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ON HADAMARD’S CONCEPTS OF CORRECTNESS
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In the present paper, we first continue in Section 2 the study of well-posedness or
correctness of the Duhamel initial value problem in the sense as introduced in [1].
In Section 3, a weakened form of correctness, called here Hadamardian correctness,
is newly introduced and studied. It is characterised by the fact that the continuous
dependence of solutions on the initial values is omitted, so that the Hadamardian
correctness becomes of almost algebraic character. The main results concern the rela-
tions between correctness and Hadamardian correctness in Banach spaces. Finally,
in Section 5, we obtain the equivalence between these both notions, naturally only
under strong restrictions, i.e. for a special system of coefficient operators in Hilbert
spaces.

In the text, we use the notation and definitions introduced in [1]. In particular,
it is necessary to be acquainted with the points 1.10, 5.1—5.3, 7.1, 7.4 and 7.7 of [1]
Moreover, we need some results of [1], which will be quoted when necessary.

1. PRELIMINARIES
1.1 The complex number field will be denoted by C.

1.2 Lemma. Let @, ¥, x€ R* — R. If the function ¢ is continuous on R* and
bounded on (0, 1), the functions Y, x are nondecreasing and

|qo(t)| Sy + x(t)J. |e(z)| dr  for every teR*,
‘ 0

then
|@(t)] < () e for every teR™*.
Proof. See [3], p. 19. ‘

1.3 By a Fréchet space F we mean a metrizable complete linear topological convex
space.
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1.4 Lemma. Let F, F, be two Fréchet spaces and T a linear transformation
from F, — F,. If the transformation T is closed, then it is continuous.

2. BASIC NOTIONS AND RESULTS

The notions of definiteness, extensiveness and correctness are introduced or recapitu-
lated and some of their properties, needed in the sequel, are discussed. This part
should be regarded as a completion and extension of the paper [1].

2.1 Let Ay, A, ..., A,e L*(E), ne {1,2,...}. The system of operators A;, A,, ...
..., A, will be called definite if every null solution for the operators A, 4,, ..., 4,
is identically zero.

2.2 Theorem. Let Ay, A,, ..., A€ L*(E), ne {1,2,...}. If the operators Ay, A,, ...
.., A, belong to L(E), then the system Ay, A,, ..., A, is definite.

Proof. Let u be an arbitrary null solution for the operators A,, 4,, ..., 4,. By
[1] 5.6

t
(1) u®= (1) + AIJ. u " D(r)dr + ...
0
t
e + —I——A,, (t— o 'u" D(r)dt =0 forevery teR*.
(n - 1)! Jo

Let us denote

@ K = max (|4:], [42]. - [4])

/|

It follows from (1) and (2) that

@) Ju-0(0)] = K ( J:“u("'”(r)” de + 1 ﬂuun—x(f)" dr + ...

n—1
.+ —t——jtllu"—‘(1)|l d‘t) for every teR™.
n — 1)! 0

(

We can rewrite (3) in the form
t
(4) ") = Ke'f [u®D(z)| dv for every teR™.
0
Using 1.2, we obtain from (4) that 4"~ 1)) = 0 for every te€ R* which implies
according to {1] 2.10 that u(t) = O for every te R".

The proof is complete.
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2.3 Theorem. Let Ay, A,, ..., A,€ L*(E),ne {1, 2,...}. If the operators Ay, A,, ...
..., A, are closed and if there exists a sequence P,, ke {1, 2, }, of operators
from L(E) suck- that

(=) P} = P, for every ke {1,2,...},

(B) Pix = x (k — ) for every x€E,

(Y) Pix €D(A;) for every xeE, ke{l,2,...} and i€{l1,2,...,n},

(3) Ped;x = A;P,x for every ke{l1,2,...}, ie{l,2,...,n} and xeD(4)),
then the system of operators Ay, A,, ..., A, is definite.

Proof. Since the operators A,, 4,, ..., A, are assumed to be closed, we see
from (y) by virtue of [1] 1.11 that

(1) APy e L(E) for every ke {1,2,...} and ie {1,2,..., n}.
Let now u be an arbitrary null solution for the operators 4,, 4,, ..., 4,.
Let us denote u,(t) = P, u(t) for every te R* and ke {1,2,...}.
It follows without difficulty from (o), (v) and (8) that
(2) for every ke {1, 2, ...}, u, is a null solution for the operators AP, 4P, ...
ooy APy
Using now 2.2 we obtain from (1) and (2) that
(3) u(t) = Oforeveryte R* and ke {1,2,...}.
On the other hand, it follows from (B) that
(4) u(t) = u(t) (k > ) forevery teR*.

It follows from (3) and (4) that u(t) = 0 for every t € R™ which was to be proved.

2.4 Remark. A different criterion of definiteness (of spectral type) was given
in [1] 7.3.

2.5 Theorem. Let A,, A,, ..., A,€ L*(E),ne{1,2,...}. If the operators A,, A,, ...
..., A, are everywhere defined and bounded, then for every x e E there exists
a Duhamel solution u such that u®~"(0,) = x and for every te R*

)2

(n = 1)
[exp (1 + max (44, [4a] . [4DM]
Proof. Let us denote

[4@)] = (1 + max (4, [ 4], ..., |

(1) K = max (|4}, |4d]. ... 4.
Further, let us choose a fixed x € E and let us put for te R*
-1
(2 g() = A;x + tAx + ... + e Ax.
(n = 1)

236



Obviously, by (1) and (2),
(3) lg(®)| < K e|x| forevery teR™.

Let us now denote by C the set of all functions ve R™ — E which are continuous
on R* and bounded on (0, 1).
It is clear from (2) that

4 geC.

Further, let us take for we C and te R*

() Tw(t) = 4, J:w(t) dt + 4, J:(t — ) + ...

et 1 A,,J”(t — 1) ' w(r)de.

(n = l)! 0
It is clear from (5) that

(6) T transforms C into itself .

Further, we see without difficulty that
(7) ifw,eC, ke{l1,2,...}, we R* - E and w, » w(k — c0) uniformly on bounded
subsets of R*, then we € and Tw, —» Tw (k — ) uniformly on bounded
subsets of R™.

On the other hand, if follows from (1) and (5) that

(8) |Tw()| < Ktsup |w(z)| forevery weC and teR*.
0<tst

By induction in virtue of [1] 1.8 and [1] 2.9 we obtain immediately from (8) that
. K*¢*
©) [Tw(@)] = = sup [w(3)]
! O0<z=t
forevery weC, teR* and ke{0,1,...}.

It follows from (9) that

(10) ¥ (—T)* w converges uniformly on bounded subsets of R* for every we C.
k=0

Let us now write
(11) v = —kzo(— T)k g.

It follows easily from (3), (6), (7) and (9) that
(12) veC,



(13) o) = K e®* Vx| forevery teR*,
(14) . v+ Tv=—g.

According to (2) and (5) we can write (14) in the form

15) o) + 4 I o) de + ... + (T_IT): A,,J:(t — Pt ofe)de =

n—1
——[A1x+tA2x+...+ ! A,,x]

(n = 1)

for every te R*.
Let us now define for re R*

(16) u(t) =

n— 1
- 1)' j( — 1) '(r)dr + n = 1)'
It follows from (12), (13) and (16) by means of [1] 1.7 and [1] 2.8 that
(17) the function u is n-times differentiable on R*,
(18) u™ =y,
(19) | u(0,) =u(0,) =...=u""20,)=0, u""Y0,)=x,

(20)  u®(1) + Ay w00 + .. + Ay u(t) = oft) + [A1 j o) Alx] N

0o

..+[ T J'( e de +

A,,x] for every teR™,

(1)

e®* Vx| forevery teR™.

@) ol s &+

By (12) and (18) we conclude that
(22) the function 4™ is continuous on R* and bounded on (0, 1).
Further, by (15) and (20)

(23) u®(t) + A, u" V(1) + ... + A, u(t) =0 forevery teR".
Since x € E was chosen arbitrarily, we see that the statement of our theorem is,

with regard to [1] 5.1, contained in (1), (17), (19) and (21)—(23).

2.6 Let Ay, A,,..., A,e L*(E), ne {1, 2,...}. The system of operators 4,, 4,, ...
., A, will be called extensive if there exists a subset Z = E dense in D(4,) N

N D(A4;) n ... nD(A4,), such that for every x € Z, we can find a Duhamel solution
u for the operators 4,, A4,, ..., A, so that u”"~(0,) = x.
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2.7 Theorem. Let Ay, A,, ..., A,€ L*(E), ne {1,2,...}. If the operators A,, A,, ...
..., Ay belong to L(E), then the system Ay, A,, ..., A, is extensive.

Proof. An immediate consequence of 2.5.

2.8 Theorem. Let Ay, A,, ..., A€ L*(E), ne{1,2,...}. If the operators Ay, A,, ...
..., A, are closed and if there exists a set P of operators from L(E) such that
() P?> = P for every Pe B,
(B) the closure of the set {Px : P € B, x € E} contains D(4,) n D(4,) N ... n D(4,),
(v) Pxe D(A;) for every Pe B, xeE and ic{1,2,...,n},
(8) PA;x = APx for every PeB, i€{1,2,...,n} and xeD(4)),
then the system of operators Ay, A,, ..., A, is extensive.

Proof. Since the operators A, A,, ..., 4, are assumed to be closed, we see from
(y) by virtue of [1] 1.11 that

(1) APel(E) forevery PeP and ie{l,2,...,n}.

Using 2.5 we obtain from (1) that

(2) for every x € E and P € B, there exists a Duhamel solution v, for the operators
AP, A,P, ..., A,P such that v§'"V(0,) = x.
Let us now define for Pe P

(3) uP=PUp.

It follows easily from (), (v) and (8) that
(4) for every x € E and P € B, the function up is a Duhamel solution for the operators
Ay, Ay, ..., A, such that u§™Y(0,) = Px.

The extensiveness of the system of operators A,, A,, ..., 4, follows from (B)
and (4).

29 Let Ay, A,,..., A, € L*(E), ne{l,2,...}, and me {0, 1,...}. The system of
operators 4, 4,, ..., 4, will be called subcorrect of class m if
(A) it is extensive, .
(B) there exist two nonnegative constants M, w such that for every Duhamel solu-
tion u for the operators 4y, 4,, ..., 4,, forevery te R* andie {1,2,...,n}

—1—' J‘t(t — )" Au""(z) dt

’mo

2.10 Let A;, A, ..., A,€ L*(E), ne {1, 2, ...}. The system of operators 4,, 4,, ...
..., A, will be called subcorrect if there exists an m e {0, 1, } so that the system
Ay, A,, ..., A, is subcorrect of class m.

é Mewt

.

u(”— l)(0+)
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2.11 Theorem. Let A,, A,,...,A,eL*(E), ne{1,2,...} and me{0,1,...}. The
system of operators A, A,, ..., A, is correct of class m[correct] if and only if it is
subcorrect of- class m[subcorrect] and the set D(A;) "D(A4;) n... nDI(A4,) is
dense in E.

2.12 Theorem. Let Ay, A,, ..., A, € L*(E),ne {1, 2, } If the system of operators
Ay, Ay, ..., A, is subcorrect, then it is also definite.

Proof. Use 2.9 (B).

2.13 Theorem. Let Ay, A,,...,A,eL*(E), ne{1,2,...}, and me{0,1,...}. If
(@) the operators A,, A,, ..., A, are closed,
(B) the set D(4,) N D(4,) N ... n D(4,) is dense in E,
(Y) the system of operators Ay, A,, ..., A, is subcorrect of class m,
then there exists a W € Rt x E - E such that
(a) for every x € E, the function W(.,x) is continuous on R* and
m!
F”//f(t, x) o %
(b) fo(t — )"~ #(r, x) dr e D(4;) for every xeE, teR* and t€{l,2,..., n},

(c) for every x€ E and i€ {1,2,...,n}, the function A; [ (t — ©)'~* #(z, x) dr is
continuous on R™ and bounded on (0, 1),

(d) #1(1, x) +A,f‘W(t,x)dt + AZJ"(I — 1) #(r,x)dt + ...

t m

ee + A,,; (t—o ' #(r,x)dt = " x for every xeE and teR*,
(n—1)J m!

(¢) for every te R*, the function W (1, *) is a linear mapping,

(f) there exists two nonnegative constants M, w so that for every x€ E, te R* and
ie{l,2,...,n}

< M|,

t

”Ai(i _l 0 L(t — 1) #(r, x)de
Proof. It follows immediately from 2.12 that

(1) the system of operators A, A,, ..., A, is definite.
Further, we can choose a dense linear subset Z = E and two nonnegative constants

M, w so that :

(2) for every x € Z, there exists a Duhamel solution u for the operators 4, 4,, ..., 4,

such that «®~1(0,) = x,
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(3) for every Duhamel solution u for operators A,, A,, ..., 4,, for every te R* and

ie{l,2,..}
’mi' ﬁ(: — )" A 0(r) u("'”(0+)“ .

Now we see easily from the assumptions and from (1)—(3) that the hypotheses
of [1] 7.10 and [1] 7.11 are fulfilled. Hence the assertion of our theorem easily
follows.

é Me®!

2.14 Proposition. Let A,, A,,...,A,eL*(E), ne{1,2,...}, me{0,1,...} and
W eR* x E~E If

() the operators Ay, A,, ..., A, are closed,

(B) the conditions 2.13 (a)—(d) are fulfilled,

then for every 1€ {0, 1, ...}

(a) for every x e E, the function (d[dt) [ (t — 1) #7(v, x) dt is continuous on R*
and bounded on (0, 1),

(b) fo(t — )''*! #(z, x) dt € D(A;) for every xe E, te R* and i€{l,2,..., n},

(c) for every x€ E and i€ {1,2, ..., n}, the function A; [o(t — ©)' "' #(z, x)dt
is continuous on R* and bounded on (0, 1),

t t .
@ LA [y wim o+ a5 [ = e oe +
ndt), I'Jo
O A N T
(l+1)'0 (l+n—1)!o

I+m

t
W(t, x)dt =
(e x)de = 1

LX for every xe Eand teR™,
m!

(¢) for every te R™, the function (d/d?) [o (1 — ©)' #'(x, +) dt is a linear mapping,
(f) there exist two nonnegative constants M, w so that for every xe E, te R and
ie{l,2,..,n}

1 ' - prl
AT e e s e

Proof. An easy consequence of 2.13 by means of [1] 1.8, [1] 2.4, [1] 2.7 and [1]
2.9.

2.15 Proposition. Let A, A,,...,A,eL*(E), ne{1,2,...}, me{0,1,...} and
WeR* x E-»E. If
(@) the operators A,, A,, ..., A, are closed,
(B) the system of operators Ay, A,, ..., A, is definite,
(Y) the conditions 2.13 (a)—(d) are fulfilled,
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then for every x e D(A,) nD(A;) n ... nD(A,) and for every t e R*
t t
W(¢, x) + J‘ # (1, A;x)dt + I(t — 1) ¥ (1, A;x)dt + ...
o 0

L1
(n — 1)

Proof. Let us fix an x € Dy(4,, 4,, ..., 4,) and let us put for te R*

t m
J-(t — 1) #(z, 4,x) dT =L
° m!

w(t) = #(t, x) + J:'#’(t, A,x)dt + J.(:(t — 1) W(r, Ayx)dt + ...

1
(n — 1)

A simple calculation using conditions 2.13 (a)— (d) and 2.14 (a)—(d) shows that the
function w has properties [1] 7.10 (1)—(4). Hence by Lemma [1] 7.10, w(t) = 0 for
every te R* and this proves our proposition.

.

t m
I(t — 1) ' # (1, A,x)dt — t—x.
m!

0o

2.16 Proposition. Let A, A,, ..., 4,€ L*(E), ne{1,2,...}, and me{0,1,...}. If
(@) the operators A,, A,, ..., A, are closed,
(B) the system of operators A,, A,, ..., A, is definite,
(Y) there exists a function #" € R* x E — E such that 2.13 (a)—(f) hold,
then )
(a) for every x €D, (A, A, ..., A,), there exists a Duhamel solution u for the
operators Ay, A,, ... ,A, so that

u™=1(0,) = x,

(b) there exists a nonnegative constant x such that for every Duhamel solution u
for the operators Ay, A,, ..., A, satisfying u" V(0,)€D,.4(A4y, 4, ..., 4,)
and for every i€{1,2, ..., n}, the function e *A4,u®?(t) is bounded on R",

(c) there exist two nonnegative constants M, w such that for every Duhamel solu-
tion u for the operators A, A,, ..., A,, for every te R* and everyie {1,2,...,n}

t
#J‘ (t— o A,u" (r)de
+J 0

(d) the set D(A;) nD(A,) N ... nD(A,) is dense in E.
Proof. For the sake of simplicity we shall write
1) N={1,2..,n}.

Further we choose, by assumption (y), a fixed function # € R* x E - E for
which
(2) the conditions 2.13 (a)—(f) are fulfilled.

< Me®|u1(0,)] .
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We begin with proving the assertion (a).

To this aim let us fix an arbitrary x €D,,,(4,, 4,, ..., 4,) and let us write for

teR*

®) u(t) =

- tn—l+a;

Y A x¥
( 1)' a;e!)l (n - l + al)!

tn 1+ay+az

A Ayx — ..o +

mygsm (n -1+ o, + (12)!

+(-)" ¥

ararame (n — 1 + 0y + oy + ... + 0)!

t _ n—1l+a+az+...+amsey—m—1
G e s

al,az,...,am+15m 0 (n - 1 + al + az + .o + a,,,+l - m — 1)! '

tn—l +agtazt...tam

A, x +

aAay - A,

W (1, A, A x)dt.

By means of [1] 1.8 and [1] 2.8 we obtain easily from (3) that
(4) the function u is n-times differentiable on R*,

© w0 =

a+1

ti-1 ti—l+al
x=Y ————— 4, x +
(=1 ad®(i— 1+ a)

ti—1+11+¢z
+ A, Ay x — .o +
a|,azzsm (l -1 -+ g -+ az)! e

. ti—1+a1 +az+...+am
(=" A, Ay, . Ay X +
( ) a,,a;,;,a,,.e‘)t (i -t 1 + al + az + .o + a,,,)! e m

(1 _ t)i—|+u|+az+...+am+|—m—l

+ (_ 1)n+m+1

W (1, Ay Ay, ... Ag,,,1x)dt forevery teR* and ie{l,2,...,n},

- ¢1 1 ta,+1z—l
6 u'™(t) = — X + —_— AalAa X —
( ) () ajeN (al = 1)' ¢|,azze‘ﬁ (a, + ay; — 1)' 2
t¢l+¢2+-~~+¢m‘l
(=D Y Ay Ay, .. Ay x +

@142 y0ee s EmeN (dl ‘o, + ... +a, — 1)'

a;+az+...+am+1—m—l

+ (— 1t

ay,02,. ¢...+1e9l dtJ. (ory + U + e+ Uy —m = 1)
Ww, Ay 4y,

It follows from (2) and (5) that
(7 "~ 10,) = x.

x)dt forevery teR™.

¢m+l

a‘,az,...,a,,.“e‘ﬁ 0 (l - 1 + a] + az + ‘e + ot,,,+l —m — 1)!.
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With regard to the assumptions of our proposition, we see from (2) that Theorem
2.14 may be applied and therefore .

(8) the conditions 2.14 (a)—(f) hold for every I € {0, 1, ...}.
Using the properties 2.14 (b) and (c) with I =i — 1 + ay + oy + ... + opyq —
—m—1,0a,,0,..., 0, €N, we see easily from (5) and (8) that
) u" (1)eD(4;) forevery teR* and ie{l,2,...,n},
(10) the functions 4™~ are continuous on R* and bounded on (0, 1) for every
ie{l,2,...,n},

i-1 ti—-1+a1

Aix
(i — 1)!

(11) A u®(r) = iAaX +

———— A
a,e%(i -1+ al)!
ti-1+a|+¢2
+ AA, A x — ... +
a;,azzem (l -1+ o, + az)! e

ti—l+a1+az+...+am

e (=) A A, ... A
( ) a,,a;,;,amem (l -1+ o + 0y + ...+ am)! i 2

1) ! Z A ! (t - T)i_1+a‘+¢2+'"+am+|-m—l
+ (-1 .- |
( @182 50-- s + 1650 J'O(i_ 14+ay +o0; + ... + pyq —n’l—l)!

X +

am

W (t, Ay A,, ... A,,,, x)dt forevery teR* and ie{l,2,...,n}.
Our next objective is to find out that
(12) u™(t) + A, u" (1) + ... + A, u(t) =0 forevery teR*.

To this aim we first consider the terms of the expressions (6) and (11) except the
last ones. After a simple calculation we verify that

t¢1—1 ta1+az-1
13 - — A, x + — A, A, x — ... +
{3y [ a,ze:w(al - 1) e a,,g,:em (@y + oy — 1)1 %

ta1+¢z+...+a,,.—l
+ (=1)" A, A, ... A, x|+
( ) al,az,;,ame% (al + a2 + ... + oz,,, == 1)’ “ 2 b ]
n ti-l n ti—1+¢1
* Ax — L g
[x‘gl (i-1) i;l a,Xe:‘Jt (i—1+a) '

ti—l+¢1 +az

+;

AA A x — ...
1 ay,a2eN (i = 1 + “1 + az)! ¥ ! 2

n ti—1+a;+¢1+.,.+¢,,._l

+ .. ()" Y

i=1 ay,a2,...,8m-1€N (i — 1 + al + az + ... + am_l)! ’

A A A, ... A

x +

Im—1
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n ti—l+al+az+...+a,,.
(=1 CAA A, A x| =
( ) i;1 a,,az,;,amein (l —14oa +ay+...+ (Zm)! b * ]

tal +ar+t..tam+1—1

- (-1

.

1,82, &m + 1ER (“1 + %y ¥ o5 + U1 — 1)!
forevery teR™.

On the other hand, using the properties 2.14 (b)—(d) with [ = a; + a; + ...
coiF Oy — M — 1, 0y, &g, ..., Gy g € N, We obtain from (8) that for the last term
of (6) and (11) the following identity holds:

d t t—1 aytaz+...tam+1—m—1
(14) ay ,a Za eNn [—j ( )

dt Jo (g + 0y + v + tpyy —m — 1)1

(t _ T)i—l tagtazt..tameg—m—1

n t
W1, Ay Ay, - Ay, x)dT + ) A :
(5 Aue, me i) ,-;1 L(i—l+a1+a2+...+a,,,+l—m—l)!

W (1, Ay Ay, - 4, x)dT =

Im+1

t¢1+az+...+am+1—1

x forevery teR*.

Ay A

Am+ 1

A
a,,az,...,a,.,“em (Otl + az + “en + am+1 - 1)!

Now the identity (12) follows at once from (6), (11), (13) and (14).
The above considerations, namely the points (4), (7), (9), (10) and (12), show that

(15) the function u is a Duhamel solution for the operators A4, 4,, ..., 4, such that
u®"1(0,) = x.
Since x €D, 4(4;, 4,, ..., A,) has been arbitrary, the property (15) shows that
(16) the statement (a) holds.

Let us now turn to the statement (b).
By (8) [2.14 (f)], we can find fixed nonnegative constants M,  so that

1 y i—-1+1 ot t‘
(17) ’lAimL(t ~ 1) #(t, x)dt|| < Me 7 x|

forevery xe E,teR*,ie{1,2,...,n} and 1€{0, 1, ...}.
Let now u be an arbitrary Duhamel solution for the operators A,, A4,,..., 4,
such that ;

(18) U= (0,) €Dpy1(Ay, Ay, ..., 4,) -

Using the definiteness assumption, we obtain from (15) and (18) that
(19) the solution u may be expressed by the formula (3) with x = «®~1(0,,).
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It follows from (11), (17) and (19) that

(20)

-

lawe=o0) 5

i—-1+4+a;

|Am®=1(0,)] +

t

+ S ==

aéﬂ (i - 1 + al)!
ti—1+a|+az .

AA A (n‘l)o .
+¢,,azzem (i —14a + “2)! " iAa g, U ( +)“ +

|44, u™=1(0,)| +

ti- 1+ag+ar+...+am

e |AideiAs, .- A, u®"1(0,)] +

,a;,az,;,amsin (l -1+ oy + o + ... + az,,,)! ’

tul+az+...+zm+1-m-l
+ ) Me** .
@1 ,02 e 2m 4 1€R (@ + 0tz + .o + Oy —m — 1)

) "Aa,Aa, A, u"'"’(O*)” forevery teR* and ie{l,2,...,n}.

Let us now choose

(21) x> o.

Since @ was chosen nonnegative, we obtain immediately from (20) and (21) that
(22) the functions e™*A4; u™~ () are bounded on R* for every ie{l,2,...,n}.

Now an immediate consequence of (22)is, if we take into account the assumption
on the solution u, that

(23) the assertion (b) holds.

Now we have to prove the assertion (c).
To this aim, let  be an arbitrary Duhamel solution for the operators 4, 4,, ..., 4,.
Let us write for te R*

(24) ot) = % (mi' I ;(z N ) df) .

It follows from [1] 2.9, [1] 5.6 and [1] 5.7 that
(25) the function v is continuous on R* and bounded on (0, 1),

t
(26) J‘ (t — )" ' v(r)dr e D(4,) for every te R* and ie{l,2,..., n},
0

t
(27) the functions 4; f (t — ©)"" ' v(r)dr are continuous on R* and bounded
0 .
on (0, 1) for every ie{1,2,...,n},

28) . o)+ Alﬂu(r) dr + AZJ‘(:(I s elide & ..
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for every te RY,

. t t
@) L[ aue@dr= a4, —L1 [ (- or)de
forevery teR* and ie{l,2,...,n}.
It follows from (2) [2.13 (a)—(d)] and (25)—(28) by means of [1] 7.10 that
(30) o(t) = #(t,u""(0,)) forevery teR™.

Taking I = 0 in (17) we can write

(31) ‘A - J' (t — O~ (e, x)dr

" forevery xeE, teR* and ie{l,2,..,n}.

< M e|x|

Now we obtain from (29)—(31) that
t
(32) 1——1—"‘ (t— " A;u (1) dr
m! Jo

forevery teR* and ie{l,2,..,n}.

< M e,

Since the Duhamel solution u examined above was arbitrary we obtain from (32)
that

(33) the assertion (c) holds.
Finally, by (2) and (8), we can apply 2.13 (a) and 2.14 (b) and we easily obtain that

{(34) the assertion (d) holds.
According to (16), (23), (33) and (34), the proof is complete.

2.17 Theorem. Let A,, A,,...,A,eL*(E), ne{1,2,...}, and me{0,1,...}. If
(«) the operators Ay, A,, ..., A, are closed,

(B) the set D, 1(Ay, Ay, ..., A,) is dense in D(4,) N D(4,) ~ ... nD(4,),
then the following two statements (a) and (b) are equivalent:

(a) the system of operators Ay, A,, ..., A, is subcorrect of class m and the set
D(4,) nD(A4,) N ... " D(A,) is dense in E,

(b) the system of operators Ay, A,, ..., A, is definite and there exists a function
# € R* x E — E such that the properties 2.13 (a)—(f) are fulfilled.

Proof. An immediate consequence of 2.13 and 2.16. .
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3. HADAMARDIAN CONCEPTS

In chapter two of book one of his treatise [2], J. HADAMARD introduced different
concepts of correctness for partial differential equations which are mostly very general
or too weak. An abstract variant of these concepts (but not so general) is defined and
studied in the remaining part of this paper.

3.1 Let A}, 4,, ..., A,€ L*(E), ne {1,2,...}. The system of operators 4,, A4,, ...
..., A, will be called exponentially Hadamardian if
(A) it is definite
(B) there exists a constant x such that for every x € D,(4;, 4,, ..., 4,) we can find
a Duhamel solution u for the operators 4;, 4,, ..., 4, for which u®"~(0,) = x
-and the function e™*A4; u~"(t) is bounded on R* for every i€ {l,2,..., n}.

3.2 Let Ay, 4, ..., A, € L*(E), ne {1, 2,...}. In the sequel, we shall consider the
linear space D, (A4;, 45, ..., 4,) as a linear topological space determined by the
following system of seminorms:

IXlal,az....,ad S ”x“ + ”Aa;Aaz Aadx”

for xeDg(A4y, A4z, ..., 4,), de{1,2,...} and aja,...,25€{1,2,...n}.

3.3 Lemma. Let Ay, A,,...,A,€L*(E), ne{l1,2,...}. The linear topological
space D (A, 4, ..., A,) is convex and metrizable.

3.4 Lemma. Let A,, A,, ..., A,e L*(E), ne{1,2,...}. If the operators A, A,, ...
..., A, are closed then the linear topological space D (A,, A,, ..., A,) is a Fréchet
space.

Proof. By 3.3 it is only necessary to prove the completeness of D,,(4,, 4,, ..., 4,).
Hence, let x;, 1€ {1, 2, ...}, be an arbitrary Cauchy sequence in the linear topo-
logical space D (4, 45, ..., 4,).
This implies by 3.2 that
(1) x;, 1e{1,2,...} is a Cauchy sequence in E,
(2) for every de{1,2,...} and ay,a,...,05€{1,2,...,n}, Ay d,, ... Ax; le
e{1,2,...}, is a Cauchy sequence in E.
It follows from (1) that there exists an x € E such that
(3) xi = x (I > x).
It is clear that it suffices to prove that
(4) xeD(Ay, A;, ..., A,) for every de{1,2,...},

(5) for every de{1,2,...} and oy, 0, ...,0,€{1,2,...,n}, AyAy, ... AgXi =
- Ay Ay, ... Agx (I = ).
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To prove this we proceed by induction on d.

First, it follows immediately from the closedness of operators 4,, 4,, ..., 4, that
(6) xeD,(4,, A4, ..., 4,),
(7) for every oy € {1,2, ..., n}, Ay, x; = Ay, x (I = ).

Now we suppose that (4) and (5) are true for some fixed d € {1, 2, ...}. Using this
assumption and the closedness of operators 4,, 4,, ..., 4,, we obtain easily that

(8) x€Dyy4(Ay, A4, ..., 4,),
(9) for every oy, 0z, ..., Qgs1, AgAgy - Ay, X1 = Ay Ay, ... A

clad+y Ad+1 x (l e (X)).
This argument implies that the assertions (4) and (5) hold for every de {1, 2, ...}

and this completes the proof.

3.5 Proposition. Let Ay, A,,...,A,e L*(E), ne{l,2,...}. If the operators
Ay, Ay, ..., A, are closed, then the system of operators A, A,, ..., A, is exponentially
Hadamardian if and only if
(A) there exists a set Z < D(Ay, A,, ..., A,) dense in the linear topological space
D, (A, Az, ..., A,) such that for every x € Z we can find a Duhamel solution u
for the operators A,, A,, ..., A, fulfilling u"~(0,) = x,

(B) there exist two nonnegative constants N, x and a finite sequence q,, q,, ..., 4, €
€{l,2,....,n}, re{l1,2,...}, so that for every Duhamel solution u fulfilling
u®=1(0,) €D (A, Ay, ..., A,), for every te R* and i€ {1,2,...,n}

4,40 20] $ Ne[lu20,)] + [ Ay .- Ag, w0

Proof. “Only if” part.
Let us assume that the system A4, 4,, ..., 4, is exponentially Hadamardian and
let us try to verify the properties 3.5 (A) and 3.5 (B).
The property 3.5 (A) being evident we should only prove 3.5 (B).
To this aim, let us introduce some notation.
First we choose a fixed constant x such that the condition 3.1 (B) holds.
We denote by Q the linear space of all functions fe R* — E such that
(1) fis n-times differentiable on R,
(2) f™ is continuous on R* and bounded on (0, 1),
(3) f"~"(r)eD(4;) for every te R* and i€ {1,2,...,n},
(4) the functions 4, f*~? are continuous on R* and bounded on (0, 1) for every
ie{l,2,...,n},
(5) the functions e™*A4;f®~?(t) are bounded on R* for every ie{l,2,..., n}.
The space Q will be equipped with the following system of seminorms:

(6) flo = sup ™| 4.7~ 0)]
) e = sup (FO + Lr@] + .. + o] +
+ A SO + AP + -+ |4 (@)} for T>0.
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Clearly
(8) Qs a linear topological space.

Moreover, it is almost evident that
(9) the linear topological space Q is convex and metrizable. :

Now, utilizing the assumed closedness of the operators A4,, 4,, ..., 4, we obtain
easily that
(10) the linear topological space Q is complete.

Hence, by (8)—(10), we can state that
(11) the space Q is a Fréchet space.

After these preparatory constructions, we can define, in virtue of the properties
3.1(A), (B), a linear transformation U €D, (A4, 4,,...,4,) - Q in the following
way: °
(12) for x € D(4;, A,, ..., A,), we denote by Ux the unique Duhamel solution u

for the operators A, 4,, ..., 4, fulfilling

u®~10,) = x.

Using the assumed closedness of the operators Ay, 4,, ..., 4, we deduce easily
from the properties defining the spaces D, (4, 4,, ..., 4,) and Q that
(13) the operator U is closed as a transformation of the linear topological space
D, (A, 4, ..., A,) into the linear topological space Q.
Applying now the closed graph theorem 1.4 we get from 3.4 and from (11) and (13)
that
(14) the operator U is continuous as a transformation of the linear topological
space D (A4, A,, ..., A,) into the linear topological space Q.
The required property (B) is an immediate consequence of (14).
The proof of the “only if”” part is complete.
The “if” part.
Now we suppose that the conditions 3.5(A), 3.5 (B) hold and we try to prove
3.1(A), (B).
Since the property 3.1 (A) is an immediate consequence of 3.5 (B), it remains in
fact to prove only 3.1 (B).
To this aim let us choose

(15) x €D (Ay, Az, ... A).

Further, we choose fixed nonnegative constants N, », a number re {1, 2, }
and a finite sequence gy, 45, ..., 4, € {1, 2, ..., n} so that 3.5 (B) holds.
Now it is easy to conclude from 3.5(A), 3.5(B) that there exists a sequence
u,eR* > E, le{1,2,...} so that
(16) for every I € {1, 2,...}, the function u, is a Duhamel solution for the operators
Ay Ay, . L A,
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(17 u" '0,) € D (A, Az, ..., 4,) forevery le{l,2,...},
(18) u* (0,) » x (I > ),
(19) Ay Agy - A" 0(04) > A A, ... Agx (1> )
for every de{1,2,...} and oy, o5, ..., 056 {1, 2, ..., n},
(20) s ut™2(0) — 4,0 <

< Ne[[uff™2(04) — uf;™P(0.)] + [AgAg, --- 45l 2(04) — uf™P(0,))[]

forevery teR* and ie{l,2,...,n}andl, l,e{1,2,...}.

It follows from (20) that
(1) [4() — uP()] < nNe[[ult™D(0,) — u~D(0,)] +

+ || AgAg, .. Ag (ull™V(0,) — ufy” 0,))|] forevery teR*andly, L e{1,2,...}.

Now using [1] 2.10, we obtain from (21) that
(22) [4iP() — w2 =

< [nNe"' & 1] [uss~2(0,) — ult=(0,)] +
(n = J)!
+ [AgAy - A (w7 0(0.) — ui™P(0,))]]

for every te R*, je{0,1,...,n} and Iy, 1, €{1,2,...}.
It follows from (18), (19) and (22) that there exists a function u € R* — E such that

(23) ut) > u(t) (I » o) forevery teR™.

Since the operators A4y, 4,, ..., 4, are assumed to be closed, it is easy to obtain
from (18), (19), (22) and (23) by means of [1] 2.6 that u is a Duhamel solution for the
operators Ay, A, ..., A, such that u”~(0,) = x and this was to prove.

The proof of ““if’ part is complete.

3.6 Remark. The exponential Hadamardian property is related with the Hadamard
notion of “‘correctly set” problem (cf. [2], p. 4)1. Since it does not involve the class of
correctness, it is interesting to study its relations with the notion of correctness.

In the sequel, we prove that correctness always implies exponential Hadamardian
property, but as to the converse we are able to get it only under strong a priori restric-
tions on operators 4,, 4,, ..., 4, as shown in the section 5.

It should be said that a more general property would be adequate to the (roughly
described) Hadamardian notion of correctly set problem, i.e. it would be necessary
to replace the property 3.1 (B) by
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(B’) for every x €eD,(4;, Az, ..., 4,), there exists a Duhamel solution u for the
operators Ay, A, ..., 4, such that u®*~1(0,) = x.
Such systemrs will be called Hadamardian.
It is easy to see that every exponentially Hadamardian system is also Hadamardian.

3.7 Theorem. Let A,, A, ..., A,e L*(E), ne {1,2,...}. If
(o) the operators A,, A,, ..., A, are closed,
(B) the set D(A;) nD(A;) N ... "D(A,) is dense in E,
-(Y) the system of opert’;tors A, Ay, ..., A, is subcorrect,
then this system is also exponentially Hadamardian.

Proof. An immediate consequence of 2.9, 2.10, 2.12, 2.13 and 2.16.

3.8 Example. There exist a Banach space E and an operator A € L*(E) so that
(a) the operator A is closed,
(b) the system 'of operators 0, — A is subcorrect of class zero,
(c) the system of operators 0, A is definite,
(d) the system of operators 0, A is extensive,
(¢) the system of operators 0, A is not exponentially Hadamardian and con-
sequently also not subcorrect. '

Proof. Let
(1) E = L,(0, )
and assume that the operator A4 is defined as follows:
(2) x eD(A) if and only if x € E, x(0,) = x(1_) = 0, x is differentiable on (0, =) and
there exists a y € E so that for every 0 < &, < &, < =, there is x'(¢;) — x'(¢,) =
= [§ y(n) dn; then Ax = y.

It is easy to prove by elementary means that the assertion (a) holds.

Let us now denote )

(3) eé) = (2/n)"?sin k¢ forevery 0 < ¢ < mand ke {1,2,...},

(4) Z = {oyey + aze; + ... + ey Ay, 05,...,4€C, ke{l,2,...}}.
It is easy to prove that

(5) ex€D(A) and Ae, = k?e, for every ke {1,2,...},

(6) the sequence ¢, k€ {1, 2, ...}, is orthonormal,

(7) the set Z is dense in E .

Now the assertion (b) can be derived easily from (5)—(7) by means of Fourier
series developments.

The assertions (c) and (d) follow from (5)—(7) by means of 2.3 and 2.8 or simply
by direct verification.
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Since D,(0, 4) = N D(A"), we prove easily that
r=1

{8) Z is a dense subset of the Fréchet space D,(0, 4).

Further, let us denote
(9) u,(t) = sinh kt ¢, for every te R* and ke {1,2,...}.

It is obvious that
(10) for every k € {1, 2, ...}, the function u, is a Duhamel solution for the operators
0, A such that u{" V(0,) = &.

We see from (4) and (8)—(10) that the condition 3.5 (A) is fulfilled. But it is an
easy matter to show by means of the sequence u,, k € {1, 2, ...}, that 3.5 (B) cannot
be fulfilled due to the exponential growth of hyperbolic sinus.

Hence the system 0, A cannot be exponentially Hadamardian and, by 3.8, not even
subcorrect.

But this says that (e) holds.

The proof is complete.

It remains to prove (e).
Lo}

3.9 Remark. The above example 3.8 is a somewhat elaborated version of the
famous example of a non-correctly set problem, given for the first time by Hadamard
in 1917 (cf. [2], pp. 33 and 37).

4. SOME AUXILIARY RESULTS

This section collects some mostly known results on polynomials, on solutions of
ordinary differential equations with constant coefficients and on normal operators
in Hilbert spaces which will be necessary in Section 5.

4.1 Let ay,a;,...,a,€C, ne{l,2,...}, and ¢ e R* - C. The fuuction ¢ will
be called a standard solution for the numbers a,, a,, ..., a, if

(1) the function ¢ is n-times differentiable on R,

(2) the function ¢™ is continuous on R* and bounded on (0, 1),
(3) ¢™(t) + a, @™ V(1) + ... + a, ¢(t) = 0 for every te R*,
4) 9(04) = ¢'(04) = ... = " 2(0,) = 0, " V(0,) = 1.

4.2 Lemma. For every a,,a,,...,a,€C, ne {1, 2, }, there exists a unique
standard solution ¢ for the numbers a,, a,, ..., a,.

Proof. Well-known result which is also an immediate consequence of 2.2 and 2.5.

4.3 Lemma. Let ay, a,,...,a,€C, z4,2,,...,2,€C, ne{l,2,...}, ® a real
constant and g e R* - C. If
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(@) 2"+ a2z +...+a,=(z - 2)(z — z3)...(z — 2,) for every z€ C,
(B) Re z; < w for every ie{1,2,...,n},

(Y) the function ¢ is a standard solution for the numbers ay, a,, ..., a,,
then

(@) |o(r)] = 3%(1 + 1)" e* for every te R*,

(b)

- 1)'J.( — 1) p(r)dt| £ 3(1 + t)" e for every te R* and i€
e{l,2,...,n}.

Proof. We proceed by induction on n.

The case n = 1 is verified by a simple calculation.

Now let us assume the estimates (a), (b) take place for n — 1, n > 1 and try to
prove them for n.

To this aim, we need some preparatory considerations.

By Fundamental Theorem of Algebra, we can find numbers « € C and by, b,, ...
...y b,_; so that

(1) "ta i ta,=(z—a)( + b2 4+ byy)
forevery zeC.

For the sake of simplicity we shall write
(2) bo = 1 .
It is easy to see from (1) and (2) that

(3) a; = bl - abo, a, = bz — abl, veey Bpqg = bn—l = abn_z, a, = —ab"..|
Let now
4) Y be a standard solution for the numbers by, by, ..., b,—; .

It is an easy matter to prove using (1) and (4) that
t
(%) o(t) = j e I Y(r)dr forevery teR™.
W]
Using (5), we obtain easily the following identities:
t ' t T
(6) iJ' (t — )P o(r)dT =J‘ et —l—j (r — 6)?Y(0) do dr
P'Jo 0 pJo
forevery teR* and pe{0,1,...},

7 o J"go(t) dt= J"(e’(“') — 1) y(r)dr forevery teR™,
0 0
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1
(p + 1)

® o J' (:(t — Pt p(r) dr = J ;(e"‘("" 1) # J‘ (:(1: — oV ¥y dods

forevery teR* and pe{0,1,...}.
On the other hand, we have by induction hypothesis that

) [W()| S 3" '(1 + 1"~ 'e** forevery teR*,

(10)

L ‘ L y(r)de
bjU——TﬁJo(t—T) ¥(z)d

é 3n—l(1 + t)n—l ewt

forevery teR* and je{l,2,..,n—1}.
The desired estimates are now simple consequences of (2), (3) and (5)—(10).

4.4 Lemma. Let a,, a,,...,a,eC, ne{l,2,...}, and ¢ e R* - C. If the
function ¢ is a standard solution for the numbers a,, a,, ..., a,, then

(a) |(p”’(t)| < et tmaxUablazl e for opery te RY and je{0,1,...,n — 1},
(®) |e™(1)] < |ay| et FrxUerlloallanb for opery e RY.

Proof. Using the properties 4.1 (1) —(4) we obtain easily the following two iden-
tities:

(1) " V()=1- aljt¢‘"“‘)(t) dr — aZJ‘t(p("'z’(t) dt — ... — a,,J”(p(t) dr,

O e e j}m@ Y ST S

forevery teR*.

The identities (1) and (2) give the estimates

(3) l(p“‘“’(t)] <1+ max(lall,az|,..., |a,,|)J:(|go(1:)| + |<p’(1:)| + ...+ |(p("'”(t)|)d1:,

t
(@) |e™(0)| < |a,| + max (|ay|,|as],..., la,,l).[ ('@ + |e"@)| + ... + [e™(z)]) d=
o
for every teR™*.
Using the inequalities (3) and (4) we see easily that

() le(®)] + |e'(®)] + - + |02 + |~ 2(1)] =

I l:(p'(r) dt J:(p”(r) def + ... + I j ;qa("“”(r) dt

- " + Jot0) 3
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< '[:|(p'(t)| + f(:|(p"(t)| dr + ... + J(:I(p"'"z’(r)| dr + J-(:l(p"'“”(t)| dr +
+ 1 + max (|ay), |as), ..., la,l)J;(|¢(1)| + @' (@)] + ... + e V()| dr =
<1+ [0+ max (fag], |ag]s .. Jau])] ﬂ(|<p(r)| F @] + . + |0 2] +

+ o "(x)) d7,

© 6101+ 00+ - + 0 00] + o) -
= J‘¢”(1) dt| + J-t(p"l(‘l’) def + ... + J"(p(")(‘c) dr| + |o"(1)] £

t
éJ’
0

+ |ay] + max (Jay], |as) ... |as]) j (19 +

t t
o'(7)| d7 + j' le”(z)|dr + ... + j le™(z)| dr +
0 1]

() + ... + l(p(")(r)l) dt <

t
< lay| + [1 + max (|ay], |az), ..., lanl)]J (o' @)] + |o"@)| + ... + |0 V(z)] +
0
+ |¢™(z)| dr for every teR™.
The inequalities (a), (b) follow immediately from (5), (6) by means of 1.2.

4.5 Lemma. Let ay, a,,...,a,€C,ne{l1,2,...},zeCand pe R* - C. If
(@) 2"+ a,2" ' +... +a,=0,

(B) the function ¢ is a standard solution for the numbers a,, a,, ..., a,,
then for every te R*

e =[o" V() + a, 0" P(1) + ... + a,-, 9(t)] +
+ z[e" () + a, 0" V() + ... + @, 0()] + ... +
+ 2" [@'(1) + a, o(1)] + 2" (7).

Proof. Let us denote the right hand side of the identity to be proved by y(t).
Now we have

(1) (1) — z9(t) = [@™(t) + a, 0" t) + ... + a,_, ¢'(1)] —
= z[e" V() + a, ") + ... + a,—; 9(1)] +
+ z[o" V(1) + a; " () + ... + a,-, ()] —
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— 22" (1) + a; 0" (1) + ... + ap_ 0()] + ... +
+ 2" ?[@"(t) + a; '(1)] — " '[@'(1) + a, o(1)] +

+ 2" '(f) — 2" o(t) =

= [o™(t) + a; 0" V(1) + ... + a,—, @'(1)] —

— [+ a2 + ...+ a,_yz] @(t) forevery teR".

Since by assumptions () and ()
() + a; " V() + ... + a,_y @'(1) = —a, (1),
"+az2"'+...+a,_z+a,=0
we see immediately from (1) that
(2) Y'(t) — zy(1) =0 forevery teR".
On the other hand, it is easily verified that
() §o,) = 1.

Now we prove without difficulty from (2) and (3) that for te R™

e —yY(t) -z J:(e“ - Y(r))dr =0

and consequently
t

(4) ]e" - t/l(t)l < |z]J‘ Ie" - l[l(‘t)l dr forevery teR*.
(1]

Now it suffices to apply 1.2 and it follows from (4) that ** — y(f) = 0 for every
te R* which was to prove.

4.6 Lemma. Let ay, a,,...,a, by, by, ....,b,eC and o,y eR* > C. If ¢ is
a standard solution for the numbers a,, a,, ..., a, and Y for the numbers by, b,, ...
..., by, then, writing

K = max (|ay], |a), ..., |a)
L = max (|by], |bs], ..., |ba]) »
6 =max (Ja, — by|, |ay — by, ..., |a, — b,]),
we have for every te R* and je{0,1,..., n}

|(pm(t) _ |p(j)(t)| < 5(1( + 1) 3 +K+Lent
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Proof. By [1] 2.10 we can write for every te R*

1) o) +.a, J:co""(f) dt + ... + 7 _"1)! J (6 — 9 o) dt = —ay ,

2) ¥ + b, J‘;w(n)(t)dr + o+ o by 1)vf (t = o " y™(r)dr = —b, . |
It follows from (1) and (2) that for every te R*
®3) @™(t) — '/’(")(‘) = —(a, = by) -
- I:(a1 - by) J:lp(")(t) dt + ... 1)' f(t — " ™) dr]

- [b, J‘ '((p(")(r) —¢y"(r))dT + ... + _"l)!

Moreover, we have by 4.4 (b) for every te R™

J‘ (=7 (670~ ¥() dt].

@ o(0] = Ke 5.
It follows from (3) and (4) that for every te R*
5 7(0) - ww(t)l <

<6+ é[J:ltp(")(r)l dr + ... + ( 1)' j (t — 7! |o™(7)| dz]
L[ ‘[ ;|¢<~>(z) — YD) de + .

- f (6= o) (0] e 5

<6+ 6[t max |(p(")(‘r)| .+ £ max |(p("’(1:)|] +
nlo<z<t

0<t<t

L[ ﬂ|¢<~>(z) )| dr .. J' o) — W) dt] <

1)'

< 6 + de' max (|<p""(1:)|) + Le‘J. |qo(")(t) - w(")(‘r)| dr £
0<t<t 0
t
<6 + de'Ke' TRt 4 Le‘j le™(z) — ¥™(z)| dr <
0

»
S H(K + 1) e+0r 4 Le'J~ le®(z) — ¥(z)| dr.
0

Applying now 1.2 to the inequality (5) we obtain immediately for every t e R*
(6) lq,(n)(t) - 'l‘(")(')l < 6(K + 1) (2 +K+Let)t
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Now the desired inequality follows easily from (6).
4.7 The system of all Borel subsets of C is denoted by #(C).

4.8 Lemma. Let a,,a,,...,a,eC—> C, ne{l,2,...}, and me R* x C - C. If
(o) the functions ay, a,, ..., a, are Borel measurable,
(B) for every se C, the function m(-,s) is a standard solution for the numbers
ay(s), ay(s), ..., a,(s),
then for every te R* and je{0,1,...,n}, the functions m?(t, -) are Borel
measurable.

Proof. It follows from () that there exist a sequence X, k € {1, 2, ...}, of Borel
subsets and a sequence K;, k € {1, 2, ...}, of nonnegative constants such that

(1) UX" = C,
k=1
(2) |ai(s)| <K, forevery seX, and ie{l,2,..,n}.

Let us now fix te R and ¢ > 0.
We take for ke {1,2,...}

(3) 3 :

= (Kk + 1) e(3+K|¢+K|‘e‘)t :
By (), there exists for every k e {1, 2, ...} a subset 4, = %(C) such that
(4) , U4, = X,,
(5) forevery ie{l,2,...,n}, Xed, and s, s5,€X,

we have |a,~(s,) - a,.(sz)| < 6.

Now we use 4.6 with & = §,, K = L = K, for every ke {1,2,...} and we obtain
from (B), (2), (3) and (5) that

(6) for every je {0, 1, e, n}, X e 4, and s,, s, € X, we have

[P, 51) = miP(1, )] S BK + 1) e TRRON <

Let us now denote 4 = | 4,.
k=1

Then by (1), (4) and (6)
7 Ud==cC,
(8) forevery je{0,1,....,n}, Xed and s,,5,€X, wehave

|m$”(t, s;) — my(t, sz)[ <e.

Since te R* and & > 0 have been arbitrary, the assertion of our lemma follows

immediately from (7) and (8).
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4.9 A Banach space E will be called Hilbert space if |x + y|* + |x — y|* =
= 2(|x|? + |y|?)forevery x, y € E. In a Hilbert space E we introduce the so-called
scalar product {x, y) for every x, y € Ein the following way: <x, y> = #[|x + y||* —
— |x = »||*] in the real case, <x, y> = [||x + »|* — |x — ¥||* +i|x + iy
- inx - iy||2] in the complex case. This scalar product has the usual well-known
properties. The notion of the adjoint operator A* to an operator A € L+(E) is intro-
duced in the usual way.

2.—

4.10. In the sequel we always suppose that E is a complex Hilbert space.

4.11. An operator ‘A € L*(E) is called normal if A4* = A*A.

4.12. Let & € #(C) — L(E). The function & is called a spectral measure if £(C) = I,
#(X) is an orthogonal (symmetric) projector for every X e #(C), #(XU Y) =
= &(X) + &(Y) — (X n Y) for every X, Ye #(C) and &(X,)x — 0 for every

k— 0

x€ E and every nondecreasing sequence X, € #(C), ke {l,2,...}, such that

6Xk = 0.

k=1

4.13. Lemma. For every spectral measure & in E, an integral calculus can be
developed (see [4, Chap. VII] and [5, Chap. XVIII]). The elementary rules of this
calculus will be frequently applied in Section 5 and we refer to them by quoting
this point.

The following facts are particularly important
(a) |#(+) x||* is a nonnegative measure on #(C) for every x € E,

(b) if f is a Borel measurable function from C — C, then for some xe E and
X e #(C):
J f(s) &(ds) x exists if and only if f |£(s)|* |&(ds) x|* and
b's x

| f FOLCE e j O fotas)x|

4.14. Lemma. Let A € L*(E). If the operator A is normal, then there is a unique
spectral measure & such that

(I) x € D(A) if and only if [c s&(ds) x exists,
(IT) Ax = [¢ s &(ds) x for every x € D(A).

Proof. See [4, Chap. VIII].

4.15. Let Ay, A, ..., A€ L*(E), ne {1, 2,...}, be normal operators. This system
. is called abelian if the corresponding spectral measures &,, &,,..., &, (cf. 4.14)
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are commutative, i.e. &(X;)&(X)) = &(X,) 6(X,) for every X,,X,e %(C),
i,je{l,2,..,n}.

4.16. Lemma. Let A, A,, ..., A,e L*(E),ne {1, 2, ...}. If the operators A, A,, ...
..., A, are normal and this system is abelian, then there exists a spectral measure
& € #(C) —» L(E) and Borel measurable functions a,, a,, ...,a,€ C > C so that
for every ie{1,2,...,n}

(I) x e D(A,) if and only if [ as) &(ds) x exists,
(1) A(x) = [c as) &(ds) x for every x € D(4;).

Proof. See [4, Chap. X, especially § 3].

5. ABELIAN SYSTEMS OF NORMAL OPERATORS IN HILBERT SPACES

In this section, we shall study linear differential equations in a Hilbert space over C
whose coefficients form an abelian system of normal operators. In particular, we
show that in this class of operators, the exponentially Hadamardian systems are
correct.

5.1 Theorem. Let A,, A,, ..., A, e LY(E), ne{1,2,...}. If
() E is a Hilbert space over C,
(B) the operators Ay, A,, ..., A, are normal,
(Y) the system of operators, Ay, A,, ..., A, is abelian,
then the system of operators Ay, A,, ..., A, is definite.

Proof. Let us choose by 4.16 Borel measurable functions ay, a,, ..., a, and
a spectral measure & so that 4.16 (I), (II) hold.
Let us now define for ke {1, 2,...}

1) S ={s: |a‘(s)| < k forevery ie{1,2,...,n}}.

It is clear that the sets S, are Borel measurable for every k € {1, 2, } and hence
we can take

@) Py = &(S,) for ke{l,2,..}.

It follows from 4.13 that the assumptions of 2.3 are fulfilled and hence the statement
is true.

5.2 Theorem. Let Ay, A,, ..., A,€ L*(E), ne{l,2,...}. If the assumptions
5.1 (x)—(y) are fulfilled, then the system of operators A,, A,, ..., A, is extensive.

Proof. Let us choose by 4.16 Borel measurable functions a,, a,, ..., a, and
a spectral measure & so that 4.16 (I), (II) hold.
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Let us now define
(1) & =.{S: S e B(C), the functions a,, a,, ..., a, are bounded on S} .

Now we take
@) P ={6S):Se ¥} .

It follows from 4.13 that the assumptions of 2.8 are fulfilled and consequently the
statement is true.

5.3 Remark. We see immediately that the preceding Theorem 5.2 gives more,
namely, under the assumptions of 5.2, the Duhamel solutions exist in fact for initial
data from a dense subset of E.

5.4 Theorem. Let Ay, A,, ..., A, e L*(E), ne{1,2,..}. If
(o) E is a Hilbert space over C,
(B) the operators Ay, A,, ..., A, are normal,
(Y) the system of operators Ay, A,, ..., A, is abelian,
(8) the system of operators A,, A,, ..., A, is exponentially Hadamardian,
then this system is correct (of class n — 1).

Proof. It follows froni 5.1 that

(1) the system of operators A,, A,, ..., 4, is definite.
Further, by 5.2

(2) the system of operators A,, A,, ..., 4, is extensive.
With regard to (2), it suffices to prove that

(3) the condition 2.9 (B) is satisfied.

To prove (3), we need a series of preparatory considerations.

First, using 4.16, we obtain from (o) — () that there exist functions a,, a,, ..., a, €
e C - C and a function & € #(C) - L(E) so that

(4) the functions a,, a,, ..., a, are Borel measurable,
(5) the function & is a spectral measure,

(6) forevery ie{1,2,...,n}, xeD(4;) ifand only if J‘ as) &(ds) x exists,

C

(M Ax = J‘ a(s) &(ds)x forevery ie{l,2,...,n} and xeD(4,).
c

By 4.13, we obtain from (4)—(7) that
(8) &(X)A; £ A;8(X) forevery ie{l,2,..,n} and Xe%(C).
Let us now denote

) & ={X:Xe%(C), thefunctions ay,a,,...,a, arebounded on X}.
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By 4.13, we obtain from (4)—(7) and (9) that
(10) 6(X)xeD,(Ay, A;,...,A,) forevery xeE and Xe &,

1/2
1) [Audy, .. Auy 6(X) x| = [ '[ 10,,(5) @y(s) .. aui(s)|? [ €(ds) x||z]
X
forevery xeE, Xe¥, de{l,2,..} and oy, ...,25€{1,2,...,n},

(12) there exists a sequence X, € &, v = {1,2, ...} such that X, = X, for every
ve{l,2,..} and U{X,:ve{1,2,..}} =C

On the other hand, by 4.2 there exists a unique function me R* x C — C such that

(13) for every se C, the function m(+,s) is a standard solution for the numbers

ay(s), ay(s), ..., a,(s).
Using 4.8, we obtain from (4) and (13) that
(14) the functions mij(t, -) are Borel measurable for every te R* and je
€{0,1,...,n}.
Further, using 4.4 we obtain from (9) and (13) that
(15) for every X € &, there exists a constant K so that for every te R*, se X and
je{0,1....,n}
Imﬁj)(t, s)l < KeX',
By 4.13, we obtain from (13)—(15) that

(16) for every x € E and X € &, the function [x m(, s) &(ds) x is a Duhamel solution
for the operators A, A4,, ..., A, such that

( f e ) 8(0) ) o E(X) x,
(17) dit’j Lm(r, ) &(ds) x = ngﬂ(t, Jldsx For every

teR*, xeE, Xe¥ and je{0,1,...,n},

(18) 1 'f( — A, dn_i(j m(z, s)a(ds)x>dr=

(n —l)' dt"
=\ a

I (S) ~ 1)
teR*, xeE, Xe& and ie{l,2,..,n},

= [[ 1m0 9 peten ]

forevery teR*, xeE, Xe% and je{0,1,..,n},

J (t — ©)'"' m(z, s) dr &(ds) x for every

(19) J‘ 0,9 6(0)
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(20) (S)

J (t = 1)~ ' m(z, s) dt &(ds) x

(Gl

_[ ) ; l),J(:—r)' tm(z, s) dz ll«f(ds)xH’]

for every teR*, xeE, Xe ¥ and ie{l,2,...,n}.

Our next purpose is to establish some estimates of growth of the function m.
It follows from Theorem 3.5 that we can fix two nonnegative constants N, x,
a number re {1, 2, ...} and a finite sequence ¢y, g5, ..., g, so that

(21) for every Duhamel solution u for the operators A, A,, ..., A, such that
u"(0,) e D,(A4y, A, ..., 4,), for every te R* and every ie{l,2,...,n}

|4 2(0)] < Ne“[[u=2(0.)] + |4g,4,, -
Since for every te R*
u™(1) = —[A; u® (1) + A, u""2(1) + ... + 4, u(1)],
for every te R* and ke {0,1,...,n — 1}

m J:(t — 1) R y™(7) de +

and for every te R*, 6 > Oand 1€{0, 1, ...}

tulk

(1R

u("’(t) - ur= l)(o )

we deduce from (21) after a simple calculation that

(22) for every Duhamel solution u for the operators A4,, A,,..., 4, such that
u®=10,) € Do(4y, 4y, ..., 4,), for every teR*, je{0,1,...,n} and 6 >0

[uP()] = —("N + 8) e [u=D(0,)] + [[Ag Ay, - 4g u V(0]
It follows from (1), (10), (16), (17) and (22) that

(23) j ) m?(t, s) &(ds) x|| <

S =5 (N + 8) €800 x| + g Ay, . 4y 50 5[]

forevery teR*, xeE, Xe¥ and je{0,1,...,n}.

Now (11), (19) and (23) give, with regard to the inequality (a'/? + b'/%)? <
S2a+b)foraz0,b20
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1/2
@) [ e lo@) = 5 oz an + o e (| ot o2)” +

IIA

([ Jout ) - a0 Jot@) f7) "
2

= 5200 (nN + 6)? ezix+a)zj 1+ |"q.(s) a,(s) ... "q,(s)lz) ||$(ds) x"z <
X

S S (o + 3 2o I (1 (9 ) - 2, O @) x|

forevery teR*Y, xeE, Xe& and je{0,1,..,n}.

Let us now define for 6 > 0,te R* and j€ {0, 1, ..., n}
(25) Njoj= {s :seC, Imﬁj)(t, s)l >
> —\/—2— (nN + 8) e**P1(1 + Ia (5) ag,(s) ... a (s)l)
5,,_,' q1 92 R ’

It is clear from (14) and (25) that

(26) the set N, ; is Borel measurable for every 6 > 0, te R*-and je {0, 1,..., n}.
Let us now put for 6 > 0

(27) Ny = U{N,,;:teR*, trational, je{0,1,..., n}}.

We see from (26) and (27) that

(28) the set N, is Borel measurable for every é > 0.
It follows from (13) (the continuity of m{’( -, s) follows by 4.1), (25) and (27) that

(29) CN, = {s P, )| <

= 5(\'{%1') (nN + 6) e**9(1 + [aql(s) a,(s) .. aq,(s)l)

forevery teR* and je{0,1,..., n}} forevery 6 > 0.
Now we need to prove that
(30) &(N;) =0 forevery 6>0.

It is seen from (12) that it is sufficient for the validity of (30) to prove that
&(N;) 8(X)x = Oforevery d > 0, xe E and X € &, i.e. that

(31) 6(N;nX)x =0 forevery 6 >0, xeE and Xe&.
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On the contrary, suppose that (31) is not true. Then there exist 6 > 0, x € E and
X e & so that &(N; N X)x % 0. Consequently, by (27) we can find te R* and
je{0,1,...,n} so that

8Ny, N X)x % 0.
Hence by (25)

j ImP(e, 5)|? [ £(ds) x| >
Ng,e,jnX

> Ez—(_ftl—) (nN + 6)% ex*o¢ J.N 1+ |aql(s) a,(s) ... a,(s)|) ué’(ds) x|2.

8,6,5nX

Since N;,; N X € & by (9) and (26), the last inequality obviously contradicts (24)
and this proves (31).

The statements (29) and (30) represent the needed growth properties of the func-
tion m and will now be used to estimate the roots of the characteristic polynomial.

By Fundamental Theorem of Algebra, there exist functions z;, z,,...,2,€ C = C
such that

(32) "+ ays) "+ ..+ as) =
= (z — 24(5)) (z — 22(5)) ... (z — z,(s)) forevery s,zeC.
Applying 4.5 to (32) we obtain easily
(33) | e < (1 + |z(s))" 1 (1 + |ay(s)| + |ax(s)| + --.
T+ |a,—1(s)]) (|m(t, 5)| + |m'(z, 5)| + ... + |m{"~ (e, 5)|)

forevery teR*, seC and ie{l,2,..,n}.

We get from (29) and (33)
(34) - e""‘(”.' = [ = (1 + |zs))" 1 (1 + |ay(s)| +
+ [ax(s)] + oo + |ay-s($)]) v2 (5i tlob (1;) (nN + 3).

L XTI 4 a, (s) ay(s) ... aq,(s)l) =

=t Va (G et )N O el

1+ |ay(s)| + |ax(s)| + .- + |a(s))) (1 + |a,,(s) ag,(s) - . aqr(s)|)]
' forevery teR*, 6>0 and seC\N;,.
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Since the member in the last brackets does not depend on ¢, it follows immediately
from (34) that

(35) Rez(s) <%+ 6 forevery 6 >0 and se C\N,.
Let us now put

(36) N=U{N;:ke{l,2,..}}.
It follows from (30) that

(37) &(N)=0.
On the other hand, by (35) and (36)

(38) Re z{(s) £ » forevery seC\N.

The last results (37) and (38) allow us to estimate the growth of a general Duhamel
solution which is our task from (3).

However, to this aim we need still an auxiliary result, namely

(39) for every Duhamel solution u for the operators

Ay, Ay, ..., A,, every teR* and ie{l,2,...,n}

J (t = ot = 9(0) e

=

_ 1)!
J‘(t — ) o, B

a()

ror=s

To prove (39) let u bé an arbitrary Duhamel solution for the operators
Ay, Agy ooy A,

By (12), we can choose a sequence X,. ve {1, 2, ...} such that
(40) X, e & for every ve {1 2,...}, X, S X,y, for every ve{l,2,...} and
U{X ivefl,2,..}} =
(41) é&(X,)x > x (v—> ) forevery xekE.
By (16), (18), (20), (40) and (41), there exists a sequence u,, v € {1, 2, ...}, such that

(42) for every ve {1, 2, }, the function u, is a Duhamel solution for the operators
Ay, A,, ..., A, such that

u(v"_l)(0+) = &(X,)u""1(0,).

J' (t — O A, u(x) de

”é”(ds) u" 1’(0 )"z]

(43)

1)'
=[[ et 25, [ = 9 me o otas w2, el
=

forevery teR*, ie{l,2,...,n} and ve{l,2,...}.

267



On the other hand, we establish easily by means of (8) that
(44) for every ve{l,2,...}, the function &(X,)u is a Duhamel solution for the
operators A,, 4,, ..., 4, such that (#(X,) u)"~(0,) = &(X,) u"~1(0,).

Now we get from (1), (42) and (44) that

(45) u, = 8(X,)u forevery ve{l,2,...}.

It follows from (43) and (45) that

f (:(t A, 6(X,) uO(e) de

) o=

forevery teR*, ie{l,2,...,n} and ve{l,2,...}.

[6(as) u<~-“<o+>u=]"’

By (8)

(@) !

(n = 1)
- g(x,)[

j (1 = =1 A, 8(X,) u® 9(x) dr =

— f (t = Pt A;u- "(r)dt]

for every teR*, ie{l,2,..,n} and ve{l,2,..}.

Letting v — oo, we see easily from (40), (41), (46) and (47) that (39) is valid.
Using Lemma 4.3 we see from (13), (32), (38) and (39) that (48) for every Duhamel
solution u for the operators Ay, 45, ..., 4, every te R* and i€ {1,2, ..., n}

< 31 + o) eu(0,)] -

j(t — )" 4,u (1) de

(n - 1)

But (48) clearly yields (3) if we take M = 3", » = x + 1.
The proof is complete.

5.5 Remark. The preceding theorem shows that the system of operators Ay, A,, ...

., A, with the properties 5.4 (&), (B), (Y) is correct if and only if it is exponentially
Hadamardlan

Moreover, in the course of the proof, we have shown that the system of operators
Ay, Ay, ..., A, with the properties 5.4 (), (B), (Y) is correct if and only if it is cor-
rect of class n — 1.

For Hadamardian systems, Theorem 5.4 does not hold and certain additional
restrictive assumptions on the operators A4,, 4,, ..., 4, must be introduced.
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