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In [5] I, a basic information about partitions in a set and congruences in an
algebra can be found. Here, only necessary concepts will be introduced. A partition A
in a set G is a system of pairwise disjoint nonempty subsets of G. These subsets will
be called blocks of the partition A4, its union JA the domain of A.Of course, 4 is a
partition on the set |JA. Partitionsin G are in a 1-1-correspondence with the symmetric
and transitive binary relations (ST-relations) in G, analogously as partitions on G
correspond to equivalence relations in G. For this reason, we shall sometimes not
distinguish partitions and ST-relations. If (G, F) is a partial algebra then the ST-
relations in the set G which are stable with respect to F are called congruences
in (G, F). For the sake of completeness we give the definition of a stable binary
relation 4 in a partial algebra (G, F): Let fe F be n-ary (n = 1) and a;4b; (i =
=1,2,...,n),letf(ay,...,a,) and f(by, ..., b,) exist. Then f(ay, ..., a,) Af(by, ..., b,).

The theory of partitions in a set and of congruences in an algebra has been an
object of systematic study only recently even though the concepts appeared in the
- literature not less than forty years ago [2, 3,4,5, 7]. Nonetheless, the congruences
“in” actually acted latently much earlier, already in the classical group theory, e.g.
in connection with the Schreier-Zassenhaus theorem in which congruences on sub-
groups are considered and not only those on the whole group. It was in this domain
where “in” approach yielded formal as wel as matter-of-fact means for generalizing
this theorem to algebras [7].

The sets R(G) of all binary relations in a set G, P(G) of all partitions in G and
X' (G, F) of all congruences in a partial algebra (G, F) are complete lattices under
set inclusion. In all these cases the infimum of a system of relations — elements of the
corresponding lattice — is equal to their set-intersection [4, 5]. Also the lattices IT (6)
of all partitions on a set G and 4(G, F) of all congruences on a partial algebra (G, F)
are complete, the latter being a closed sublattice of the former which is not true in
the situation “in”. I1(G) is a closed sublattice of P(G). The lattices I1(G) and %(G, F),
are algebraic. In Section 1, we shall prove the same property for the lattices R(G)
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P(G) and X(G, F) (1.3, 1.4, 1.6, 1.13). It is shown that the compact elements of
A (G, F) are precisely the upper & -modifications (see Def. 1.5) of compact elements
of P(G) (or of R(G)) and the compact elements of P(G) and R(G) are exactly the finite
relations in G (1.3, 1.4, 1.6, 1.14).

In Section 2, we construct the upper ¥ -modification ¥, of a binary relation 4
in a partial algebra (G, F) (2.7). The construction is similar to that of the upper
#-modification @, of a relation A given in [6] 5.3, 5.4. It is identical with it if we
replace the algebra (G, F) in the construction of @, by its subalgebra (U¥,, F)
(2.14). For this purpose we need to know the set |J¥,; this is established in 2.11.

1. PROPERTIES OF LATTICES R(G), P(G) AND X'(G, F)

1.1. ([5] I 1.2). Let (G, F) be an algebra, and {A,} < H(G, F). Then \ A, =
= VpBg, where By stands for the congruence A, V x ... V xA,, for an arbitrary

B
finite choice A,, ..., A, in {4,}.
In general, the theorem does not hold for partial algebras.

1.2 ([5] T 1.2.0). Let (G, F) be an algebra and {A,} an up-directed subset of
H(G, F). Then \Vxd, = VpA, = UA,. '

Proof. The first equality is proved in [5]. The other is obvious.

1.3. Theorem. The set R(G) of all binary relations in a set G is an algebraic
lattice with respect to inclusion. The compact elements of R(G) are exactly the
finite relations in G.

Proof. Evidently, R(G) is a complete lattice. Infima are intersections and suprema
are unions.’

Let Te R(G), T = {xy, ..., x,} and let n be a positive integer. Suppose that a system
{T,:0€el} satisfies U T, 2 T. For each x;e T there exists a;el with x;e T,,

ael

(i=1,..,n).Thus YT, 2T.
i=1

Let Te R(G) be an infinite relation. Define T, = {x} foreach xe . Then T = U T,
and TR UT, forall T, € Tand T, + T. xT

xeTy

Finally, let Te R(G). Then T = U {x} and {x} is compact in R(G) for all xe T.
xeT

1.4. Theorem. The lattice P(G) of all partitions in a set G is algebraic. A partition
is compact in P(G) if and only if it contains only finitely many blocks, each of them
being a finite set. .
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Proof. P(G) is a complete lattice by [2]. First, we shall prove that a partition
A = {A'} with one finite block A' = {x,,...,x,} is compact in P(G). If A =
={A,:6€4} < P(G) and VU = A then a certain block B' eV contains A".
Given x;, x; € A? there exist elements y,, ..., y,,—; of G and indices J,, ..., §,, of 4
with x;45, ¥ .. Ym-145,X;- "

Denote A; ; = {A; :k=1,...,m} and B, = U U, ;. Then VB, = 4 and B,

ij=1
is a finite subsystem of 2. If the partition A consists of finite blocks 4, ..., 4 (k a posi-
tive integer) we construct a (finite) system B, = A for every A’ (1 < t < k) in the
k
described manner; then VB = A for B = U B, and B is a finite subsystem of .
t=1

Next, we shall prove that a partition A 1) with at least one infinite block or 2) with

infinite many blocks fails o be compact.

1) Let A" be infinite, A € 4, x, y € A*. Denote by A, , the partition in G which
we obtain from A taking the block {x, y} instead of A" (the other blocks of A remain
unchanged). The join of the system U of all partitions 4, , (x, y € 4') equals A.
The blocks of the join of an arbitrary finite subsystem 2, of U are all blocks of the
partition A except 4! and in addition some blocks which together cover only a finite
part of A'. Thus VU, > A.

2) Let A = {4%:5€ 4}, card 4 2 X,. Define one-block partitions A4; = {4°},
ded. Then V{A;:6€ 4} = A. It is evident that none of the finite subsystems of
{A;: 6 € 4} has supremum 2 A.

It remains to prove that an arbitrary element of P(G) is the join of compact ones.
Given A€ P(G), A'€ A and x, ye A" we construct a one-block partition 4, , =
= {{x, y}}. All these partitions are compact elements of P(G) and its supremum is
equal to A. The theorem is proved.

1.5. Definition. Let Lbe a partially ordered set, ) + K < Land a € L. An element
b e K is said to be an upper K-modification of a if b is the least element of K con-
taining a. ‘

1.6. Theorem. Let (G, F) be an algebra. Then X (G, F) is an algebraic lattice.
The upper X -modifications of compact elements of P(G) are compact in X (G, F).

1.7. Remark. In 1.14 we shall prove that all compact elements of X(G, F) are of
the above mentioned form.

Proof. Let T'be a compact element of P(G) and K the upper & -modification of T.
Let {K,:ael} < #(G,F) and V4K, 2 K..By 1.1, VpLs = V4K, where L;
ael pel ael
runs through the & -suprema of all finite subsets of {K, : x e I}. We have VpL; =
’ pel
=Vx K, 2 K 2 T. There exists a finite subset J, of J with Vp Ly = T. Therefore

ael Pely
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VxLs 2 VpLs 2 T and thus V, Ly = K. For each fe J, there exists a finite
BeJy pety peJy

subset I(B) of I such that Ly is a X -supremum of the system {K;} (6 € I(B)). Let I,
be the join of all sets I(8) with B running over J,. Then I, is finite and VK, =
2 Vx Ly = K. Consequently, K is a compact element of % (G, F). vely
eJy

"’i‘he lattice (G, F) is complete by [5] I 1.1. It remains to prove that it is compactly
generated. An arbitrary congruence K is a partition, hence it is Vp of a set of compact
elements of P(G), say B. For Be B let A be the upper X -modification of B; let A
be the set of these modifications 4. Evidently K = VpB < VU < VA < K.
Thus K = V2.

1.8. In what follows we shall need some known concepts definitions of which will
be introduced now for convenience of the reader (see e.g. [1], [6]).

The closure operation on a partially ordered set Lis a mapping A : L —» Lwith the
following properties: 1) a < Aa (a€ L), 2) a < b= 1a < Ab, 3) Ma = la (ae L),
4) 20 = 0 (provided 0 exists). The set of all compact elements of L will be denoted
by L*. The closure operation A of L will be called algebraic if every a € L* satisfies
the following condition: If ¢ < Ax then there exists x’ € L* with x" < x and a < Ax'.

1.9 ([6] 4.7). A closure operation A of an algebraic lattice Lis algebraic if and
only if it fulfils \V .S € AL for every directed subset S of AL.

1.10. Definition. Let G be a set. Then 4, : R(G) —» P(G) is defined as follows:
A4(A) is the upper P-modification of A € R(G). If (G, F) is an algebra we define the
mappings 4, : P(G) - X(G, F) and 1, : R(G) - X(G, F) analogously.

1.11. Theorem. The maps A; (i = 1,2, 3) from Definition 1.10 are algebraic
closure operations.

Proof. It is clear that 4, (i = 1,2, 3) is a closure operation. Further, by 1.9, it is
enough to fulfil the condition UA € P(G) (as for 4,) or YA € #(G, F) (as for 4,
and 4,),for an arbitrary directed subset % of P(G) (as for 4,) or of #(G, F)(as for 4,
and 4,), respectively.

Ay Let A = {4, : a €I} be a directed subset of P(G). It suffices to prove that U4,

is symmetric and transitive. The first property is evident, the other follows from the fact
that for x, y e G we have x(U¥) y if and only if xAy for some A€ U (since A is
directed). The assertions for 4, and A, follow from 1.2.

1.12 ([6] 4.3). If A is an algebraic closure operation of an algebraic lattice L
then AL is again an algebraic lattice, and it holds A(L*) = (AL)*.

1.13. Now, the property to be algebraic for P(G) (G a set) and X (G, F) ((G, F)
an algebra) follows by virtue of 1.11 and 1.12. In fact, P(G) = A, R(G) and 4, is
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algebraic by 1.11. Thus by 1.12, P(G) is algebraic. Analogously for X#(G, F) with
aid of 4, or 4;.

In the following theorem the characterization of (G, F)* will be completed.
Simultaneously, we discover the structure of P(G)*.

1.14. Theorem. Let G be a set. Compact elements of the lattice P(G) are exactly
the upper P-modifications of compact elements of R(G) (i.e. of finite subsets of
G x G). Analogously for X (G, F) if (G, F) is an algebra.

Also, compact elements of P(G) (G a set) are exactly the finite partitions whose
blocks are finite sets and if (G, F) is an algebra then compact elements of #'(G, F)
are exactly the upper A -modifications of compact elements of P(G).

Proof. According to 1.12, the first assertion follows from the fact that A, and 4,
are algebraic (1.11) and that the compact elements of R(G) are precisely the finite
subsets of G x G (1.3).

To obtain the other description of compact elements of P(G) it suffices to verify
that the upper P-modification B of a finite relation A in G is finite again. It holds
A< C x C,where C =4 uUA™!, sothat B< C x C (as C x Cis a partition
in G) and C x C is finite.

The last assertion follows from 1.12 since 4, is algebraic (1.11).

2. DETERMINATION OF THE UPPER X-MODIFICATION
OF AN ARBITRARY BINARY RELATION IN A PARTIAL ALGEBRA

The aim of this section is the determination of the upper -modification ¥, of
an arbitrary relation 4 in a partial algebra (G, F). The construction is similar to that
of the upper ¥-modification @ 4 of 4 given in [6] 5.3 and 5.4. It is identical with it if
we replace the algebra (G, F) in the construction of @, by its subalgebra (U¥,, F)
(2.14). Therefore we need to know the set [J ¥ ,; this is established in 2.11.

2.1. Definition. (See [6] 2 and 5) Let (G, F) be a partial algebra and X a non-
empty set. For every pair of positive integers i, n (i < n) we define the n-ary opera-
tion €"!(x,, ..., x,) on G by

e"ay,...,a,) = a; forall ay,...,a,eG.

Further, we put F* = F U {e"'}, ..

If w= w(x,, ..y X,) is @ word over X generated by F* and if we substitute k
(0 < k = n) of its variables (e.g. Xp—g+1s---» X,) by fixed elements a,_,,,, ..., a,
of G then the resulting symbol

W(X1s o vos Xyms Bt 15 <005 Bn) =3 P(Fgs oo0p Xpi)
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defines an (n — k)-ary operation in G. It will be called an algebraic function in
(G, F). For k =n — 1, p(x) is a unary operation which is said to be a unary
algebraic function. ‘

2.2. The symmetric-transitive hull AT of a binary relation A in a set G is,

evidently, AT = U B", where B =AU A™'.
n=1

2.3. Definition. [6] Let (G, F) be a partial algebra and A € R(G). We define the
following relations in G: A¥, A¥, AY as follows:

A% is the set of all (u, v) € G x G to which there exist a word w(x,, ..., x,) generated
by F* and elements (a; b)eA (i =1,...,n) such that u =w(ay,...,a,), v =
= w(by, ..., by).

AF and AY is obtained by replacing the term “word” in the above definition of 4¥
by “an algebraic function” and “a unary algebraic function”, respectively.

Remark. If A + O then A" is a reflexive relation. (If a€ G and a;Ab, then a =
= e**(ay, a) A" e®*(b,, a) = a.)

2.4. Proposition. [6] If S denotes any of the symbols T, H, F and U then the
map A : R(G) > R(G), defined by A4 = A%, is a closure operation in R(G).
2.5. Denote
Ay = A, A, = AOHs A4, = A-f’ A = AIZ” . Y Ag‘i—l ’
A2i_1 =Agi_2 (i = 1,2,...).

Evidently, it holds 4o € 4, € 4, = ....
Denote

2.6. Definition. Let (G, F) be a partial algebra and A € R(G). Then ¥, and O,
denote the upper 4 -modification and the upper ¢-modification of A, respectively.

2.7. Theorem. If (G, F) is a partial algebra and A € R(G) then ¥, = A'.

Proof. By induction, let us prove A’ < ¥,. Evidently A = ¥,. Now, we shall
show A,;_, € ¥, = A,;, Az;s1 S ¥4 The first inclusion is evident because of
Ay =AY, =¥, Let Ay; = ¥, and (u,v) € Agiyy = AY,. There exist a word
w(xy, ..., x,) generated by F* and elements (a;, b;)e Ay; (j = 1, ..., n) such that
u =w(ay, ..., a,), v =w(by, ..., b,). Hence the congruence ¥, contains (u,v) =
= (w(ay, ..., a,), w(by, ..., b,)) because of (a;, b))e¥,(j=1,...,n). S0 4’ = ¥,
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The equality will follow if we prove that A’ is a congruence. A’ is symmetric since
every (u,v)e A’ belongs to A,; (= A7;—,) for some i and this is symmetric. By
a similar argupent, A’ is transitive. Analogously, 4’ is stable since 4,;4, (= A%) —
— for all i — is stable.

2.8 ([6] 5.3). Let (G, F) be a partial algebra and A€ R(G). Then O, is the
union of the sequence of relations A < AF < AT < AF™F < ...

2.9. Proposition. Let A be a congruence in a partial algebra (G, F). Then (JA, F)
is a subalgebra of (G, F) and A is a congruence on (UA, F).

Proof. Evidently, A is a partition on the set (J4. Let (ay,..., a,) € D(f, G) n
N (UA).*) Itis a;Aa; (i = 1,..., n) hence f(ay, .... a,) A f(ay, ..., a,) and therefore
f(ay, ....a,) e UA.

2.10. Definition [2] 2.3. Let A be a binary relation in a set G and B = G. The
intersection of the relation A and the subset B is the relation B[ A = {(a, b) € 4:
a, b e B}.

2.11. Theorem. Let (G, F) be a partial algebra and A€ R(G). Then U¥ is the
subalgebra (UA U UA™"') **) of (G, F) generated by the set YA U y4-t

Proof. From the symmetry of ¥, it follows that U4 u U4~ c ¥,
and consequently (U4 u U4™'> =< U¥, by 2.9. Conversely, the intersection
(U4 v UA~ty [ ¥, is a congruence containing 4, hence (U4 v UA™ D M ¥, =2
2 ¥,. The reverse inclusion is evident so that U((U4 v UA™) M ¥,) =UY,
Thus Y?, =<UAuv U4 "> nU¥, =<U4ulUda 1.

2.12 [6] 5.5 and 5.4. Let (G, F) be an algebra and A€ R(G). Then AT = A™"
and AT = A"V, Consequently, @, = AT if A + 0.

2.13. Let (G, F) be a partial algebra, (B, F) a subalgebra of (G, F)and A < B x B.
We need to distinguish the least congruence in (G, F) containing A from the least
congruence in (B, F) containing A. We shall denote the latter by ¥ ,(B) and the former
by ¥,(G). Similarly, we distinguish @ ,(B) from O ,(G) and 4°® from AS? for
S=H,FandU.

2.14. Theorem. Let (G, F) be a partial algebra, Ae R(G), and B = |J¥ 4(G)
(= CUA U UALY). Then ¥ ,(G) = O ,(B) = A U AF® U 4FET ) AFOTF®)
If (G, F) is an algebra then ¥ ,(G) = @ ,(B) = A"®".

Proof follows from 2.8, 2.9 and 2.12.

*) By D(f; G) the set of all (a,, ..., a,) € G" is denoted for which f(ay, ..., a,) exists.
**) U4 = {y €G: Ix € G, yAx}, [5] LIl Df. 3.5.
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