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1. In the papers [1] and [2] the so-called compatible tolerances on algebras are
introduced. In the papers [2] and [3], existence conditions for compatible tolerances
which are not congruences are investigated. In the paper [4] it is proved that the set
of all compatible tolerances on a given algebra forms a lattice, some of whose
properties are the same as those of the lattice of all congruences on this algebra or
are analogous to them.

In [6] the importance of the permutability of congruences at investigating the
lattice of all congruences of a given algebra is shown. For example, if all congruences
on an algebra A are permutable, then this lattice is modular, and if U has a one-
element sublagebra, then a generalization of Schreier’s theorem on refinements
(see Theorem 88 in [6]) holds'for the congruences. Thus it is a natural problem to
study which analoga hold between permutable congruences and permutable compati-
ble tolerances on a given algebra.

2. By the symbol A = {4, ) we denote an algebra A with the support 4 and
with the set & of fundamental operations. If 2 is a lattice, then we shall not distin-
guish an algebra and its support, i.e. for a lattice L, the symbol L denotes also the
support of this lattice.

Definition 1. Let A be a set. Each reflexive and symmetric binary relation on 4 is
called a tolerance on A.Let A = {A, ¥ ) be an algebra and let T be a tolerance on A.
The tolerance T is called compatible with U, if each n-ary operation fe & and
arbitrary 2n elements ay, ..., a,, by, ..., b, of A for which a; Th; for i=1,...,n
satisfy f(ay, ..., a,) Tf(by, ..., by).

In the paper [4] it is proved that the set of all compatible tolerances on an algebra %A
forms a complete lattice with respect to the set inclusion. By LT(2) we denote the
lattice of all compatible tolerances on the algebra .

The lattice operations in LT() will be denoted by the symbols v (join), A
(meet). Further, K() denotes the lattice of all congruences on the algebra U and
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the symbol v denotes the join in the lattice K(). By the symbol U we shall denote
the set union of two tolerances (taken as subsets of the Cartesian power of the
corresponding set).

From the definition it is evident that each congruence on an algebra 2 is a tolerance
compatible with .

Definition 2. Let A4 be a set, let R, R, be two binary relations on A. The relations
R,, R, are called permutable, if R, . R, = R, . R,, where the symbol “-” denotes
the product of relations.

3. In [6], supplement of Theorem 86, it is proved that if C;, C, are permutable
‘congruences on an algebra U, then C,.C, = C; v C,. We shall study the inter-
relation between T, . T, and T} v T, for compatible tolerances Ty, T, on U.

Lemma. Let A be a set, let Ty, T, be two tolerances on A. Then T, . T, is a toler-
anceon Aifandonly if T, . T, = T, . Ty, i.e. if Ty and T, are permutable.

Proof is straightforward.

Theorem 1. Let A = (A, F) be an algebra, let T, T, be two permutable toler-
ances from LT(N). Then T,. T,e LT(A) and Ty, vT, =T, vT,<T,.T,
S(T,uT) (T, v L)~

Proof. By Theorem 3 from [5] we have T;.T,e LT(). Since U = V and
R < Simplies R.U < S. Vfor any binary relation on A, the proof of the assertion
concerning the inclusions is immediate.

Corollary. Let U = (A, #) be an algebra, let Ty e LT(N), T, LT(A). Let
T,, T, be permutable, let T, v T, be a congruence. Then T, . T, = T, v T,.

Proof. As T, v T, is a congruence, we have (T; v T;)* = T; v T,. Thus
T1 \'% Tz = 1 . Tz = Tl \" Tz, Which means Tl Vv Tz = Tl . T2.

4. In the paper [7] it is proved that for every distributive lattice Lthe lattice K(L)
is a sublattice of LT(L),if and only if K(L) = LT(L),i.e.if each compatible tolerance
on Lis a congruence (see Corollary 2 in [7]). Now we shall show that this condition

~ follows from the condition of equality of product and join for congruences from
LT(L).

Theorem 2. Let L be a distributive lattice. For any two congruences C,, C, on L
let C,. C, = Cy v C,. Then each compatible tolerance on Lis a congruence.

Proof. Let the condition be fulfilled. Then any two congruences on L are per-
mutable, because C,.C, =C; vC;=C, v C, =C,.C; for any two con-
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gruences C,, C, on L. The product C, . C, is a congruence on L (see for example
[8]). But C, . C, = C; v C,is the least compatible tolerance on Lwhich contains C,
and C,. As it is a congruence, we have C; v C, = C; v C,. The meet in both K(L)
and LT(L) is the set intersection, thus K(L) is a sublattice of LT(L). By Corollary 2
from [7] this assertion is equivalent to the assertion of the theorem.

Remark. The assertion can be proved also by using the result from [9] saying
that if all congruences on an algebra U from a given variety are permutable, then
each compatible reflexive relation on 2 is a congruence.

5. Now we shall prove some theorems on permutable compatible tolerances and
their transitive hulls. In [4] it is proved that the transitive hull of a tolerance com-
patible with an algebra 2 is a congruence on 2.

Theorem 3. Let A = (A, F) be an algebra, let Ty, T, be two permutable toler-
ances from LT(W). Let C,, C, be the transitive hulls of T, T, respectively. Then C,
and C, are permutable and C, . C, is the transitive hull of T, . T,.

Proof. We have C, = U Ty, C, = UT;. LetaC,.C,b for some aec 4, be A.
n=1 n=1

This means that there exists ¢ € A such that a C, ¢, ¢ C, b. Now there exist positive
integers m, n such that a T{" ¢, ¢ T"b. Thus a T{" . T b. As T;, T, are permutable,
so are Ty, T; and we have aT; . T{"b. There exists d € A such that a T; d, d T{" b.
But T; = C,, T" < C, and we have a C, d, d C, b, which means a C, . C,; b. As a, b
were chosen arbitrarily, we have C, . C, € C, . C,. Analogously we can prove the
inverse inclusion and thus C; . C, = C,.C,. Nowas T, < C,, T, < C,, we have
T,.T, € C, . C,, thus also the transitive hull of T, . T, is contained in C, . C,.
LetxCy.C, yfor xe A, ye A. Then there exists ze A such that x C; z, z C, y.
This means that there exist positive integers r, s such that x T{ z, z T, y. Let t =
= max (r, s). As Ty, T; are reflexive, the inequalities r < ¢, s < ¢ imply the inclusions

1 < T{, T, = T;. We have x T} z, z T, y, which means xT{ . T;y. As Ty, T, are

permutable, we have Ti.T; = (T,.T,). Thus C,.C, < U(T;.T,)", but the
oon=1
right-hand side of this inclusion is the transitive hull of T, . T,. We have proved
that this transitive hull is equal to C, . C,.
Theorem 4. Let A = {A, #) be an algebra, let Te LT(A). Let C be the transitive
hull of T. Then C.T=T.C = C.

Proof. Let I denote the identity relation on 4. ThenI = T < C and, by the remark
above, we have

T=1.Tc<sC.TcsC.C=C=C.I=C.T.
Hence C = C. Tand, similarly, C = T. C.
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