f(t, x) = inf fi(t, x).
2k-1 k

=1,..,
Since the functions Y,(t, +) are upper semicontinuous, the same holds for f,(t, *)
(for almost all t). Moreover, the range of f, is finite. Hence we can find fe
€ $2%(G — R) by Theorem 1.2 satisfying (i), (ii) with f,, f; instead of f, /. Put

(1.3) f(t, x) = irll‘ff,‘(t, x) .

Then evidently f e #2*(G — R).
It remains to prove (i), (ii). The first point is evident since f(t, x) < fi(t, x) <
< ft,x) for k =1,2,... and hence f(t, x) < inf fi(t, x) = f(t, x). To prove (i),
k
suppose that u : I — X is measurable, v : I — R is measurable and o(f) < f(¢, u(t))

a.e. in I. Then also 1(t) < f(t, u(t)) and hence by Theorem 1.2 (ii) v(t) < fi(t, u(t)).
The assertion now follows immediately from (1.3).

1.4. Definition. Let X be a metric space, R” the n-dimensional Euclidean space,
R =R! Gc R x X. Then X, denotes the family of all non-empty compact
convex subsets of R", ') = X, U {0}. If S is a family of subsets of R", then the set
of all F : G — S such that F(t, -) is upper semicontinuous for alnfost all ¢ is denoted
by %y%Z(G — S); the set of all F : G — S which satisfy the condition

(1.4) to every & > O there is a measurable set 4, = R such that m(R — 4,) < ¢
and the function F lGn( 4.xX) 1S Upper semicontinuous

is denoted by ¥2*(G — S)
The main result is formulated in the following

1.5. Theorem. Let X be separable, Fe US€,(G — X,). Then there exists
F e $9*%(G - A7)) such that '

(@) £(t, x) = F(t, x) for (t,x)eG,
(ii) if I = R is measurable, u : 1 — X measurable, (t, u(t))e G fortel, v:I -» R"
measurable, o(t) € F(t, u(t)) a.e. in I, then v(t) € F(t, u(t)) a.e. in 1.

Proof. Let {u;},j = 1,2, ... be a countable dense set in R" and denote
(t, x) = sup {(y, u;) | y e F(t, %)} .

Then w; € #S#%,(G — R) in virtue of the assumption on F. Therefore, by Theorem
1.3 we find to every ; a function &; € #9*(G — R) such that (i), (ii) from Theorem
1.3 holds with w;, @; instead of f, f. Define

(1.5) F(t, x) =161{y R

(. u)) < o1, x)} .

339



By a standard separation theorem

© R =0 0eR|(nw) S 00},

so that (i) holds.
If u, v are functions from Theorem 1.5 (i), then (v(f), u;) < w(t, u(f)) a.e. in I,
j=12,.... By Theorem 1.3 we conclude that then

(o(t), u) < &t u(t)) ae.inl, j=1,2,...
and hence by (1.5)
o(t)e F(t, u(r)) ae.inl.

Theorem 1.5 is proved completely.

2.

Before we pass to the problem of uniqueness of the function F from Theorem 1.5,
let us introduce several lemmas. In the sequel, if M = R x X then P(M), Px(M)
denote the projections of M onto R and X, respectively.

2.1. Lemma. Let Y be a separable metric space, ¢ : Y - R an upper semiconti-
nuous function. Then there exists a sequence of continuous functions y;: Y —» R
such that

¢j+1(y) é .//J(y)’ j = 1, 2’ ceey
L ¥i(») = o(y)
for ye Y.
For the proof, see [4], p. 88, Theorem 14.7.5.

2.2. Lemma. Let X be a complete separable metric space, Q = R x X a compact
set. Then

(i) both P(Q) and P,(Q) are compact;
(i) there is @ measurable function w : P(Q) — X such that (t, w(t)) € Q for t € P(Q).

Proof. (i) holds, as P and Py are continuous maps and Q is compact.

Since Px(Q) is compact by (i), it can be covered by a finite number of closed balls
BV, i=1,2,..., k,, with centers 5;;, and radius equal to one. Denote D{") =
= B{" n Px(Q); then D{V are compact and cover Py(Q). Let us define a function
wy : P(Q) — X as follows: _

Put wy(f) = sy, for te P(Q n (R x D{V)) = P,,; if P,y,..., P;_y,, have been
defined (i 2 2), then put

wl(t) =5, for te P(Q N ((R _‘Olpql) x Dgl))) )
q=1
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Thus we obtain a measurable function w, : P(Q) — X. Evidently, it may be assumed
that B{" n Px(Q) # 0; consequently, (, w,(t)) € 2(Q, 1) for t € P(Q) where (M, &)
denotes the e-neighborhood of the set M.

Given a finite covering of Py(Q) by compact sets D, i =1,2,..., k; with
diam D{? < 27U~1, we find a finite number of balls BY* ", i = 1,2, ..., k;,, with
centers s; ;,, and radius 27/ with the following properties: BY*", i =1,..., q,
cover DY), BY*Y, i =¢q, +1,...,q, cover DY, .., B, i=¢q, _; +1,..., 4,
cover D{”. Further, we define D{*" = B(’“) N D“) for i=q,_; +1,..., 4,
Evidently DY*V,i = 1, ..., k;4, cover P,(Q). We define a function w;,, : P(Q) - X
as follows:

Putw;.y(f) = 51,4 forte (@ N (R x DY*V)) = Py j4q3 i Py jags e Picy g
have been defined (i = 2), then put

i-1
Wj+1(t) = si,j+1 fOl' tGP(Q N ((R — Uqu,j+l) X D§J+1))) .
q=

Similarly as for w,, we conclude that w;,, : P(Q) — X is measurable and
(t, wj+1(1)) € 2(Q, 277) for t € P(Q).

The functions w,, w,, ... form a Cauchy sequence. Indeed, it is easily seen that the
values wj(), w;4,(t) are centers of balls (in X) with radii 27Y*", 27/ respectively.
These balls have a non-empty intersection, hence g(w;(t), w;4,(f)) < 27/* and
o(w,(t), w(t)) < 277*2 for p < gq.

As X is complete, there exists a measurable function w : P(Q) — X, w(t) = hm w ,(t)

for t € P(Q). Moreover (t, w(t)) € Q for t € P(Q) in virtue of (1, w;,(?)) € Q(Q,
Lemma 2.2 is proved.

2.3. Lemma. Let X be a complete separable metric space,  + Q; = R x X,
Q; closed sets, j = 1,2, .... Let Q;.; < Q;, Q = (\ Q;. Let the set Q; have a finite

27inet,j=1,2,.... j=1
Then the set Q is non-empty, compact and
@ 70) - N Q).
j=

Proof. Evidently Q is closed and has a finite e-net for every & > 0. Since X is
complete, this implies that Q is compact. Since Q; + @, we can choose a sequence
Zy, Z3, ... such that z;€ Q;, z; = (t;, x;), j = 1,2, ...

Since Q, has a finite 2™ '-net, there is a point {, of this net and a subsequence of
{z,}, say {z,,} such that

é(zlj, Cl) <271, j=12,....

Given a sequence {z,;}, j = 1,2, ... and k positive integer, we find {,,, belonging
to the finite 2~**-net of Q,,, and a subsequence {z;4,,}, j = 1,2, ... such that

@(an,j, {iay) < "¢ . j=1,2...
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Thus we can define by induction sequences {z,;}, j = 1,2,... for every positive
integer k so that

. 0(zup 2i)) < 27%, Kk, p, q positive integers .

Taking the diagonal sequence {z;;}, j = 1,2, ... we conclude by a standard argu-
ment that it is a Cauchy sequence and hence in virtue of completeness of X there

exists z€ X, z = lim z;;. Since z,,€ Q; for p =j,j + 1, ... and Q; are closed, we
Jjo®

have ze Q;, j = 1,2, ... and consequently Q + 0.
It remains to prove (2.1). The inclusion

H0) = N A(0)

is evident. Let t € P(Q,). Then there exist x;, j = 1,2, ... such that (¢, x;) € Q;.
j=1

Similarly as above we construct subsequences of {x j}, find that the diagonal sequence
has a limit x and that (t, x)€ Q;, j = 1,2, ... . Then obviously (t, x) € Q and hence
te P(Q).

Lemma 2.3 is proved.

2.4. Theorem. Let X be a complete separable metric space, G = R x X a set
of class F,, F e SDXG —» X)), i = 1,2, = {(t, x) e G| Fy(t, x) — F,(t, x) + 0}.
Then the set D = P(Q) is measurable and there exist measurable functions
v:D—> R, w:D — X such that
(t, w(1)) e G and off) e Fy(t, w(t)) — F,(t, w(t)) a.e.in D.

The theorem is an easy consequence of the following

2.5. Proposition. Let us keep the notation of Theorem 2.4. Let 0 < m*(D) < oo,
0 < { < m*(D). Then there exists a compact set Q = G with m(P(Q)) 2 ¢,

(2.2) Fi(t,x) — Fy(t,x) # 0 for (t,x)eQ.
Further, there exist measurable functions ® : P(Q) > R", W : P(Q) — X such that
(2.3) 0(t) € Fy(t, W(t)) — Fy(t, w(t)) for te P(Q).

a
Proof. Let { +2n <m*(D), { >0, n>0. Let G=UH, H;<H;,, for
. i=1
i=1,2,..., the sets H; being closed. Without loss of generality we may assume that
the set P(Q) is bounded. Obviously D = P(Q) =U P(Qn H)), P(Qn H) <
: i=1

c P(2 N H;y,) for i =1,2,... so that m*(D) = lim m*(P(2 n H;)) and there
exists such an integer r that v

m*(P(2nH,) >+ 21.
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There exists a closed set 4, = R such that m(R — A4,) < # and the functions
F;IG,,( a,xx) §=1,2 are upper semicontinuous. Let the set {u}, i=1,2,... be
dense in R" and put

@{t, x) = sup {(u;, y) | y e Fo(t, x)} for (t,x)eG (4, x X).

Then the function ¢; is evidently upper semicontinuous, i = 1, 2, ... and according
to Lemma 2.1 there exist continuous functions ¥,; : G n (4, x X) — R so that

Vi it x) S ¥4 %), jlim Yt x) = oit, x) .
For k=1,2,... put
(29 2, = {(t, x) e H, n (4, x X)| F,(t, x) n

AU {2 e R | (s 2) 2 Valt 9] 9}

These sets are closed, since F, is upper semicontinuous, ¥;; are continuous and the
sets H,, A, are closed. Moreover, £,,; > Q,, k = 1,2, .... Let us prove

(2.5) QnH (4 xX)=U0,.

Let (t,x)e 2 n H, 0 (A4, x X). Then there exists he F,(t, x) = F,(t, x). Since
F,(t, x) is closed convex, there is u € R” such that

(u, h) > sup {(u, y) | y € F,(t, x)} .
Since F,(t, x) is compact, there is an index [ such that
(ug, ) > @(t, x) .

Consequently, if k is such that k 2 1 and (u;, ) > y,(t, x) we have (t, x)e @,
and hence

@
QnH N4, *xX)cUQ.
k=1
The converse inclusion being obvious, we conclude that (2.5) holds.
Obviously P(2 n H, n (4, x X)) = P(2 n H,) N A, and since m(R — 4,) <1,

m*(P(2 n H,)) > { + 21, we have m*(P(2 n H,) n A,) > { + . In virtue of (2.5)
we have

P@nH)n A4, = le(a,‘) ,

P(2,,,) > P(2,) and hence there is a positive integer p such that m*(P(%2,)) >
>+
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Let the set {g;},i = 1,2, ... be dense in R x X. Then
-] 1
. P(R,) = ll_JlP(Qp o) (kL_JIE(gk, 1))

I
and there exists I; such that m*(P(Q,)) > { + 4n, where Q; = 2, n (U B(gs, 1)).

k=1
Livy

By induction we find I,, I3, ... so that Q;; = @;n( U B(gs 277)) and
k=1

(2.6) m*(P(Qy+,) > ¢ +270* )y,
Put Q = N Q;. Obviously Q = Q, = 2, < H, = G and the sets Q; are closed.
i=1

By Lemma 2.3 the set Q is compact, non-empty and satisfies (2.1); moreover, Q < G.
It follows from (2.6) that m*(P(Q)) = {. Since P(Q) is compact by Lemma 2.2 (i),
we conclude

m(P(Q) 2 ¢

By Lemma 2.2 (ii) there exists W : P(Q) — X measurable and such that (t, w(t)) € Q
for te P(Q), i.e.

F(t 9(0) — Faft, (0) + 9.

Now we shall find a measurable function 9 : P(Q) — R” satisfying

@) MR () LU {ze R (D) 2 bl ¥O)]

for te P(Q). In virtue of (2.4) and the inclusion 2, > Q, the set on the right-hand
side of (2.7) is a non-empty set for ¢ € P(Q). Evidently (2.7) implies (2.3).
Let j be a positive integer. Find a closed set C; = P(Q) with

m(C;) > m(P(Q)) (1 — 27),

such that the function W|c , is continuous and the function F, |G,,(c , % Rn) 1S UPpET semi-
continuous. The composed function F(t, #(t)) is upper semicontinuous on C;. The
continuity of the functions y;,, i = 1, 2, ... implies that the set

H;={(t,y) | te Cj, ye Fy(t, W(t)) n
L0 (e 2) 2 vile MO

is compact. Consequently, by Lemma 2.2 (ii) there exists a measurable function
v;: C; = R" such that (t, v(t)) e H; for te C;.
The function § defined by #(t) = v,(t) for te Cy, 8(t) = v)(t) for j = 2,3,..., te
ji-1
€ C; — U C,; is measurable, defined a.e. in P(Q) and satisfies (2.7). This completes

i=1
the proof of Proposition 2.5.
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2.6. Proof of Theorem 2.4. According to Proposition 2.5, to every ¢ > O there is

a compact set Q, = G such that m*(D) — m(P(Q,)) < &; hence D is measurable.

Further, consider compact sets Q,-, and find functions 9;, W; from Proposition 2.5

satisfying (2.3) for te P(Q,-;). Similarly as above, put v(t) = 9,(t), w(t) = W,(t)
Jj—1

for te Q,-1, v(t) = Dt), w(t) = w(t) forj = 2,3,...,t€ Q-5 — U Q,-+. Then the
i=1

functions v, w are defined a.e. in P(Q) and satisfy the assertion of Theorem 2.4.

2.7. Note. Let the metric space X be complete separable and let G = R x X be
of type F,. Let F;e $9*(G —» A'}), i = 1, 2 fulfil the conditions (0.8), (0.12) with F,
instead of F. Put

Q, ={(tx)eG | Fi(t,x) — Fy(t, x) + 0},

Q, = {(t,x)e G| Fy(t, x) — Fy(t, x) + 0} .

By Theorem 2.4 the sets D; = P(Q,) are measurable and there exist measurable
functions v; : D; - R", w;: D; - X, i = 1, 2 such that

(2.8) vy(t) € Fy(t, wy(t) — Fo(t, wi(t)) ae.in Dy,
vy(t) € Fy(t, wy(t)) — Fy(t, wy(t)) ae.in D,.

By (2.8) and (0.8) v,(f) € F(t, w,(t)) a.e. in D, and by (0.12) v,(t) € F,(t, w,(1)) a.e.
in D,. Consequently m(D,) = 0 and similarly m(D,) = 0. The assertion from 0.3
holds with 4 = R — (D, u D,).

3.

3.1. Theorem. Let Fe S9*(G - A')) where G = R x X, X being a metric
space. To every (1, X) € G let there exist a non-degenerate interval I and a function
w:I — X such that
(3.1) lim w(t) = %,

(3-2) F(t,w(f)) #+ 0 ae.in I.

Let E be the set of all te R such that there exists x € X with F(t,x) = 0.
Then m(E) = 0.

Proof. Let us assume that m*(E) > 0. Let A = R be a measurable set such that
m(R — A) < m*(E) and the function F|g,.x, is upper semicontinuous. Then
m*(A N E) > 0. Let B be the set of t € A which are points of metrical density of the
set A. Then m(A — B) = 0, hence m*(B n E) > 0.

Let us choose € B n E and find % so that F(#, X) = 0. Let w : I — X be the func-
tion from the assumptions of Theorem 3.1.
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Since F |Gn( 4x x) is upper semicontinuous, there exists an open set U < G so that
(!, %)e U and F(t, x) = 0 for (t, x) e U n (4 x X). By (3.1) there exists 6 > 0 such
that F(t, w(t)) = 0 provided tel n 4, It - ?| < 8. However, since 7 is a point of
metrical density of the set 4, (3.2) cannot hold.

4.

Notation. Let 4 be a set of real numbers and r a real number. The sets A + r, r4
are defined by A+ r=1{a+r|aed} and r4 = {ra|ae A}. Denote by x(x)
the cardinal number corresponding to an ordinal type a. Let x be the cardinal number
of continuum and  the first ordinal type fulfilling x(w) = x. If A is a set then x(4)
is the cardinal number of 4.

First we shall formulate without proofs four well-known results.

4.1. Lemma. Let F be the system of all closed subsets of [0, 1]. Then »(F) = x.
4.2. Lemma. Let A be an uncountable closed subset of [0, 1]. Then x(A) = x.
4.3. Lemma. The set of ordinal types {B|0 < B < o} is of the ordinal type a.

4.4. Lemma. If ¢ is an infinite cardinal number, then 26 = ¢* = 0.

Since #({x | 0 < @ < ®}) = ©(w) = » (cf. Lemma 4.3), there exists a one-to-one
mapping « — r, of {« | 0 < a < w} onto the interval [0, 1].

4.5. Lemma. If Z is a set, Z < [0, 1], *(Z) = x, then there exists a real function g
defined on {a|0 < o« < w} such that g(x) € Z for every o, g is one-to-one and the
mapping « — g(«) + r, is one-to-one.

Proof. Let g be a function defined on a set {a | 0<a< 5}, d £ o which fulfils
g(x) e Z and

(4.1) g(x) + g(ﬂ) and g(a) + r, + g(B) + 14

for all a, B from its definition domain, & + B. Let Q be the set of all such functions g.
Denote by < a partial ordering on Q defined by g =< ¢g®’ if the domain of defini-
tion DM of gV is contained in the domain of definition D‘® of g® and gV, g‘®
coincide on D™, Let now A %+ 0 be a set of indices, g e Q for AeA and
let {g®|ieA} be a linearly ordered subset of Q. Denote by D™ = {x|0 <

< a < 8®} the corresponding domains of definition. Put 6 = sup6¥, D =
Aed
={a|0Sa<d}ie D= U D®. For every a€ D there exists A€ 4 such that

ae DP, Put g(a) = g¥(a). Obvxously ge Q and g < g for A€ A. This implies
(by the Zorn lemma) that Q has a maximal element § with a domain of definition
= {a | 0<a<d}
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Assume § < . Denote V = {g(a)|0 < a <8} U {g(e) + r, — 5|0 S « < &}.
Evidently »(V) < #(8) + %(8)%< »(w) = x (see Lemma 4.4 and the definition of w).
Thus Z — V& 0 and there exists ze Z — V. Define §(«) = g(x) for 0 S a < &
and §(%) = z.

Obviously § € Q with the domain of definition D = {« | 0<a<d+1} and,
moreover, § + § and g < 4. This contradicts the fact that g is maximal. We conclude
d = w and Lemma 4.5 is proved.

Denote by F the family of all closed subsets A of [0, 1] fulfilling m(4) > 0. It can
be deduced from Lemma 4.1 that %(F) = x and since #({x | 0 < a < w}) = x there
exists a one-to-one mapping o — F, defined on {« | 0 < @ < w} which maps
{a|0§a < w} onto F.

4.6. Lemma. Let C = {(a, p) | 0 < B < «a < w}. There exists a real function f
defined on C such that

(4.2) f(@,B)eF, for 0SP=<a,
(43) f(@ B) + f(«, B) for (xB)+ («,B),
(4.9 f(a, B) + rg * f(«', B) + rpe for (a, B) * (', B).

Proof. Denote C¥ = {(«, f)|0 < B < a < 6} for all 5 < o and let G be the
set of all real functions defined on sets C® fulfilling (4.2) to (4.4). As in the proof
of Lemma 4.5 we introduce a partial ordering on G. We write f® < f@ if the
corresponding domains of definition satisfy C;, = C, and f = f® on C,.

The existence of a maximal element of G can be proved analogously as in the
proof of Lemma 4.5. Denote the maximal element by f and the corresponding domain
of definition by C = {(«, 8) |0 < B < « < 5}.

Assume & < w. Put W, = {f(x, B)| 0 < B < «} for « < 8. Obviously »(W,) =
= x({ﬁ|0 S B = a}) =) + 1 < x(5). Denote W = UEW, = {f(a, ﬁ)IO <B=

<

< a < 8}. Since #({x |0 < a« < §}) = #(§) we obtain »(W) < %*(8) = x(5) (see
Lemma 4.4; notice that (5) cannot be finite). Let W’ = {f(a, f) + r; — r, |0 <
SB=La<d 05y 5}. Analogously as for W we can estimate

(W) x({(@p)|[0<p<sa<d x{y|osy=d))=

= (3) (3) = u(3)..

Denote :
(4.5) Z=F;-W-W.

Using the above estimates for x(W) and x(W’), we obtain due to Lemma 4.2
#Z) = »x. .

Let g be a function from Lemma 4.5. Denote f(a, f) = f(«, f) for 0 < B
0

b
< a < 5,f(3, B) = g(B) for 0 < B < 3. The function fis defined on € = {(a, p) o=
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<B=<a<?d+1}, f(e B)€F, and f fulfils (4.3) and (4.4) due to (4.1) and (4.5).
Evidently fe G, f < f and f + f. This contradiction nplies § = @ and Lemma 4.6
is proved.

Given M < [0, 1], then m*(M), m,(M) stand respectively for the outer and the
inner Lebesgue measure of M.

4.7. Lemma. To every ordinal type a, 0 < o <  there exists a set M, and a real
number r, such that M, = [0, 1], r,€[0, 1], m*(M,) = 1, my(M,) = 0, {r, | 0=
Soa<ow}=[0,1] and M,n My =0, (M, +r,))n(My+r15) =0 for o=+ §p.

Proof. Let a —» r, be the mapping defined above. Since this mapping is
onto [0,1] we have {r,|0 <o <w}=1[0,1]. Put M, = {f(a, B)| B < & < w}
where f is the function from Lemma 4.6. Obviously M, < [0, 1] and the last two
disjointness properties follow from (4.3) and (4.4), respectively.

We shall prove m*(M 5) = 1. Let B be a given ordinal type, f < ®, and assume
m*(Mg) < 1. Then there exists an open set U, M; = U, m(U) < 1. Denote F(*) =
= [0,1] — U. Obviously m(F*’) > 0. Put F® =F* n[0,4] and m(d) =
= m(F®). Then m(2) is a continuous function, m(0) = 0, m(1) > 0. Let 0 < £ <
< m(1). Define A(¢) = min {4 | m(%) = &}. Evidently A(¢)e F'*) for every &€
€ (0,m(1)]and A(¢;) + A(&;)for &, + &,. Denote 4 = {A(¢) | ¢ €(0, m(1)]}. Evidently
#(4) = x and x({y |0 = y < B}) = x(B) < »(w) = ». Hence there exists a couple
u, 8 such that u € A, d is an ordinal type, f < 6 < w and F* = F,. Thus the set F®
contains the point f(6, ) and consequently F®) n My =+ 0, ie. F) n My + 0.

We conclude M, ¢ U. This contradiction proves m*(M,) = 1. Since M, are dis-
joint we obtain

myMg) =1 - m*[0,1] - My) <1 — m*M,)=0, o+§.
Since the mapping B — r, is one-to-one and onto [0, 1] there exists to every r,

0 = r £ 1 an ordinal type f < w such that r = r;. Put M, = M,. Using this new
notation, Lemma 4.7 can be reformulated.

4.8. Lemma. To every r, 0 < r < 1 there exists a set M, such that M, c [0,' 1],
m*(M,) =1, myM,)=0,M,n M, =0,(M, + r)n (M, + g) =0forr + g.

4.9. Theorem. There exists a set S in [0, 1] x R such that
(4.6) {x|( x) € S} contains at most one point for every t,
4.7) {t|(t,x)e S} contains at most one point for every x,

(48) m*t|(Lt+x)eS} =1, myt|(t,t +x)eS} =0 forevery x,

0x=<1.
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