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PERMUTABLE TOLERANCES

Ivan CHAJDA, Pferov, and BOHDAN ZELINKA, Liberec
(Received October 29, 1975)

1. In the papers [1] and [2] the so-called compatible tolerances on algebras are
introduced. In the papers [2] and [3], existence conditions for compatible tolerances
which are not congruences are investigated. In the paper [4] it is proved that the set
of all compatible tolerances on a given algebra forms a lattice, some of whose
properties are the same as those of the lattice of all congruences on this algebra or
are analogous to them.

In [6] the importance of the permutability of congruences at investigating the
lattice of all congruences of a given algebra is shown. For example, if all congruences
on an algebra A are permutable, then this lattice is modular, and if U has a one-
element sublagebra, then a generalization of Schreier’s theorem on refinements
(see Theorem 88 in [6]) holds'for the congruences. Thus it is a natural problem to
study which analoga hold between permutable congruences and permutable compati-
ble tolerances on a given algebra.

2. By the symbol A = {4, ) we denote an algebra A with the support 4 and
with the set & of fundamental operations. If 2 is a lattice, then we shall not distin-
guish an algebra and its support, i.e. for a lattice L, the symbol L denotes also the
support of this lattice.

Definition 1. Let A be a set. Each reflexive and symmetric binary relation on 4 is
called a tolerance on A.Let A = {A, ¥ ) be an algebra and let T be a tolerance on A.
The tolerance T is called compatible with U, if each n-ary operation fe & and
arbitrary 2n elements ay, ..., a,, by, ..., b, of A for which a; Th; for i=1,...,n
satisfy f(ay, ..., a,) Tf(by, ..., by).

In the paper [4] it is proved that the set of all compatible tolerances on an algebra %A
forms a complete lattice with respect to the set inclusion. By LT(2) we denote the
lattice of all compatible tolerances on the algebra .

The lattice operations in LT() will be denoted by the symbols v (join), A
(meet). Further, K() denotes the lattice of all congruences on the algebra U and
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the symbol v denotes the join in the lattice K(). By the symbol U we shall denote
the set union of two tolerances (taken as subsets of the Cartesian power of the
corresponding set).

From the definition it is evident that each congruence on an algebra 2 is a tolerance
compatible with .

Definition 2. Let A4 be a set, let R, R, be two binary relations on A. The relations
R,, R, are called permutable, if R, . R, = R, . R,, where the symbol “-” denotes
the product of relations.

3. In [6], supplement of Theorem 86, it is proved that if C;, C, are permutable
‘congruences on an algebra U, then C,.C, = C; v C,. We shall study the inter-
relation between T, . T, and T} v T, for compatible tolerances Ty, T, on U.

Lemma. Let A be a set, let Ty, T, be two tolerances on A. Then T, . T, is a toler-
anceon Aifandonly if T, . T, = T, . Ty, i.e. if Ty and T, are permutable.

Proof is straightforward.

Theorem 1. Let A = (A, F) be an algebra, let T, T, be two permutable toler-
ances from LT(N). Then T,. T,e LT(A) and Ty, vT, =T, vT,<T,.T,
S(T,uT) (T, v L)~

Proof. By Theorem 3 from [5] we have T;.T,e LT(). Since U = V and
R < Simplies R.U < S. Vfor any binary relation on A, the proof of the assertion
concerning the inclusions is immediate.

Corollary. Let U = (A, #) be an algebra, let Ty e LT(N), T, LT(A). Let
T,, T, be permutable, let T, v T, be a congruence. Then T, . T, = T, v T,.

Proof. As T, v T, is a congruence, we have (T; v T;)* = T; v T,. Thus
T1 \'% Tz = 1 . Tz = Tl \" Tz, Which means Tl Vv Tz = Tl . T2.

4. In the paper [7] it is proved that for every distributive lattice Lthe lattice K(L)
is a sublattice of LT(L),if and only if K(L) = LT(L),i.e.if each compatible tolerance
on Lis a congruence (see Corollary 2 in [7]). Now we shall show that this condition

~ follows from the condition of equality of product and join for congruences from
LT(L).

Theorem 2. Let L be a distributive lattice. For any two congruences C,, C, on L
let C,. C, = Cy v C,. Then each compatible tolerance on Lis a congruence.

Proof. Let the condition be fulfilled. Then any two congruences on L are per-
mutable, because C,.C, =C; vC;=C, v C, =C,.C; for any two con-
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gruences C,, C, on L. The product C, . C, is a congruence on L (see for example
[8]). But C, . C, = C; v C,is the least compatible tolerance on Lwhich contains C,
and C,. As it is a congruence, we have C; v C, = C; v C,. The meet in both K(L)
and LT(L) is the set intersection, thus K(L) is a sublattice of LT(L). By Corollary 2
from [7] this assertion is equivalent to the assertion of the theorem.

Remark. The assertion can be proved also by using the result from [9] saying
that if all congruences on an algebra U from a given variety are permutable, then
each compatible reflexive relation on 2 is a congruence.

5. Now we shall prove some theorems on permutable compatible tolerances and
their transitive hulls. In [4] it is proved that the transitive hull of a tolerance com-
patible with an algebra 2 is a congruence on 2.

Theorem 3. Let A = (A, F) be an algebra, let Ty, T, be two permutable toler-
ances from LT(W). Let C,, C, be the transitive hulls of T, T, respectively. Then C,
and C, are permutable and C, . C, is the transitive hull of T, . T,.

Proof. We have C, = U Ty, C, = UT;. LetaC,.C,b for some aec 4, be A.
n=1 n=1

This means that there exists ¢ € A such that a C, ¢, ¢ C, b. Now there exist positive
integers m, n such that a T{" ¢, ¢ T"b. Thus a T{" . T b. As T;, T, are permutable,
so are Ty, T; and we have aT; . T{"b. There exists d € A such that a T; d, d T{" b.
But T; = C,, T" < C, and we have a C, d, d C, b, which means a C, . C,; b. As a, b
were chosen arbitrarily, we have C, . C, € C, . C,. Analogously we can prove the
inverse inclusion and thus C; . C, = C,.C,. Nowas T, < C,, T, < C,, we have
T,.T, € C, . C,, thus also the transitive hull of T, . T, is contained in C, . C,.
LetxCy.C, yfor xe A, ye A. Then there exists ze A such that x C; z, z C, y.
This means that there exist positive integers r, s such that x T{ z, z T, y. Let t =
= max (r, s). As Ty, T; are reflexive, the inequalities r < ¢, s < ¢ imply the inclusions

1 < T{, T, = T;. We have x T} z, z T, y, which means xT{ . T;y. As Ty, T, are

permutable, we have Ti.T; = (T,.T,). Thus C,.C, < U(T;.T,)", but the
oon=1
right-hand side of this inclusion is the transitive hull of T, . T,. We have proved
that this transitive hull is equal to C, . C,.
Theorem 4. Let A = {A, #) be an algebra, let Te LT(A). Let C be the transitive
hull of T. Then C.T=T.C = C.

Proof. Let I denote the identity relation on 4. ThenI = T < C and, by the remark
above, we have

T=1.Tc<sC.TcsC.C=C=C.I=C.T.
Hence C = C. Tand, similarly, C = T. C.
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Corollary 2. Let A = (A, F) be an algebra. Let S be the maximal (with respect
to set inclusion) set of compatible tolerances on U such that any two tolerances
from this set are permutable. Then € is a commutative semigroup with the property
that each monogenous subsemigroup of S either is infinite, or has the period one.
The unit element of S is the identity relation on A, the zero element of € is the
universal relation on A.
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ON A CLASS OF NONLINEAR EVASION GAMES

MiLAN MEDVED, Bratislava

(Received October 29, 1975)

In this paper we shall consider a differential game described by the system of
differential equations

1) zZ™ 4+ 420D+ 4+ A, 2+ Az =
= f(u, v) + pg(z, 2’ ..., 2"V, u,v),

where ze R™, fe R™, A;,i = 1, 2, ..., n are constant matrices, f (u, v) is a continuous
function of the point (u, v) e U x V,U < R?, ¥V = R?are compact sets, pt € (— 00, ©0)
is a parameter. We shall suppose that the function g(z;, z,, ..., Z,, 4, v) is continuous
and bounded on R™ x U x V.

In the paper [1] a sufficient condition for existence of evasion strategy for a dif-
ferential game described by equation (1) for u = 0 is given. In the paper [2] a suf-
ficient condition for existence of such strategy for a game described by a first order
system of differential equations of type (1) is given. That condition is different from
the condition given in our paper. Our condition is similar to that given in [1].
Similarly to [1] we shall use the technique of convolutions in the formulation of
results as well as in the proof.

A mapping V,(t, Z,) defined on the set of measurable controls u(t), 0 < 7 < oo,
u(7) € U depending on t = 0 and on the vector of initial conditions Z, = (z, 2o, - --
- zf,"_”) is said to be a strategy, if it possesses the following properties:

(1) For an arbitrary measurable control u(tr), 0 < 7 < oo and for an arbitrary
fixed Z,, the mapping V,(t, Z,) is measurable as a function of t and has valuesin V.

(2) If uy(z), u5(r), 0 £ 7 < o are two controls and u,(t) = u,(t) almost everywhere
on [0, T], where T is arbitrary, then ¥, (1, Z,) = V,,(t, Z,) almost everywhere
on [0, T] for every Z,.

Let M be a subspace of R™ of a dimension <m — 2. Our problem is to choose
a strategy V,(t, Z,) such that the solution z(t), 0 < t < oo of the equation

Z® + 420V + L+ A4,z =
= f(u(t), Vi1, Zo)) + pg(z(?), ..., 2"V, u(t), Vi(t, Z))
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with the initial condition
_Z(0) = (2(0), Z'(0), ..., z""V(0)) = Z,, z(0)¢M

does not intersect the subspace M for any ¢t = 0, for an arbitrary control u(f) and
for an arbitrary vector Z,. We shall call this strategy an evasion strategy.

Now, using the convolution symbolism (cf. [1]) we can rewrite the equation (1)
in the form

Z® 4 Az o+ Aovz = f(u,0) + pg(z, 2, .., 2070, u, 0)
and express the solution of this equation by the following formula:
2 . z, =20+ S*zh + ...+ S x0TV 4
+ 8w (Do rzo+ ...+ Py %257 V) + 5" R(S) * f(u, v) +
+ uS"*R(S) *g(z, z', ..., 2"V, u,v),

where &b, @,,..., P,_, are certain entire matrices over the Mikusinski ring .4

(cf. [1]),

R(S)= I+ C(S)+CHS)+ ...,
C(S)= —(S*4; + S>*x A, +... + S"* 4,),

1 = diag (6, d, ..., 0) is the unit matrix, ¢ is the unit element in the ring .#, A,
i =1,2,..., n are constant matrices, i.e. the functions identically equal to A;. It was
shown in [1] that the series for R(S) converges uniformly in a disc with center at the
origin of an arbitrary large radius g.

Let L be a subspace of R™ of a dimension k = 2 which lies in the orthogonal
complement of M = R™ and let = : R™ - R* be a linear mapping corresponding to
the orthogonal projection of R™ onto L. '

We assume that ’

3) f % R(S) * f(u, v) = H(S) * (Yo(u, v) + S * ¥y(u,v) + ...) + x(1),

where |

(@) ¥i(u, v) are continuous in (u,v)eU x V,i=0,1,2,....

(b) |'I’i(u, v)| < Aforall (u,v)eU x V, || being the Euclidean norm in R* and the
series 4o + S* A, + S%* 1, + ... is an entire function of the variable ¢.

(c) H(S)isan entire matrix over the ring . and det” H(S) + 0. (det” H(S) is calculated
as a determinant in the ordinary formal way using the ring multiplication).

(d) The function x(f) does not depend on u, v. .

(¢) Denote by [¥o(u, v)] the smallest linear subspace of R* containing all points
¥o(u, v), (u,v)e U x V. Let us suppose that the subspace [¥o(u, v)] has the
largest possible dimensi‘on among all representations (3). .
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We shall say that the parameter v in the expression # = R(S) » f(u, v) has complete
maneuverability, if the set

(4) N co, ¥o(u, v) = R
uelU

contains interior points, where co, ¥o(u, v) denotes the convex hull of the set of all
points ¥o(u, v), ve Vfor fixed u e U.
Now, we can formulate a sufficient condition for evasion.

Theorem 1. If the parameter v in the expression # * R(S) * f(u, v) has complete
maneuverability, then there exists a number p, > 0 such that for all p, |u| < uy
there exists an evasion strategy. Moreover, there exist numbers A,v,0 > 0 and an
integer | such that

(5) o(z,(1). M) 2 go((zuw% M))"“ 1

Av (L + |z

for 0 £t < oo, where o(z,(t), M) is the distance of the point z,(t) from the sub-
space M (z,(t) denotes the solution of (1) corresponding to a value p of the para-
meter).

Remark. The number / in Theorem 1 is equal to the number [,, where
H(S) = HY(S) = diag (S", ..., ™) H?)(S),

Iy £, £... £, HY(S), i = 1, 2 are entire invertible matrices. It was shown in [1]
that an arbitrary entire matrix H(S) has such a representation. '

For the sake of simplicity of computations, we can assume that the origin of R* is
an interior point of the set (4). Denote by Q the closed k-dimensional cube with the
center at the origin and with sides parallel to the axes and such that Q <
< int (N co, Yo(u, v) (int P denotes the interior of P).

uelU
For the proof of Theorem 1 we need the following lemma, which was proved

in [1].

Lemma 1. For sufficiently small Q there exists a number T > 0 such that for any
& > 0 there exists a measurable function v(t)e V, 0 < t < T such that

(6) [+ [H(S)* (Yo(u, v) + S+ ¥y(u,0) + ... + x()] + **¢] < &

for 0 < t < Tand for an arbitrary preassigned d(t) e U, &€ Q. For the calculation
of u(t) we need the values u(t) on the interval [0, t] and the point £ only.

Remark. | p(t)| = sup |f6 p(r) dz|, where |-| is the Euclidean norm in R
te[0,T]
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Proof of Theorem 1. From (2), (3) we get
Raz,(f) = o(t, Zy) + S" * [H(S) * (Yo(u, v) + S* ¥y(u,v) + ...) + 2(1)] +
+ uS"* R(S) * gz, zppy -, 207V, u, 0)

"
where

(P(t, ZO) = ﬂ*[ZO + S*Zo + wew F Sn-1 #zg'_l) +
+ S",.,(qso *Zg+ ...+ P, tzg'"”)] .

Sublemma 1. If p; > 0 is a given number and o(z,(0), M) > 0 for |u| < py, then
(a) for a sufficiently large number A

0 s Jor 0% ‘<z<1 +120)’
W < zn«» = (2400) 50} - 25710) = Zo.

(b) If T is sufficiently small, then there exists a number v > 0 such that for an
arbitrary Z, and for |u| <y

®) 1+ |Z,(0))21+1|2|], 01T,
(Z.(1) = (z1): (1), .-, 207 P(1) -

The proof of Sublemma 1 is analogous to the proof of inequalities (5.4), (5.5)
in [1].

Sublemma 2. There exists a 0 > 0 so small that for an arbitrary initial vector Z,,
there exists a point &(Z,) € Q satisfying the condition
9) lo(t, Zg) — S " 171 E(Zo)| 2 0", 0<t<T.

Proof. By [1, Lemma 5.1] there exist a point &(Z,) € Q and a number 6’ > 0

such that
! +1 t, Z ,
“ tZﬁ( o) _ 5(20)‘ 20.
This implies
ot 2 = Jo(t, Zo) - S 171 E(20)| 2 00,

where © = @'/(n + 1).
Now, we choose a number ¢ > 0, which satisfies the following inequalities:

n+1
(10) o < 30T"*!, ¢ < AT, ;-’ > 0(%) ,
where A can be chosen arbitrarily large.
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Let us suppose that at the beginning of the game at time ¢ = 0it is ¢(z,(0), M) > .
Choose the control (t) arbitrarily. If for some ¢ = t,, ¢(z,(t,), M) = o, then define
a control v(t) on the interval [t, t; + T]in the following way

(11) WD) = w(t — 1w, 6Z,(0)). ).

where w(t, u, ¢, €) is a control satisfying the inequality (9) for given & > 0, u(t)e U
and ¢€e Q.

Sublemma 3. If () is a control defined by the equality (11), then there exists
a number py > 0 such that for |p| < Uy

(12) (a) Q(z,,(t), M) =0 (%)Hl (lelw , hSstsy +T
(b) ozt + T)M) 2 0.

Proof. From (7), (8) it follows that for

6gi—1; 2 o(zut1), M) _ o ,
T EA | IR TC PATH )

o F\"+1 o\ 1
(1) =@Mz "(z) > 0(1) R

o(z(1), M) = | x 2,(t)] = [o(t — 11, Z,(1)) = S * (1 = 1)1 UZ(1)) +

+ S*(t —t,)"TVEZ(t)) + S"*[H(S) * (Yo + S*x ¥, + ...) + X(0)] +

+ uS" * R(S) * g(z,, 2, ..., 2 v)| >

2 [o(t — 11, Z(t)) = S+ (¢ — )T UZ(0)] -

—.IS" * [H(S) * (Po(u, v) + S* ¥y(u,v) + ...) + X(1)] +

+ St — 1)ttt {(Z”(tl))l - ulS" * R(S) * gz, 2 - 25"V, 4, v)| >
2l - 1 Z(0) - S+ (1 — L) EZ0)] -

— ||S"=t % [H(S) * (¥o(u, v) + S = ¥y(u,v) + ...) + X()] +

+ (= )"V EZ(n))| - #]S"* R(S) * 9(2, 24, -0 200, 4, 0))

Since lg(z,, Zas vony Zns By v)l < c for all (zy, z5, ..., Z,, u, v) € R™ x U x V, where
¢ > 0is constant, there exists a constant ¢; > 0 such that for |y| Su,05tT+
+ t; it is |S" * R(S) * g(z,, zp .- zf,"'”, u, v)l < c¢,. Therefore, using Sublemma 1
and Sublemma 2 we conclude

o(z, (1), M) = 0(t — t,)"*' — & — pc, .
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Choose € and y, so small that

) n+1 1
0 <& + pc, < min ({0 (—) —_— %OT"“).
A (L + |Z(ty)|)*!

Thenfort, <t <t, + T, |u| < p; we get

o(z.(1). M) 2 10 () S S—

Al (1 + |z ()
o(z,(t; + T), M) 2 30T > 0.
Inequalities (8) and (13) imply

) n+1 1
(14) Q(Z‘,(t), M) 2 16 (%) (—iW , hst=s4 + T

and

o(z(ty + T, M) 2 0

which proves Sublemma 3. :
Since at the end of the evasion maneuver the solution z,(f) is outside of the

g-neighborhood of M and the number T'is fixed, it is possible to continue the game

for an arbitrarily long time, provided the conditions (14) are fulfilled. Theorem 1

is proved.

Example. Let the game be described by the following system of differential
equations

(15) xXP 4+ A xPTY L+ Ax =u + pgy(x, p, X, Y, X9, ¥, u, v)
y(Q) + Bly(q-l) + ...+ qu =vp + ”gz(x’ ¥, xl’ y:’ e x(s), y(s)’ u, v)

where x, ye R", m 2 2,A;,,i=1,2,...,p,B;, i = 1,2, ..., q are constant matrices,
s < min (p, q), 9i(z1, Z25 -+ +» Zams+1) %> V), i = 1,2 are continuous and bounded
on R¥™s*D x U x V,U, V are compact sets, pu€(—o0, 0) is a parameter. Let
M ={z=(x,y)e R" x R" I x — y = 0}. The orthogonal complement of M is
Mt = {z=(x,y)eR™ x R" | x 4+ y = 0}. The matrix of the projection on M*tis

n==}<_§ _5) and ﬁ=%<_§ _é)

where I is the unit m x m matrix.
(1) Suppose g < p. Then the system (15) has the following form

i ();8) - (oF(.t) (()}(t)) (;8) " (g,, S Q(S)) " (Z)

where
P(S) =1+ Cy(S)+ Ci(S) + ..., C(S)= ~(S*A4, + ...+ S"*4,),
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QS) =1+ Cy(S)+ C¥S)+ ..., Cy(S)=—(S*B; + ... +S"+ B,

e )5 )
]S (-
5
_ s«u[(‘z) - S W, 0) + S Wy(u,v) + ]

. —v . ) . .
i.e. To(u, v) = ( v)' Therefore, if the convex hull of the set V contains an interior

point, then the set
-
N co, Yo(u, v) = co,,( )
uelU v

contains an interior point as well. The conditions of Theorem 1 are fulfilled and so
for sufficiently small u there exists an evasion strategy and

o(z(0), M) = % (e(z,‘(O), M))" 1

Av 1+ |Z“(t)|)"

for 4, v sufficiently large, whére 6 is a positive constant.

v—u
To satisfy the condition int ) co, ¥o(u, v) + @ it suffices to satisfy the condition:
uelU

(2) It is possible to compute that for p = g the vector ¥o(u,v) = (u _ v)'

intco V% @and U <" int co ¥, where co V is the convex hullof ¥V and U <"intco V
means that there exists a vector ae R such that U + a = {u + a|ueU} <
c intco V.

This example for 4 = 0 was shown by R. V. GAMKRELIDZE in his lecture during
the semester on optimal control theory held in the S. Banach International Mathe-
matical Center in Warsaw in 1973.
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Casopis pro péstovini matematiky, ro&. 102 (1977), Praha

REMARK ON THE THEOREM OF EGOROFF

WerADYSLAW WILCZYNSKI, LODZ
(Received October 29, 1975)

I. VRkoC in [1] has proved the following theorem: there exists a real function f
defined and measurable on [0, 1] such that there does not exist a countable family
{A } of sets fulfilling UA = [0, 1] such that the restricted function f| A, is con-

tinuous for every n. The theorem of VrkoC is a refinement of the well known theorem
of Lusin. In this short note we shall prove the theorem which can be considered as
a similar refinement of the theorem of Egoroff.

Before stating the theorem we shall prove the following lemma:

Lemma. Let {n(k, i)} be a double sequence of natural numbers, which for every k
is increasing with respect to the variable i. There exists an increasing sequence
{n(i)} of natural numbers such that for every k and for every i Z k

n(i) > n(k, i) .

Proof. Put n(i) = 1 + max(n(1, i), n(2, i), ..., n(i, i)) for every natural i. It is
easy to see that the sequence {n(i)} fulfills all required conditions.

Theorem. For every set A of the power of continuum there exists a sequence of
real functions {f,} defined on A such that f,(x) tends to zero for every x€ A and there
does not exist a countable family {A,} of sets fulfilling UA, = A such that the

k

restricted sequence {f, | A} is uniformly convergent for every k.

Proof. Let N be a set of all increasing sequences of natural numbers. Of course,
N is a set of the power of continuum. Let #: 4 —_,, N be a one-to-one corre-
spondence.

For xeAd let us put f,;)(x) =171 fio)(x) =274 .., fuw(x) =i7%, ... and
f{(x) = 0 for remaining natural j, where {n(1), n(2), ..., n(i), ...} = ®(x).

So we have defined a sequence of real functions {f,} and it is easy to verify that
f(x) = 0 for every x € A.

Suppose that there exists a sequence {4,} of sets such that UAk = Aand {f, | 4}
tends uniformly to O for every k.

228



Let for fixed k the sequence {n(k, i)} of variable i be a sequence of natural numbers
corresponding to & = 17, e=2"1 ..,e=i"% ... and to uniform convergence
of {f,} on A4,, i.e. for every i, for every j > n(k, i) and for every x € A, we have
|fi(x)| < i~*. Obviously we can choose {n(k, i)} to be increasing with respect to i.
If k changes in the set of natural numbers, we obtain a double sequence {n(k, 1)}
In virtue of the lemma there exists an increasing sequence {n(i)} such that for every k
and for every i = k n(i) > n(k, i). Let x = ®~'({n(i)}). There exists a natural
number k, such that x € 4,,. So for i 2 ko we have n(i) > n(k, i) and |f,u(x)| <
< i~! and simultaneously from the definition we have f,(x) = i™!, a contradiction.
The theorem is proved.

Corollary. There exists a sequence of measurable real functions {f,} defined
on [0, 1], which tends to zero at every point and such that there does not exist
a sequence {A,} of sets fulfilling UA, = [0, 1] such that the restricted sequence

k

{fu| A} is uniformly convergent for every k.

Proof. It suffices to take in the theorem the set A < [0, 1] of the power of con-
tinuum and of measure zero and to define additionally f,(x) = 0 for every n and for
every x ¢ A. Then we obtain a sequence of functions which are equal almost every-
where to zero and hence measurable.
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A REMARK ON ISOTOPIES OF DIGRAPHS
AND PERMUTATION MATRICES

BOHDAN ZELINKA, Liberec
(Received January 6, 1976)

In [1], [2], [3] the concepts of isotopy and autotopy of a digraph are studied.
Here we shall make a remark on applications of permutation matrices in investigating
these concepts. :

Let G and G’ be two digraphs, let V be the vertex set of G, let V' be the vertex set
of G'. The isotopy of G onto G’ is an ordered pair {f,, f,) of bijections of ¥ onto V'
with the property that for any two vertices u, v of G the edge f ) fz(;) exists in G’
if and only if the edge uv exists in G. Two digraphs G and G’ are called isotopic, if
there exists an isotopy of G onto G’. An autotopy of a digraph is an isotopy of G
again onto G. '

Here we shall consider digraphs in which loops may exist as well as various edges
with the same initial vertex and the same terminal vertex. For these graphs we adapt
the definition of the isotopy so that the number of edges going from f;(u) into f,(v)
in G’ is equal to the number of edges going from u into v in G.

If G is a finite digraph with n vertices u,, u,;, ..., u,, then its adjacency matrix Ag
is the n X n matrix in which the term in the i-th row and the j-th column is equal to
the number of edges going from u; into u; in G.

Now consider a permutation n of the set of numbers {1,2, ..., n}. The matrix
of the permutation = is the n x n matrix P(r) in which the term in the i-th row and
the j-th column is equal to the Kronecker delta 67, Each matrix which is the matrix
of a certain permutation is called a permutation matrix.

We shall recall some well-known properties of permutation matrices. .

Proposition 1. A square matrix M is a permutation matrix, if and only if exactly
one term in each row and exactly one term in each column of M is equal to 1 and
all other terms of M are equal to 0.

Proposition 2. Let 71, and n, be two permutations of the set of numbers {1, 2, ..., n}.
Then

P(n,) P(r,) = P(n,m,).
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Proposition 3. Let © be a permutation of the set of numbers {1, 2y ey n}. Then
‘the transposed matrix to the matrix P(r) is the inverse matrix to P(n) and is equal
to P(n™1).

Now let M be a matrix with n rows, let = be a permutation of the set of numbers
{1,2, ..., n}. To perform © on the rows of M means to construct a matrix with n
rows in which n(i)-th row is equal to the i-th row of M. For a matrix M with n
columns we define analogously the meaning of “to perform a permutation on the
columns of M”.

Proposition 4. Let M be a matrix with n rows, let n be a permutation of the set
of numbers {1,2,...,n}. The product P(n™') M is the matrix obtained from M
by performing the permutation © on its rows.

Proposition 5. Let M be a matrix with n columns, let © be a permutation of the
set of numbers {1,2,...,n}. The product M P(r) is the matrix obtained from M
by performing the permutation m on its columns.

Now consider the adjacency matrix Ag of a digraph G with n vertices.

Theorem 1. Let G and G' be two finite digraphs with n vertices, let Ag and Ag-
be their adjacency matrices, respectively. The graphs G and G’ are isotopic, if and
only if there exist permutation n X n matrices P and Q such that

AP = QA;. .

Proof. Let G and G’ be isotopic, let {fy, f,) be an isotopy of G onto G'. The
vertices of G are uy, ..., u,, the vertices of G’ are u}, ..., u, in the notation correspon-
ding to the adjacency matrices Ag, Ag.. The mappings f;, f, are bijections of the
vertex set V of G onto the vertex set V' of G'. Let n,, 7, be such permutations of the
set of numbers {1, 2, ..., n} that f,(u;) = up,, f2(4;) = us, foreachie {1,2,...,n}.
Then the term of Ag. in the 7,(i)-th row and the 7,(j)-th column is equal to the term
of Ag in the i-th row and the j-th column. This means that Ag. is obtained from Ag
by performing 7; on its rows and =, on its columns. But this means

P(n7') Ag P(n,) = Ag.
and thus
AG P(th) = P(Tfl) AG' £

Putting P(n,) = P, P(n;) = Q we obtain the required result. The converse assertion
can be proved so that we determine 7;, 7, from P, Q and then f, f5.

Corollary 1. Let G be a digraph with n vertices u, ..., u,, let Ag be its adjacency
matrix. Let fy, f, be two permutations of the vertex set of G. Let mn,, n, be two
permutations of the set of numbers {1, 2, ..., n} such that fi(u;) = g, f2(4;) =
= U, foreachie{1,2,...,n}. Then {f,,f,) is an autotopy of G, if and only if

P(n,) Ag = Ag P(n,) .
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As mentioned in [1], an isomorphism of a digraph G onto a digraph G’ can be
considered as a particular case of an isotopy. If {f}, f,) is an isotopy of G onto G’
and f, = f,, then f, is an isomorphism of G onto G’ and vice versa. Thus we have
the following corollaries.

Corollary 2. Let G and G’ be two digraphs with n vertices, let Ag and Ag. be their
adjacency matrices, respectively. The graphs G and G’ are isomorphic, if and
only if there exists a permutation n x n matrix P such that

AP = PA;. .

Corollary 3. Let G be a digraph with n vertices u,, ..., u,, let Ag be its adjacency
matrix. Let f be a permutation of the vertex set of G. Let n be the permutation of
the set of numbers {1,2,...,n} such that f(u;) = u for each ie{l,2,..., n}.
Then f is an automorphism of G, if and only if

P(m) Ag = Ag P(m) .

Now we shall consider products of digraphs. If G, and G, are two digraphs with
the same vertex set V, then the product G, . G, is the digraph whose vertex set is V
and such that for any two vertices u, v of ¥ the number of edges going from u into v
is equal to the number of directed paths in the union of G; and G, of length 2 and
with the property that the first edge of such a path belongs to G; and the second
to G,. It is well-known that for the adjacency matrix Ag, ¢, of the digraph G, . G,
the equality Ag, ¢, = Ag,Ag, holds.

Theorem 2. Let G, and G, be two digraphs with the same vertex set V. Let f,, f, f
be three permutations of the set V such that {fy, f,> is an autotopy of G, and
{f2, f3) is an autotopy of G,. Then {f, f3) is an autotopy of G, . G,.

Proof. Let V= {u,, ..., u,}, let m,, m,, 73 be the permutations of {1,2,..., n}
such f(u;) = u,, foreachie{1,2,...,n} andj = 1,2, 3. As {f}, f,) is an autotopy
of G,, Corollary 1 yields

P(ﬂl) AG1 = AG[ P(ﬂz) .

As {f,, f5) is an autotopy of G,, we have
P(n,) A, = Ag, P(n3) .
We multiply the first equation from the right by Ag,; we obtain
P(r,) Ag,Ag, = Ag, P(n,) Ag, .
We substitute for P(r,) Ag, from the second equation:

P(n,) Ag,Ag, = Ag,Ag, P(n3) .
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As mentioned above, Ag,Ag, = Ag, ¢, and thus

P("l) AGl.Gz = AG;.G‘ P("s) .

Therefore {fy, f3) is an autotopy of G, . G,.

Corollary 4. Let G, and G, be two digraphs with the same vertex set V. Let f,, f,
be two permutations of the set V such that f, is an automorphism of G, and {fy, f,>
is an autotopy of G,. Then {f,, f,> is an autotopy of G, . G,.

Corollary 4'. Let G, and G, be two digraphs with the same vertex set V. Let f,, f,
be two permutations of the set V such that {f,, f,) is an autotopy of G, and f, is an
automorphism of G,. Then {f,, f,> is an autotopy of G, . G,.

The next theorem will concern digraphs with regular adjacency matrices.

Theorem 3. Let G be a finite digraph whose adjacency matrix Ag is regular.
Let f, be a permutation of the vertex set of G. Then there exists at most one per-
mutation f, of Vsuch that {f,, f,) is an autotopy of G.

Proof. Let {fy, f,) be an autotopy of G, let n,, n, be defined as in the proof of
Theorem 1. Then
P(Ttl) AG = AG P(nz) .
As Ag is regular, we have
P(n,) = A;' P(m,) Ag .

Thus if Ag' P(n,) Ag is a permutation matrix, there exists exactly one f, to the
given f. If it is not so, there exists no f, with the property that {(f;, f,) is an autotopy
of G.

Theorem 3'. Let G be a finite digraph whose adjacency matrix Ag is regular.
Let f, be a permutation of the vertex set of G. Then there exists at most one per-
mutation f, of V such that {f,, f,) is an autotopy of G.

Proof is analogous to that of Theorem 3.

The results of this paper may be used for finding the group of autotopies or
automorphisms of a given digraph or for finding the digraphs which have a given
autotopy or automorphism.
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ON HADAMARD’S CONCEPTS OF CORRECTNESS

MIRrROSLAV SovaA, Praha
(Received January 21, 1976)

In the present paper, we first continue in Section 2 the study of well-posedness or
correctness of the Duhamel initial value problem in the sense as introduced in [1].
In Section 3, a weakened form of correctness, called here Hadamardian correctness,
is newly introduced and studied. It is characterised by the fact that the continuous
dependence of solutions on the initial values is omitted, so that the Hadamardian
correctness becomes of almost algebraic character. The main results concern the rela-
tions between correctness and Hadamardian correctness in Banach spaces. Finally,
in Section 5, we obtain the equivalence between these both notions, naturally only
under strong restrictions, i.e. for a special system of coefficient operators in Hilbert
spaces.

In the text, we use the notation and definitions introduced in [1]. In particular,
it is necessary to be acquainted with the points 1.10, 5.1—5.3, 7.1, 7.4 and 7.7 of [1]
Moreover, we need some results of [1], which will be quoted when necessary.

1. PRELIMINARIES
1.1 The complex number field will be denoted by C.

1.2 Lemma. Let @, ¥, x€ R* — R. If the function ¢ is continuous on R* and
bounded on (0, 1), the functions Y, x are nondecreasing and

|qo(t)| Sy + x(t)J. |e(z)| dr  for every teR*,
‘ 0

then
|@(t)] < () e for every teR™*.
Proof. See [3], p. 19. ‘

1.3 By a Fréchet space F we mean a metrizable complete linear topological convex
space.

234



1.4 Lemma. Let F, F, be two Fréchet spaces and T a linear transformation
from F, — F,. If the transformation T is closed, then it is continuous.

2. BASIC NOTIONS AND RESULTS

The notions of definiteness, extensiveness and correctness are introduced or recapitu-
lated and some of their properties, needed in the sequel, are discussed. This part
should be regarded as a completion and extension of the paper [1].

2.1 Let Ay, A, ..., A,e L*(E), ne {1,2,...}. The system of operators A;, A,, ...
..., A, will be called definite if every null solution for the operators A, 4,, ..., 4,
is identically zero.

2.2 Theorem. Let Ay, A,, ..., A€ L*(E), ne {1,2,...}. If the operators Ay, A,, ...
.., A, belong to L(E), then the system Ay, A,, ..., A, is definite.

Proof. Let u be an arbitrary null solution for the operators A,, 4,, ..., 4,. By
[1] 5.6

t
(1) u®= (1) + AIJ. u " D(r)dr + ...
0
t
e + —I——A,, (t— o 'u" D(r)dt =0 forevery teR*.
(n - 1)! Jo

Let us denote

@ K = max (|4:], [42]. - [4])

/|

It follows from (1) and (2) that

@) Ju-0(0)] = K ( J:“u("'”(r)” de + 1 ﬂuun—x(f)" dr + ...

n—1
.+ —t——jtllu"—‘(1)|l d‘t) for every teR™.
n — 1)! 0

(

We can rewrite (3) in the form
t
(4) ") = Ke'f [u®D(z)| dv for every teR™.
0
Using 1.2, we obtain from (4) that 4"~ 1)) = 0 for every te€ R* which implies
according to {1] 2.10 that u(t) = O for every te R".

The proof is complete.
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2.3 Theorem. Let Ay, A,, ..., A,€ L*(E),ne {1, 2,...}. If the operators Ay, A,, ...
..., A, are closed and if there exists a sequence P,, ke {1, 2, }, of operators
from L(E) suck- that

(=) P} = P, for every ke {1,2,...},

(B) Pix = x (k — ) for every x€E,

(Y) Pix €D(A;) for every xeE, ke{l,2,...} and i€{l1,2,...,n},

(3) Ped;x = A;P,x for every ke{l1,2,...}, ie{l,2,...,n} and xeD(4)),
then the system of operators Ay, A,, ..., A, is definite.

Proof. Since the operators A,, 4,, ..., A, are assumed to be closed, we see
from (y) by virtue of [1] 1.11 that

(1) APy e L(E) for every ke {1,2,...} and ie {1,2,..., n}.
Let now u be an arbitrary null solution for the operators 4,, 4,, ..., 4,.
Let us denote u,(t) = P, u(t) for every te R* and ke {1,2,...}.
It follows without difficulty from (o), (v) and (8) that
(2) for every ke {1, 2, ...}, u, is a null solution for the operators AP, 4P, ...
ooy APy
Using now 2.2 we obtain from (1) and (2) that
(3) u(t) = Oforeveryte R* and ke {1,2,...}.
On the other hand, it follows from (B) that
(4) u(t) = u(t) (k > ) forevery teR*.

It follows from (3) and (4) that u(t) = 0 for every t € R™ which was to be proved.

2.4 Remark. A different criterion of definiteness (of spectral type) was given
in [1] 7.3.

2.5 Theorem. Let A,, A,, ..., A,€ L*(E),ne{1,2,...}. If the operators A,, A,, ...
..., A, are everywhere defined and bounded, then for every x e E there exists
a Duhamel solution u such that u®~"(0,) = x and for every te R*

)2

(n = 1)
[exp (1 + max (44, [4a] . [4DM]
Proof. Let us denote

[4@)] = (1 + max (4, [ 4], ..., |

(1) K = max (|4}, |4d]. ... 4.
Further, let us choose a fixed x € E and let us put for te R*
-1
(2 g() = A;x + tAx + ... + e Ax.
(n = 1)
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Obviously, by (1) and (2),
(3) lg(®)| < K e|x| forevery teR™.

Let us now denote by C the set of all functions ve R™ — E which are continuous
on R* and bounded on (0, 1).
It is clear from (2) that

4 geC.

Further, let us take for we C and te R*

() Tw(t) = 4, J:w(t) dt + 4, J:(t — ) + ...

et 1 A,,J”(t — 1) ' w(r)de.

(n = l)! 0
It is clear from (5) that

(6) T transforms C into itself .

Further, we see without difficulty that
(7) ifw,eC, ke{l1,2,...}, we R* - E and w, » w(k — c0) uniformly on bounded
subsets of R*, then we € and Tw, —» Tw (k — ) uniformly on bounded
subsets of R™.

On the other hand, if follows from (1) and (5) that

(8) |Tw()| < Ktsup |w(z)| forevery weC and teR*.
0<tst

By induction in virtue of [1] 1.8 and [1] 2.9 we obtain immediately from (8) that
. K*¢*
©) [Tw(@)] = = sup [w(3)]
! O0<z=t
forevery weC, teR* and ke{0,1,...}.

It follows from (9) that

(10) ¥ (—T)* w converges uniformly on bounded subsets of R* for every we C.
k=0

Let us now write
(11) v = —kzo(— T)k g.

It follows easily from (3), (6), (7) and (9) that
(12) veC,



(13) o) = K e®* Vx| forevery teR*,
(14) . v+ Tv=—g.

According to (2) and (5) we can write (14) in the form

15) o) + 4 I o) de + ... + (T_IT): A,,J:(t — Pt ofe)de =

n—1
——[A1x+tA2x+...+ ! A,,x]

(n = 1)

for every te R*.
Let us now define for re R*

(16) u(t) =

n— 1
- 1)' j( — 1) '(r)dr + n = 1)'
It follows from (12), (13) and (16) by means of [1] 1.7 and [1] 2.8 that
(17) the function u is n-times differentiable on R*,
(18) u™ =y,
(19) | u(0,) =u(0,) =...=u""20,)=0, u""Y0,)=x,

(20)  u®(1) + Ay w00 + .. + Ay u(t) = oft) + [A1 j o) Alx] N

0o

..+[ T J'( e de +

A,,x] for every teR™,

(1)

e®* Vx| forevery teR™.

@) ol s &+

By (12) and (18) we conclude that
(22) the function 4™ is continuous on R* and bounded on (0, 1).
Further, by (15) and (20)

(23) u®(t) + A, u" V(1) + ... + A, u(t) =0 forevery teR".
Since x € E was chosen arbitrarily, we see that the statement of our theorem is,

with regard to [1] 5.1, contained in (1), (17), (19) and (21)—(23).

2.6 Let Ay, A,,..., A,e L*(E), ne {1, 2,...}. The system of operators 4,, 4,, ...
., A, will be called extensive if there exists a subset Z = E dense in D(4,) N

N D(A4;) n ... nD(A4,), such that for every x € Z, we can find a Duhamel solution
u for the operators 4,, A4,, ..., A, so that u”"~(0,) = x.
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2.7 Theorem. Let Ay, A,, ..., A,€ L*(E), ne {1,2,...}. If the operators A,, A,, ...
..., Ay belong to L(E), then the system Ay, A,, ..., A, is extensive.

Proof. An immediate consequence of 2.5.

2.8 Theorem. Let Ay, A,, ..., A€ L*(E), ne{1,2,...}. If the operators Ay, A,, ...
..., A, are closed and if there exists a set P of operators from L(E) such that
() P?> = P for every Pe B,
(B) the closure of the set {Px : P € B, x € E} contains D(4,) n D(4,) N ... n D(4,),
(v) Pxe D(A;) for every Pe B, xeE and ic{1,2,...,n},
(8) PA;x = APx for every PeB, i€{1,2,...,n} and xeD(4)),
then the system of operators Ay, A,, ..., A, is extensive.

Proof. Since the operators A, A,, ..., 4, are assumed to be closed, we see from
(y) by virtue of [1] 1.11 that

(1) APel(E) forevery PeP and ie{l,2,...,n}.

Using 2.5 we obtain from (1) that

(2) for every x € E and P € B, there exists a Duhamel solution v, for the operators
AP, A,P, ..., A,P such that v§'"V(0,) = x.
Let us now define for Pe P

(3) uP=PUp.

It follows easily from (), (v) and (8) that
(4) for every x € E and P € B, the function up is a Duhamel solution for the operators
Ay, Ay, ..., A, such that u§™Y(0,) = Px.

The extensiveness of the system of operators A,, A,, ..., 4, follows from (B)
and (4).

29 Let Ay, A,,..., A, € L*(E), ne{l,2,...}, and me {0, 1,...}. The system of
operators 4, 4,, ..., 4, will be called subcorrect of class m if
(A) it is extensive, .
(B) there exist two nonnegative constants M, w such that for every Duhamel solu-
tion u for the operators 4y, 4,, ..., 4,, forevery te R* andie {1,2,...,n}

—1—' J‘t(t — )" Au""(z) dt

’mo

2.10 Let A;, A, ..., A,€ L*(E), ne {1, 2, ...}. The system of operators 4,, 4,, ...
..., A, will be called subcorrect if there exists an m e {0, 1, } so that the system
Ay, A,, ..., A, is subcorrect of class m.

é Mewt

.

u(”— l)(0+)
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2.11 Theorem. Let A,, A,,...,A,eL*(E), ne{1,2,...} and me{0,1,...}. The
system of operators A, A,, ..., A, is correct of class m[correct] if and only if it is
subcorrect of- class m[subcorrect] and the set D(A;) "D(A4;) n... nDI(A4,) is
dense in E.

2.12 Theorem. Let Ay, A,, ..., A, € L*(E),ne {1, 2, } If the system of operators
Ay, Ay, ..., A, is subcorrect, then it is also definite.

Proof. Use 2.9 (B).

2.13 Theorem. Let Ay, A,,...,A,eL*(E), ne{1,2,...}, and me{0,1,...}. If
(@) the operators A,, A,, ..., A, are closed,
(B) the set D(4,) N D(4,) N ... n D(4,) is dense in E,
(Y) the system of operators Ay, A,, ..., A, is subcorrect of class m,
then there exists a W € Rt x E - E such that
(a) for every x € E, the function W(.,x) is continuous on R* and
m!
F”//f(t, x) o %
(b) fo(t — )"~ #(r, x) dr e D(4;) for every xeE, teR* and t€{l,2,..., n},

(c) for every x€ E and i€ {1,2,...,n}, the function A; [ (t — ©)'~* #(z, x) dr is
continuous on R™ and bounded on (0, 1),

(d) #1(1, x) +A,f‘W(t,x)dt + AZJ"(I — 1) #(r,x)dt + ...

t m

ee + A,,; (t—o ' #(r,x)dt = " x for every xeE and teR*,
(n—1)J m!

(¢) for every te R*, the function W (1, *) is a linear mapping,

(f) there exists two nonnegative constants M, w so that for every x€ E, te R* and
ie{l,2,...,n}

< M|,

t

”Ai(i _l 0 L(t — 1) #(r, x)de
Proof. It follows immediately from 2.12 that

(1) the system of operators A, A,, ..., A, is definite.
Further, we can choose a dense linear subset Z = E and two nonnegative constants

M, w so that :

(2) for every x € Z, there exists a Duhamel solution u for the operators 4, 4,, ..., 4,

such that «®~1(0,) = x,
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(3) for every Duhamel solution u for operators A,, A,, ..., 4,, for every te R* and

ie{l,2,..}
’mi' ﬁ(: — )" A 0(r) u("'”(0+)“ .

Now we see easily from the assumptions and from (1)—(3) that the hypotheses
of [1] 7.10 and [1] 7.11 are fulfilled. Hence the assertion of our theorem easily
follows.

é Me®!

2.14 Proposition. Let A,, A,,...,A,eL*(E), ne{1,2,...}, me{0,1,...} and
W eR* x E~E If

() the operators Ay, A,, ..., A, are closed,

(B) the conditions 2.13 (a)—(d) are fulfilled,

then for every 1€ {0, 1, ...}

(a) for every x e E, the function (d[dt) [ (t — 1) #7(v, x) dt is continuous on R*
and bounded on (0, 1),

(b) fo(t — )''*! #(z, x) dt € D(A;) for every xe E, te R* and i€{l,2,..., n},

(c) for every x€ E and i€ {1,2, ..., n}, the function A; [o(t — ©)' "' #(z, x)dt
is continuous on R* and bounded on (0, 1),

t t .
@ LA [y wim o+ a5 [ = e oe +
ndt), I'Jo
O A N T
(l+1)'0 (l+n—1)!o

I+m

t
W(t, x)dt =
(e x)de = 1

LX for every xe Eand teR™,
m!

(¢) for every te R™, the function (d/d?) [o (1 — ©)' #'(x, +) dt is a linear mapping,
(f) there exist two nonnegative constants M, w so that for every xe E, te R and
ie{l,2,..,n}

1 ' - prl
AT e e s e

Proof. An easy consequence of 2.13 by means of [1] 1.8, [1] 2.4, [1] 2.7 and [1]
2.9.

2.15 Proposition. Let A, A,,...,A,eL*(E), ne{1,2,...}, me{0,1,...} and
WeR* x E-»E. If
(@) the operators A,, A,, ..., A, are closed,
(B) the system of operators Ay, A,, ..., A, is definite,
(Y) the conditions 2.13 (a)—(d) are fulfilled,
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then for every x e D(A,) nD(A;) n ... nD(A,) and for every t e R*
t t
W(¢, x) + J‘ # (1, A;x)dt + I(t — 1) ¥ (1, A;x)dt + ...
o 0

L1
(n — 1)

Proof. Let us fix an x € Dy(4,, 4,, ..., 4,) and let us put for te R*

t m
J-(t — 1) #(z, 4,x) dT =L
° m!

w(t) = #(t, x) + J:'#’(t, A,x)dt + J.(:(t — 1) W(r, Ayx)dt + ...

1
(n — 1)

A simple calculation using conditions 2.13 (a)— (d) and 2.14 (a)—(d) shows that the
function w has properties [1] 7.10 (1)—(4). Hence by Lemma [1] 7.10, w(t) = 0 for
every te R* and this proves our proposition.

.

t m
I(t — 1) ' # (1, A,x)dt — t—x.
m!

0o

2.16 Proposition. Let A, A,, ..., 4,€ L*(E), ne{1,2,...}, and me{0,1,...}. If
(@) the operators A,, A,, ..., A, are closed,
(B) the system of operators A,, A,, ..., A, is definite,
(Y) there exists a function #" € R* x E — E such that 2.13 (a)—(f) hold,
then )
(a) for every x €D, (A, A, ..., A,), there exists a Duhamel solution u for the
operators Ay, A,, ... ,A, so that

u™=1(0,) = x,

(b) there exists a nonnegative constant x such that for every Duhamel solution u
for the operators Ay, A,, ..., A, satisfying u" V(0,)€D,.4(A4y, 4, ..., 4,)
and for every i€{1,2, ..., n}, the function e *A4,u®?(t) is bounded on R",

(c) there exist two nonnegative constants M, w such that for every Duhamel solu-
tion u for the operators A, A,, ..., A,, for every te R* and everyie {1,2,...,n}

t
#J‘ (t— o A,u" (r)de
+J 0

(d) the set D(A;) nD(A,) N ... nD(A,) is dense in E.
Proof. For the sake of simplicity we shall write
1) N={1,2..,n}.

Further we choose, by assumption (y), a fixed function # € R* x E - E for
which
(2) the conditions 2.13 (a)—(f) are fulfilled.

< Me®|u1(0,)] .
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We begin with proving the assertion (a).

To this aim let us fix an arbitrary x €D,,,(4,, 4,, ..., 4,) and let us write for

teR*

®) u(t) =

- tn—l+a;

Y A x¥
( 1)' a;e!)l (n - l + al)!

tn 1+ay+az

A Ayx — ..o +

mygsm (n -1+ o, + (12)!

+(-)" ¥

ararame (n — 1 + 0y + oy + ... + 0)!

t _ n—1l+a+az+...+amsey—m—1
G e s

al,az,...,am+15m 0 (n - 1 + al + az + .o + a,,,+l - m — 1)! '

tn—l +agtazt...tam

A, x +

aAay - A,

W (1, A, A x)dt.

By means of [1] 1.8 and [1] 2.8 we obtain easily from (3) that
(4) the function u is n-times differentiable on R*,

© w0 =

a+1

ti-1 ti—l+al
x=Y ————— 4, x +
(=1 ad®(i— 1+ a)

ti—1+11+¢z
+ A, Ay x — .o +
a|,azzsm (l -1 -+ g -+ az)! e

. ti—1+a1 +az+...+am
(=" A, Ay, . Ay X +
( ) a,,a;,;,a,,.e‘)t (i -t 1 + al + az + .o + a,,,)! e m

(1 _ t)i—|+u|+az+...+am+|—m—l

+ (_ 1)n+m+1

W (1, Ay Ay, ... Ag,,,1x)dt forevery teR* and ie{l,2,...,n},

- ¢1 1 ta,+1z—l
6 u'™(t) = — X + —_— AalAa X —
( ) () ajeN (al = 1)' ¢|,azze‘ﬁ (a, + ay; — 1)' 2
t¢l+¢2+-~~+¢m‘l
(=D Y Ay Ay, .. Ay x +

@142 y0ee s EmeN (dl ‘o, + ... +a, — 1)'

a;+az+...+am+1—m—l

+ (— 1t

ay,02,. ¢...+1e9l dtJ. (ory + U + e+ Uy —m = 1)
Ww, Ay 4y,

It follows from (2) and (5) that
(7 "~ 10,) = x.

x)dt forevery teR™.

¢m+l

a‘,az,...,a,,.“e‘ﬁ 0 (l - 1 + a] + az + ‘e + ot,,,+l —m — 1)!.
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With regard to the assumptions of our proposition, we see from (2) that Theorem
2.14 may be applied and therefore .

(8) the conditions 2.14 (a)—(f) hold for every I € {0, 1, ...}.
Using the properties 2.14 (b) and (c) with I =i — 1 + ay + oy + ... + opyq —
—m—1,0a,,0,..., 0, €N, we see easily from (5) and (8) that
) u" (1)eD(4;) forevery teR* and ie{l,2,...,n},
(10) the functions 4™~ are continuous on R* and bounded on (0, 1) for every
ie{l,2,...,n},

i-1 ti—-1+a1

Aix
(i — 1)!

(11) A u®(r) = iAaX +

———— A
a,e%(i -1+ al)!
ti-1+a|+¢2
+ AA, A x — ... +
a;,azzem (l -1+ o, + az)! e

ti—l+a1+az+...+am

e (=) A A, ... A
( ) a,,a;,;,amem (l -1+ o + 0y + ...+ am)! i 2

1) ! Z A ! (t - T)i_1+a‘+¢2+'"+am+|-m—l
+ (-1 .- |
( @182 50-- s + 1650 J'O(i_ 14+ay +o0; + ... + pyq —n’l—l)!

X +

am

W (t, Ay A,, ... A,,,, x)dt forevery teR* and ie{l,2,...,n}.
Our next objective is to find out that
(12) u™(t) + A, u" (1) + ... + A, u(t) =0 forevery teR*.

To this aim we first consider the terms of the expressions (6) and (11) except the
last ones. After a simple calculation we verify that

t¢1—1 ta1+az-1
13 - — A, x + — A, A, x — ... +
{3y [ a,ze:w(al - 1) e a,,g,:em (@y + oy — 1)1 %

ta1+¢z+...+a,,.—l
+ (=1)" A, A, ... A, x|+
( ) al,az,;,ame% (al + a2 + ... + oz,,, == 1)’ “ 2 b ]
n ti-l n ti—1+¢1
* Ax — L g
[x‘gl (i-1) i;l a,Xe:‘Jt (i—1+a) '

ti—l+¢1 +az

+;

AA A x — ...
1 ay,a2eN (i = 1 + “1 + az)! ¥ ! 2

n ti—1+a;+¢1+.,.+¢,,._l

+ .. ()" Y

i=1 ay,a2,...,8m-1€N (i — 1 + al + az + ... + am_l)! ’

A A A, ... A

x +

Im—1
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n ti—l+al+az+...+a,,.
(=1 CAA A, A x| =
( ) i;1 a,,az,;,amein (l —14oa +ay+...+ (Zm)! b * ]

tal +ar+t..tam+1—1

- (-1

.

1,82, &m + 1ER (“1 + %y ¥ o5 + U1 — 1)!
forevery teR™.

On the other hand, using the properties 2.14 (b)—(d) with [ = a; + a; + ...
coiF Oy — M — 1, 0y, &g, ..., Gy g € N, We obtain from (8) that for the last term
of (6) and (11) the following identity holds:

d t t—1 aytaz+...tam+1—m—1
(14) ay ,a Za eNn [—j ( )

dt Jo (g + 0y + v + tpyy —m — 1)1

(t _ T)i—l tagtazt..tameg—m—1

n t
W1, Ay Ay, - Ay, x)dT + ) A :
(5 Aue, me i) ,-;1 L(i—l+a1+a2+...+a,,,+l—m—l)!

W (1, Ay Ay, - 4, x)dT =

Im+1

t¢1+az+...+am+1—1

x forevery teR*.

Ay A

Am+ 1

A
a,,az,...,a,.,“em (Otl + az + “en + am+1 - 1)!

Now the identity (12) follows at once from (6), (11), (13) and (14).
The above considerations, namely the points (4), (7), (9), (10) and (12), show that

(15) the function u is a Duhamel solution for the operators A4, 4,, ..., 4, such that
u®"1(0,) = x.
Since x €D, 4(4;, 4,, ..., A,) has been arbitrary, the property (15) shows that
(16) the statement (a) holds.

Let us now turn to the statement (b).
By (8) [2.14 (f)], we can find fixed nonnegative constants M,  so that

1 y i—-1+1 ot t‘
(17) ’lAimL(t ~ 1) #(t, x)dt|| < Me 7 x|

forevery xe E,teR*,ie{1,2,...,n} and 1€{0, 1, ...}.
Let now u be an arbitrary Duhamel solution for the operators A,, A4,,..., 4,
such that ;

(18) U= (0,) €Dpy1(Ay, Ay, ..., 4,) -

Using the definiteness assumption, we obtain from (15) and (18) that
(19) the solution u may be expressed by the formula (3) with x = «®~1(0,,).
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It follows from (11), (17) and (19) that

(20)

-

lawe=o0) 5

i—-1+4+a;

|Am®=1(0,)] +

t

+ S ==

aéﬂ (i - 1 + al)!
ti—1+a|+az .

AA A (n‘l)o .
+¢,,azzem (i —14a + “2)! " iAa g, U ( +)“ +

|44, u™=1(0,)| +

ti- 1+ag+ar+...+am

e |AideiAs, .- A, u®"1(0,)] +

,a;,az,;,amsin (l -1+ oy + o + ... + az,,,)! ’

tul+az+...+zm+1-m-l
+ ) Me** .
@1 ,02 e 2m 4 1€R (@ + 0tz + .o + Oy —m — 1)

) "Aa,Aa, A, u"'"’(O*)” forevery teR* and ie{l,2,...,n}.

Let us now choose

(21) x> o.

Since @ was chosen nonnegative, we obtain immediately from (20) and (21) that
(22) the functions e™*A4; u™~ () are bounded on R* for every ie{l,2,...,n}.

Now an immediate consequence of (22)is, if we take into account the assumption
on the solution u, that

(23) the assertion (b) holds.

Now we have to prove the assertion (c).
To this aim, let  be an arbitrary Duhamel solution for the operators 4, 4,, ..., 4,.
Let us write for te R*

(24) ot) = % (mi' I ;(z N ) df) .

It follows from [1] 2.9, [1] 5.6 and [1] 5.7 that
(25) the function v is continuous on R* and bounded on (0, 1),

t
(26) J‘ (t — )" ' v(r)dr e D(4,) for every te R* and ie{l,2,..., n},
0

t
(27) the functions 4; f (t — ©)"" ' v(r)dr are continuous on R* and bounded
0 .
on (0, 1) for every ie{1,2,...,n},

28) . o)+ Alﬂu(r) dr + AZJ‘(:(I s elide & ..
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for every te RY,

. t t
@) L[ aue@dr= a4, —L1 [ (- or)de
forevery teR* and ie{l,2,...,n}.
It follows from (2) [2.13 (a)—(d)] and (25)—(28) by means of [1] 7.10 that
(30) o(t) = #(t,u""(0,)) forevery teR™.

Taking I = 0 in (17) we can write

(31) ‘A - J' (t — O~ (e, x)dr

" forevery xeE, teR* and ie{l,2,..,n}.

< M e|x|

Now we obtain from (29)—(31) that
t
(32) 1——1—"‘ (t— " A;u (1) dr
m! Jo

forevery teR* and ie{l,2,..,n}.

< M e,

Since the Duhamel solution u examined above was arbitrary we obtain from (32)
that

(33) the assertion (c) holds.
Finally, by (2) and (8), we can apply 2.13 (a) and 2.14 (b) and we easily obtain that

{(34) the assertion (d) holds.
According to (16), (23), (33) and (34), the proof is complete.

2.17 Theorem. Let A,, A,,...,A,eL*(E), ne{1,2,...}, and me{0,1,...}. If
(«) the operators Ay, A,, ..., A, are closed,

(B) the set D, 1(Ay, Ay, ..., A,) is dense in D(4,) N D(4,) ~ ... nD(4,),
then the following two statements (a) and (b) are equivalent:

(a) the system of operators Ay, A,, ..., A, is subcorrect of class m and the set
D(4,) nD(A4,) N ... " D(A,) is dense in E,

(b) the system of operators Ay, A,, ..., A, is definite and there exists a function
# € R* x E — E such that the properties 2.13 (a)—(f) are fulfilled.

Proof. An immediate consequence of 2.13 and 2.16. .
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3. HADAMARDIAN CONCEPTS

In chapter two of book one of his treatise [2], J. HADAMARD introduced different
concepts of correctness for partial differential equations which are mostly very general
or too weak. An abstract variant of these concepts (but not so general) is defined and
studied in the remaining part of this paper.

3.1 Let A}, 4,, ..., A,€ L*(E), ne {1,2,...}. The system of operators 4,, A4,, ...
..., A, will be called exponentially Hadamardian if
(A) it is definite
(B) there exists a constant x such that for every x € D,(4;, 4,, ..., 4,) we can find
a Duhamel solution u for the operators 4;, 4,, ..., 4, for which u®"~(0,) = x
-and the function e™*A4; u~"(t) is bounded on R* for every i€ {l,2,..., n}.

3.2 Let Ay, 4, ..., A, € L*(E), ne {1, 2,...}. In the sequel, we shall consider the
linear space D, (A4;, 45, ..., 4,) as a linear topological space determined by the
following system of seminorms:

IXlal,az....,ad S ”x“ + ”Aa;Aaz Aadx”

for xeDg(A4y, A4z, ..., 4,), de{1,2,...} and aja,...,25€{1,2,...n}.

3.3 Lemma. Let Ay, A,,...,A,€L*(E), ne{l1,2,...}. The linear topological
space D (A, 4, ..., A,) is convex and metrizable.

3.4 Lemma. Let A,, A,, ..., A,e L*(E), ne{1,2,...}. If the operators A, A,, ...
..., A, are closed then the linear topological space D (A,, A,, ..., A,) is a Fréchet
space.

Proof. By 3.3 it is only necessary to prove the completeness of D,,(4,, 4,, ..., 4,).
Hence, let x;, 1€ {1, 2, ...}, be an arbitrary Cauchy sequence in the linear topo-
logical space D (4, 45, ..., 4,).
This implies by 3.2 that
(1) x;, 1e{1,2,...} is a Cauchy sequence in E,
(2) for every de{1,2,...} and ay,a,...,05€{1,2,...,n}, Ay d,, ... Ax; le
e{1,2,...}, is a Cauchy sequence in E.
It follows from (1) that there exists an x € E such that
(3) xi = x (I > x).
It is clear that it suffices to prove that
(4) xeD(Ay, A;, ..., A,) for every de{1,2,...},

(5) for every de{1,2,...} and oy, 0, ...,0,€{1,2,...,n}, AyAy, ... AgXi =
- Ay Ay, ... Agx (I = ).
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To prove this we proceed by induction on d.

First, it follows immediately from the closedness of operators 4,, 4,, ..., 4, that
(6) xeD,(4,, A4, ..., 4,),
(7) for every oy € {1,2, ..., n}, Ay, x; = Ay, x (I = ).

Now we suppose that (4) and (5) are true for some fixed d € {1, 2, ...}. Using this
assumption and the closedness of operators 4,, 4,, ..., 4,, we obtain easily that

(8) x€Dyy4(Ay, A4, ..., 4,),
(9) for every oy, 0z, ..., Qgs1, AgAgy - Ay, X1 = Ay Ay, ... A

clad+y Ad+1 x (l e (X)).
This argument implies that the assertions (4) and (5) hold for every de {1, 2, ...}

and this completes the proof.

3.5 Proposition. Let Ay, A,,...,A,e L*(E), ne{l,2,...}. If the operators
Ay, Ay, ..., A, are closed, then the system of operators A, A,, ..., A, is exponentially
Hadamardian if and only if
(A) there exists a set Z < D(Ay, A,, ..., A,) dense in the linear topological space
D, (A, Az, ..., A,) such that for every x € Z we can find a Duhamel solution u
for the operators A,, A,, ..., A, fulfilling u"~(0,) = x,

(B) there exist two nonnegative constants N, x and a finite sequence q,, q,, ..., 4, €
€{l,2,....,n}, re{l1,2,...}, so that for every Duhamel solution u fulfilling
u®=1(0,) €D (A, Ay, ..., A,), for every te R* and i€ {1,2,...,n}

4,40 20] $ Ne[lu20,)] + [ Ay .- Ag, w0

Proof. “Only if” part.
Let us assume that the system A4, 4,, ..., 4, is exponentially Hadamardian and
let us try to verify the properties 3.5 (A) and 3.5 (B).
The property 3.5 (A) being evident we should only prove 3.5 (B).
To this aim, let us introduce some notation.
First we choose a fixed constant x such that the condition 3.1 (B) holds.
We denote by Q the linear space of all functions fe R* — E such that
(1) fis n-times differentiable on R,
(2) f™ is continuous on R* and bounded on (0, 1),
(3) f"~"(r)eD(4;) for every te R* and i€ {1,2,...,n},
(4) the functions 4, f*~? are continuous on R* and bounded on (0, 1) for every
ie{l,2,...,n},
(5) the functions e™*A4;f®~?(t) are bounded on R* for every ie{l,2,..., n}.
The space Q will be equipped with the following system of seminorms:

(6) flo = sup ™| 4.7~ 0)]
) e = sup (FO + Lr@] + .. + o] +
+ A SO + AP + -+ |4 (@)} for T>0.
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Clearly
(8) Qs a linear topological space.

Moreover, it is almost evident that
(9) the linear topological space Q is convex and metrizable. :

Now, utilizing the assumed closedness of the operators A4,, 4,, ..., 4, we obtain
easily that
(10) the linear topological space Q is complete.

Hence, by (8)—(10), we can state that
(11) the space Q is a Fréchet space.

After these preparatory constructions, we can define, in virtue of the properties
3.1(A), (B), a linear transformation U €D, (A4, 4,,...,4,) - Q in the following
way: °
(12) for x € D(4;, A,, ..., A,), we denote by Ux the unique Duhamel solution u

for the operators A, 4,, ..., 4, fulfilling

u®~10,) = x.

Using the assumed closedness of the operators Ay, 4,, ..., 4, we deduce easily
from the properties defining the spaces D, (4, 4,, ..., 4,) and Q that
(13) the operator U is closed as a transformation of the linear topological space
D, (A, 4, ..., A,) into the linear topological space Q.
Applying now the closed graph theorem 1.4 we get from 3.4 and from (11) and (13)
that
(14) the operator U is continuous as a transformation of the linear topological
space D (A4, A,, ..., A,) into the linear topological space Q.
The required property (B) is an immediate consequence of (14).
The proof of the “only if”” part is complete.
The “if” part.
Now we suppose that the conditions 3.5(A), 3.5 (B) hold and we try to prove
3.1(A), (B).
Since the property 3.1 (A) is an immediate consequence of 3.5 (B), it remains in
fact to prove only 3.1 (B).
To this aim let us choose

(15) x €D (Ay, Az, ... A).

Further, we choose fixed nonnegative constants N, », a number re {1, 2, }
and a finite sequence gy, 45, ..., 4, € {1, 2, ..., n} so that 3.5 (B) holds.
Now it is easy to conclude from 3.5(A), 3.5(B) that there exists a sequence
u,eR* > E, le{1,2,...} so that
(16) for every I € {1, 2,...}, the function u, is a Duhamel solution for the operators
Ay Ay, . L A,
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(17 u" '0,) € D (A, Az, ..., 4,) forevery le{l,2,...},
(18) u* (0,) » x (I > ),
(19) Ay Agy - A" 0(04) > A A, ... Agx (1> )
for every de{1,2,...} and oy, o5, ..., 056 {1, 2, ..., n},
(20) s ut™2(0) — 4,0 <

< Ne[[uff™2(04) — uf;™P(0.)] + [AgAg, --- 45l 2(04) — uf™P(0,))[]

forevery teR* and ie{l,2,...,n}andl, l,e{1,2,...}.

It follows from (20) that
(1) [4() — uP()] < nNe[[ult™D(0,) — u~D(0,)] +

+ || AgAg, .. Ag (ull™V(0,) — ufy” 0,))|] forevery teR*andly, L e{1,2,...}.

Now using [1] 2.10, we obtain from (21) that
(22) [4iP() — w2 =

< [nNe"' & 1] [uss~2(0,) — ult=(0,)] +
(n = J)!
+ [AgAy - A (w7 0(0.) — ui™P(0,))]]

for every te R*, je{0,1,...,n} and Iy, 1, €{1,2,...}.
It follows from (18), (19) and (22) that there exists a function u € R* — E such that

(23) ut) > u(t) (I » o) forevery teR™.

Since the operators A4y, 4,, ..., 4, are assumed to be closed, it is easy to obtain
from (18), (19), (22) and (23) by means of [1] 2.6 that u is a Duhamel solution for the
operators Ay, A, ..., A, such that u”~(0,) = x and this was to prove.

The proof of ““if’ part is complete.

3.6 Remark. The exponential Hadamardian property is related with the Hadamard
notion of “‘correctly set” problem (cf. [2], p. 4)1. Since it does not involve the class of
correctness, it is interesting to study its relations with the notion of correctness.

In the sequel, we prove that correctness always implies exponential Hadamardian
property, but as to the converse we are able to get it only under strong a priori restric-
tions on operators 4,, 4,, ..., 4, as shown in the section 5.

It should be said that a more general property would be adequate to the (roughly
described) Hadamardian notion of correctly set problem, i.e. it would be necessary
to replace the property 3.1 (B) by
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(B’) for every x €eD,(4;, Az, ..., 4,), there exists a Duhamel solution u for the
operators Ay, A, ..., 4, such that u®*~1(0,) = x.
Such systemrs will be called Hadamardian.
It is easy to see that every exponentially Hadamardian system is also Hadamardian.

3.7 Theorem. Let A,, A, ..., A,e L*(E), ne {1,2,...}. If
(o) the operators A,, A,, ..., A, are closed,
(B) the set D(A;) nD(A;) N ... "D(A,) is dense in E,
-(Y) the system of opert’;tors A, Ay, ..., A, is subcorrect,
then this system is also exponentially Hadamardian.

Proof. An immediate consequence of 2.9, 2.10, 2.12, 2.13 and 2.16.

3.8 Example. There exist a Banach space E and an operator A € L*(E) so that
(a) the operator A is closed,
(b) the system 'of operators 0, — A is subcorrect of class zero,
(c) the system of operators 0, A is definite,
(d) the system of operators 0, A is extensive,
(¢) the system of operators 0, A is not exponentially Hadamardian and con-
sequently also not subcorrect. '

Proof. Let
(1) E = L,(0, )
and assume that the operator A4 is defined as follows:
(2) x eD(A) if and only if x € E, x(0,) = x(1_) = 0, x is differentiable on (0, =) and
there exists a y € E so that for every 0 < &, < &, < =, there is x'(¢;) — x'(¢,) =
= [§ y(n) dn; then Ax = y.

It is easy to prove by elementary means that the assertion (a) holds.

Let us now denote )

(3) eé) = (2/n)"?sin k¢ forevery 0 < ¢ < mand ke {1,2,...},

(4) Z = {oyey + aze; + ... + ey Ay, 05,...,4€C, ke{l,2,...}}.
It is easy to prove that

(5) ex€D(A) and Ae, = k?e, for every ke {1,2,...},

(6) the sequence ¢, k€ {1, 2, ...}, is orthonormal,

(7) the set Z is dense in E .

Now the assertion (b) can be derived easily from (5)—(7) by means of Fourier
series developments.

The assertions (c) and (d) follow from (5)—(7) by means of 2.3 and 2.8 or simply
by direct verification.
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Since D,(0, 4) = N D(A"), we prove easily that
r=1

{8) Z is a dense subset of the Fréchet space D,(0, 4).

Further, let us denote
(9) u,(t) = sinh kt ¢, for every te R* and ke {1,2,...}.

It is obvious that
(10) for every k € {1, 2, ...}, the function u, is a Duhamel solution for the operators
0, A such that u{" V(0,) = &.

We see from (4) and (8)—(10) that the condition 3.5 (A) is fulfilled. But it is an
easy matter to show by means of the sequence u,, k € {1, 2, ...}, that 3.5 (B) cannot
be fulfilled due to the exponential growth of hyperbolic sinus.

Hence the system 0, A cannot be exponentially Hadamardian and, by 3.8, not even
subcorrect.

But this says that (e) holds.

The proof is complete.

It remains to prove (e).
Lo}

3.9 Remark. The above example 3.8 is a somewhat elaborated version of the
famous example of a non-correctly set problem, given for the first time by Hadamard
in 1917 (cf. [2], pp. 33 and 37).

4. SOME AUXILIARY RESULTS

This section collects some mostly known results on polynomials, on solutions of
ordinary differential equations with constant coefficients and on normal operators
in Hilbert spaces which will be necessary in Section 5.

4.1 Let ay,a;,...,a,€C, ne{l,2,...}, and ¢ e R* - C. The fuuction ¢ will
be called a standard solution for the numbers a,, a,, ..., a, if

(1) the function ¢ is n-times differentiable on R,

(2) the function ¢™ is continuous on R* and bounded on (0, 1),
(3) ¢™(t) + a, @™ V(1) + ... + a, ¢(t) = 0 for every te R*,
4) 9(04) = ¢'(04) = ... = " 2(0,) = 0, " V(0,) = 1.

4.2 Lemma. For every a,,a,,...,a,€C, ne {1, 2, }, there exists a unique
standard solution ¢ for the numbers a,, a,, ..., a,.

Proof. Well-known result which is also an immediate consequence of 2.2 and 2.5.

4.3 Lemma. Let ay, a,,...,a,€C, z4,2,,...,2,€C, ne{l,2,...}, ® a real
constant and g e R* - C. If
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(@) 2"+ a2z +...+a,=(z - 2)(z — z3)...(z — 2,) for every z€ C,
(B) Re z; < w for every ie{1,2,...,n},

(Y) the function ¢ is a standard solution for the numbers ay, a,, ..., a,,
then

(@) |o(r)] = 3%(1 + 1)" e* for every te R*,

(b)

- 1)'J.( — 1) p(r)dt| £ 3(1 + t)" e for every te R* and i€
e{l,2,...,n}.

Proof. We proceed by induction on n.

The case n = 1 is verified by a simple calculation.

Now let us assume the estimates (a), (b) take place for n — 1, n > 1 and try to
prove them for n.

To this aim, we need some preparatory considerations.

By Fundamental Theorem of Algebra, we can find numbers « € C and by, b,, ...
...y b,_; so that

(1) "ta i ta,=(z—a)( + b2 4+ byy)
forevery zeC.

For the sake of simplicity we shall write
(2) bo = 1 .
It is easy to see from (1) and (2) that

(3) a; = bl - abo, a, = bz — abl, veey Bpqg = bn—l = abn_z, a, = —ab"..|
Let now
4) Y be a standard solution for the numbers by, by, ..., b,—; .

It is an easy matter to prove using (1) and (4) that
t
(%) o(t) = j e I Y(r)dr forevery teR™.
W]
Using (5), we obtain easily the following identities:
t ' t T
(6) iJ' (t — )P o(r)dT =J‘ et —l—j (r — 6)?Y(0) do dr
P'Jo 0 pJo
forevery teR* and pe{0,1,...},

7 o J"go(t) dt= J"(e’(“') — 1) y(r)dr forevery teR™,
0 0
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1
(p + 1)

® o J' (:(t — Pt p(r) dr = J ;(e"‘("" 1) # J‘ (:(1: — oV ¥y dods

forevery teR* and pe{0,1,...}.
On the other hand, we have by induction hypothesis that

) [W()| S 3" '(1 + 1"~ 'e** forevery teR*,

(10)

L ‘ L y(r)de
bjU——TﬁJo(t—T) ¥(z)d

é 3n—l(1 + t)n—l ewt

forevery teR* and je{l,2,..,n—1}.
The desired estimates are now simple consequences of (2), (3) and (5)—(10).

4.4 Lemma. Let a,, a,,...,a,eC, ne{l,2,...}, and ¢ e R* - C. If the
function ¢ is a standard solution for the numbers a,, a,, ..., a,, then

(a) |(p”’(t)| < et tmaxUablazl e for opery te RY and je{0,1,...,n — 1},
(®) |e™(1)] < |ay| et FrxUerlloallanb for opery e RY.

Proof. Using the properties 4.1 (1) —(4) we obtain easily the following two iden-
tities:

(1) " V()=1- aljt¢‘"“‘)(t) dr — aZJ‘t(p("'z’(t) dt — ... — a,,J”(p(t) dr,

O e e j}m@ Y ST S

forevery teR*.

The identities (1) and (2) give the estimates

(3) l(p“‘“’(t)] <1+ max(lall,az|,..., |a,,|)J:(|go(1:)| + |<p’(1:)| + ...+ |(p("'”(t)|)d1:,

t
(@) |e™(0)| < |a,| + max (|ay|,|as],..., la,,l).[ ('@ + |e"@)| + ... + [e™(z)]) d=
o
for every teR™*.
Using the inequalities (3) and (4) we see easily that

() le(®)] + |e'(®)] + - + |02 + |~ 2(1)] =

I l:(p'(r) dt J:(p”(r) def + ... + I j ;qa("“”(r) dt

- " + Jot0) 3
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< '[:|(p'(t)| + f(:|(p"(t)| dr + ... + J(:I(p"'"z’(r)| dr + J-(:l(p"'“”(t)| dr +
+ 1 + max (|ay), |as), ..., la,l)J;(|¢(1)| + @' (@)] + ... + e V()| dr =
<1+ [0+ max (fag], |ag]s .. Jau])] ﬂ(|<p(r)| F @] + . + |0 2] +

+ o "(x)) d7,

© 6101+ 00+ - + 0 00] + o) -
= J‘¢”(1) dt| + J-t(p"l(‘l’) def + ... + J"(p(")(‘c) dr| + |o"(1)] £

t
éJ’
0

+ |ay] + max (Jay], |as) ... |as]) j (19 +

t t
o'(7)| d7 + j' le”(z)|dr + ... + j le™(z)| dr +
0 1]

() + ... + l(p(")(r)l) dt <

t
< lay| + [1 + max (|ay], |az), ..., lanl)]J (o' @)] + |o"@)| + ... + |0 V(z)] +
0
+ |¢™(z)| dr for every teR™.
The inequalities (a), (b) follow immediately from (5), (6) by means of 1.2.

4.5 Lemma. Let ay, a,,...,a,€C,ne{l1,2,...},zeCand pe R* - C. If
(@) 2"+ a,2" ' +... +a,=0,

(B) the function ¢ is a standard solution for the numbers a,, a,, ..., a,,
then for every te R*

e =[o" V() + a, 0" P(1) + ... + a,-, 9(t)] +
+ z[e" () + a, 0" V() + ... + @, 0()] + ... +
+ 2" [@'(1) + a, o(1)] + 2" (7).

Proof. Let us denote the right hand side of the identity to be proved by y(t).
Now we have

(1) (1) — z9(t) = [@™(t) + a, 0" t) + ... + a,_, ¢'(1)] —
= z[e" V() + a, ") + ... + a,—; 9(1)] +
+ z[o" V(1) + a; " () + ... + a,-, ()] —
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— 22" (1) + a; 0" (1) + ... + ap_ 0()] + ... +
+ 2" ?[@"(t) + a; '(1)] — " '[@'(1) + a, o(1)] +

+ 2" '(f) — 2" o(t) =

= [o™(t) + a; 0" V(1) + ... + a,—, @'(1)] —

— [+ a2 + ...+ a,_yz] @(t) forevery teR".

Since by assumptions () and ()
() + a; " V() + ... + a,_y @'(1) = —a, (1),
"+az2"'+...+a,_z+a,=0
we see immediately from (1) that
(2) Y'(t) — zy(1) =0 forevery teR".
On the other hand, it is easily verified that
() §o,) = 1.

Now we prove without difficulty from (2) and (3) that for te R™

e —yY(t) -z J:(e“ - Y(r))dr =0

and consequently
t

(4) ]e" - t/l(t)l < |z]J‘ Ie" - l[l(‘t)l dr forevery teR*.
(1]

Now it suffices to apply 1.2 and it follows from (4) that ** — y(f) = 0 for every
te R* which was to prove.

4.6 Lemma. Let ay, a,,...,a, by, by, ....,b,eC and o,y eR* > C. If ¢ is
a standard solution for the numbers a,, a,, ..., a, and Y for the numbers by, b,, ...
..., by, then, writing

K = max (|ay], |a), ..., |a)
L = max (|by], |bs], ..., |ba]) »
6 =max (Ja, — by|, |ay — by, ..., |a, — b,]),
we have for every te R* and je{0,1,..., n}

|(pm(t) _ |p(j)(t)| < 5(1( + 1) 3 +K+Lent
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Proof. By [1] 2.10 we can write for every te R*

1) o) +.a, J:co""(f) dt + ... + 7 _"1)! J (6 — 9 o) dt = —ay ,

2) ¥ + b, J‘;w(n)(t)dr + o+ o by 1)vf (t = o " y™(r)dr = —b, . |
It follows from (1) and (2) that for every te R*
®3) @™(t) — '/’(")(‘) = —(a, = by) -
- I:(a1 - by) J:lp(")(t) dt + ... 1)' f(t — " ™) dr]

- [b, J‘ '((p(")(r) —¢y"(r))dT + ... + _"l)!

Moreover, we have by 4.4 (b) for every te R™

J‘ (=7 (670~ ¥() dt].

@ o(0] = Ke 5.
It follows from (3) and (4) that for every te R*
5 7(0) - ww(t)l <

<6+ é[J:ltp(")(r)l dr + ... + ( 1)' j (t — 7! |o™(7)| dz]
L[ ‘[ ;|¢<~>(z) — YD) de + .

- f (6= o) (0] e 5

<6+ 6[t max |(p(")(‘r)| .+ £ max |(p("’(1:)|] +
nlo<z<t

0<t<t

L[ ﬂ|¢<~>(z) )| dr .. J' o) — W) dt] <

1)'

< 6 + de' max (|<p""(1:)|) + Le‘J. |qo(")(t) - w(")(‘r)| dr £
0<t<t 0
t
<6 + de'Ke' TRt 4 Le‘j le™(z) — ¥™(z)| dr <
0

»
S H(K + 1) e+0r 4 Le'J~ le®(z) — ¥(z)| dr.
0

Applying now 1.2 to the inequality (5) we obtain immediately for every t e R*
(6) lq,(n)(t) - 'l‘(")(')l < 6(K + 1) (2 +K+Let)t
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Now the desired inequality follows easily from (6).
4.7 The system of all Borel subsets of C is denoted by #(C).

4.8 Lemma. Let a,,a,,...,a,eC—> C, ne{l,2,...}, and me R* x C - C. If
(o) the functions ay, a,, ..., a, are Borel measurable,
(B) for every se C, the function m(-,s) is a standard solution for the numbers
ay(s), ay(s), ..., a,(s),
then for every te R* and je{0,1,...,n}, the functions m?(t, -) are Borel
measurable.

Proof. It follows from () that there exist a sequence X, k € {1, 2, ...}, of Borel
subsets and a sequence K;, k € {1, 2, ...}, of nonnegative constants such that

(1) UX" = C,
k=1
(2) |ai(s)| <K, forevery seX, and ie{l,2,..,n}.

Let us now fix te R and ¢ > 0.
We take for ke {1,2,...}

(3) 3 :

= (Kk + 1) e(3+K|¢+K|‘e‘)t :
By (), there exists for every k e {1, 2, ...} a subset 4, = %(C) such that
(4) , U4, = X,,
(5) forevery ie{l,2,...,n}, Xed, and s, s5,€X,

we have |a,~(s,) - a,.(sz)| < 6.

Now we use 4.6 with & = §,, K = L = K, for every ke {1,2,...} and we obtain
from (B), (2), (3) and (5) that

(6) for every je {0, 1, e, n}, X e 4, and s,, s, € X, we have

[P, 51) = miP(1, )] S BK + 1) e TRRON <

Let us now denote 4 = | 4,.
k=1

Then by (1), (4) and (6)
7 Ud==cC,
(8) forevery je{0,1,....,n}, Xed and s,,5,€X, wehave

|m$”(t, s;) — my(t, sz)[ <e.

Since te R* and & > 0 have been arbitrary, the assertion of our lemma follows

immediately from (7) and (8).
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4.9 A Banach space E will be called Hilbert space if |x + y|* + |x — y|* =
= 2(|x|? + |y|?)forevery x, y € E. In a Hilbert space E we introduce the so-called
scalar product {x, y) for every x, y € Ein the following way: <x, y> = #[|x + y||* —
— |x = »||*] in the real case, <x, y> = [||x + »|* — |x — ¥||* +i|x + iy
- inx - iy||2] in the complex case. This scalar product has the usual well-known
properties. The notion of the adjoint operator A* to an operator A € L+(E) is intro-
duced in the usual way.

2.—

4.10. In the sequel we always suppose that E is a complex Hilbert space.

4.11. An operator ‘A € L*(E) is called normal if A4* = A*A.

4.12. Let & € #(C) — L(E). The function & is called a spectral measure if £(C) = I,
#(X) is an orthogonal (symmetric) projector for every X e #(C), #(XU Y) =
= &(X) + &(Y) — (X n Y) for every X, Ye #(C) and &(X,)x — 0 for every

k— 0

x€ E and every nondecreasing sequence X, € #(C), ke {l,2,...}, such that

6Xk = 0.

k=1

4.13. Lemma. For every spectral measure & in E, an integral calculus can be
developed (see [4, Chap. VII] and [5, Chap. XVIII]). The elementary rules of this
calculus will be frequently applied in Section 5 and we refer to them by quoting
this point.

The following facts are particularly important
(a) |#(+) x||* is a nonnegative measure on #(C) for every x € E,

(b) if f is a Borel measurable function from C — C, then for some xe E and
X e #(C):
J f(s) &(ds) x exists if and only if f |£(s)|* |&(ds) x|* and
b's x

| f FOLCE e j O fotas)x|

4.14. Lemma. Let A € L*(E). If the operator A is normal, then there is a unique
spectral measure & such that

(I) x € D(A) if and only if [c s&(ds) x exists,
(IT) Ax = [¢ s &(ds) x for every x € D(A).

Proof. See [4, Chap. VIII].

4.15. Let Ay, A, ..., A€ L*(E), ne {1, 2,...}, be normal operators. This system
. is called abelian if the corresponding spectral measures &,, &,,..., &, (cf. 4.14)
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are commutative, i.e. &(X;)&(X)) = &(X,) 6(X,) for every X,,X,e %(C),
i,je{l,2,..,n}.

4.16. Lemma. Let A, A,, ..., A,e L*(E),ne {1, 2, ...}. If the operators A, A,, ...
..., A, are normal and this system is abelian, then there exists a spectral measure
& € #(C) —» L(E) and Borel measurable functions a,, a,, ...,a,€ C > C so that
for every ie{1,2,...,n}

(I) x e D(A,) if and only if [ as) &(ds) x exists,
(1) A(x) = [c as) &(ds) x for every x € D(4;).

Proof. See [4, Chap. X, especially § 3].

5. ABELIAN SYSTEMS OF NORMAL OPERATORS IN HILBERT SPACES

In this section, we shall study linear differential equations in a Hilbert space over C
whose coefficients form an abelian system of normal operators. In particular, we
show that in this class of operators, the exponentially Hadamardian systems are
correct.

5.1 Theorem. Let A,, A,, ..., A, e LY(E), ne{1,2,...}. If
() E is a Hilbert space over C,
(B) the operators Ay, A,, ..., A, are normal,
(Y) the system of operators, Ay, A,, ..., A, is abelian,
then the system of operators Ay, A,, ..., A, is definite.

Proof. Let us choose by 4.16 Borel measurable functions ay, a,, ..., a, and
a spectral measure & so that 4.16 (I), (II) hold.
Let us now define for ke {1, 2,...}

1) S ={s: |a‘(s)| < k forevery ie{1,2,...,n}}.

It is clear that the sets S, are Borel measurable for every k € {1, 2, } and hence
we can take

@) Py = &(S,) for ke{l,2,..}.

It follows from 4.13 that the assumptions of 2.3 are fulfilled and hence the statement
is true.

5.2 Theorem. Let Ay, A,, ..., A,€ L*(E), ne{l,2,...}. If the assumptions
5.1 (x)—(y) are fulfilled, then the system of operators A,, A,, ..., A, is extensive.

Proof. Let us choose by 4.16 Borel measurable functions a,, a,, ..., a, and
a spectral measure & so that 4.16 (I), (II) hold.
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Let us now define
(1) & =.{S: S e B(C), the functions a,, a,, ..., a, are bounded on S} .

Now we take
@) P ={6S):Se ¥} .

It follows from 4.13 that the assumptions of 2.8 are fulfilled and consequently the
statement is true.

5.3 Remark. We see immediately that the preceding Theorem 5.2 gives more,
namely, under the assumptions of 5.2, the Duhamel solutions exist in fact for initial
data from a dense subset of E.

5.4 Theorem. Let Ay, A,, ..., A, e L*(E), ne{1,2,..}. If
(o) E is a Hilbert space over C,
(B) the operators Ay, A,, ..., A, are normal,
(Y) the system of operators Ay, A,, ..., A, is abelian,
(8) the system of operators A,, A,, ..., A, is exponentially Hadamardian,
then this system is correct (of class n — 1).

Proof. It follows froni 5.1 that

(1) the system of operators A,, A,, ..., 4, is definite.
Further, by 5.2

(2) the system of operators A,, A,, ..., 4, is extensive.
With regard to (2), it suffices to prove that

(3) the condition 2.9 (B) is satisfied.

To prove (3), we need a series of preparatory considerations.

First, using 4.16, we obtain from (o) — () that there exist functions a,, a,, ..., a, €
e C - C and a function & € #(C) - L(E) so that

(4) the functions a,, a,, ..., a, are Borel measurable,
(5) the function & is a spectral measure,

(6) forevery ie{1,2,...,n}, xeD(4;) ifand only if J‘ as) &(ds) x exists,

C

(M Ax = J‘ a(s) &(ds)x forevery ie{l,2,...,n} and xeD(4,).
c

By 4.13, we obtain from (4)—(7) that
(8) &(X)A; £ A;8(X) forevery ie{l,2,..,n} and Xe%(C).
Let us now denote

) & ={X:Xe%(C), thefunctions ay,a,,...,a, arebounded on X}.
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By 4.13, we obtain from (4)—(7) and (9) that
(10) 6(X)xeD,(Ay, A;,...,A,) forevery xeE and Xe &,

1/2
1) [Audy, .. Auy 6(X) x| = [ '[ 10,,(5) @y(s) .. aui(s)|? [ €(ds) x||z]
X
forevery xeE, Xe¥, de{l,2,..} and oy, ...,25€{1,2,...,n},

(12) there exists a sequence X, € &, v = {1,2, ...} such that X, = X, for every
ve{l,2,..} and U{X,:ve{1,2,..}} =C

On the other hand, by 4.2 there exists a unique function me R* x C — C such that

(13) for every se C, the function m(+,s) is a standard solution for the numbers

ay(s), ay(s), ..., a,(s).
Using 4.8, we obtain from (4) and (13) that
(14) the functions mij(t, -) are Borel measurable for every te R* and je
€{0,1,...,n}.
Further, using 4.4 we obtain from (9) and (13) that
(15) for every X € &, there exists a constant K so that for every te R*, se X and
je{0,1....,n}
Imﬁj)(t, s)l < KeX',
By 4.13, we obtain from (13)—(15) that

(16) for every x € E and X € &, the function [x m(, s) &(ds) x is a Duhamel solution
for the operators A, A4,, ..., A, such that

( f e ) 8(0) ) o E(X) x,
(17) dit’j Lm(r, ) &(ds) x = ngﬂ(t, Jldsx For every

teR*, xeE, Xe¥ and je{0,1,...,n},

(18) 1 'f( — A, dn_i(j m(z, s)a(ds)x>dr=

(n —l)' dt"
=\ a

I (S) ~ 1)
teR*, xeE, Xe& and ie{l,2,..,n},

= [[ 1m0 9 peten ]

forevery teR*, xeE, Xe% and je{0,1,..,n},

J (t — ©)'"' m(z, s) dr &(ds) x for every

(19) J‘ 0,9 6(0)

263



(20) (S)

J (t = 1)~ ' m(z, s) dt &(ds) x

(Gl

_[ ) ; l),J(:—r)' tm(z, s) dz ll«f(ds)xH’]

for every teR*, xeE, Xe ¥ and ie{l,2,...,n}.

Our next purpose is to establish some estimates of growth of the function m.
It follows from Theorem 3.5 that we can fix two nonnegative constants N, x,
a number re {1, 2, ...} and a finite sequence ¢y, g5, ..., g, so that

(21) for every Duhamel solution u for the operators A, A,, ..., A, such that
u"(0,) e D,(A4y, A, ..., 4,), for every te R* and every ie{l,2,...,n}

|4 2(0)] < Ne“[[u=2(0.)] + |4g,4,, -
Since for every te R*
u™(1) = —[A; u® (1) + A, u""2(1) + ... + 4, u(1)],
for every te R* and ke {0,1,...,n — 1}

m J:(t — 1) R y™(7) de +

and for every te R*, 6 > Oand 1€{0, 1, ...}

tulk

(1R

u("’(t) - ur= l)(o )

we deduce from (21) after a simple calculation that

(22) for every Duhamel solution u for the operators A4,, A,,..., 4, such that
u®=10,) € Do(4y, 4y, ..., 4,), for every teR*, je{0,1,...,n} and 6 >0

[uP()] = —("N + 8) e [u=D(0,)] + [[Ag Ay, - 4g u V(0]
It follows from (1), (10), (16), (17) and (22) that

(23) j ) m?(t, s) &(ds) x|| <

S =5 (N + 8) €800 x| + g Ay, . 4y 50 5[]

forevery teR*, xeE, Xe¥ and je{0,1,...,n}.

Now (11), (19) and (23) give, with regard to the inequality (a'/? + b'/%)? <
S2a+b)foraz0,b20
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1/2
@) [ e lo@) = 5 oz an + o e (| ot o2)” +

IIA

([ Jout ) - a0 Jot@) f7) "
2

= 5200 (nN + 6)? ezix+a)zj 1+ |"q.(s) a,(s) ... "q,(s)lz) ||$(ds) x"z <
X

S S (o + 3 2o I (1 (9 ) - 2, O @) x|

forevery teR*Y, xeE, Xe& and je{0,1,..,n}.

Let us now define for 6 > 0,te R* and j€ {0, 1, ..., n}
(25) Njoj= {s :seC, Imﬁj)(t, s)l >
> —\/—2— (nN + 8) e**P1(1 + Ia (5) ag,(s) ... a (s)l)
5,,_,' q1 92 R ’

It is clear from (14) and (25) that

(26) the set N, ; is Borel measurable for every 6 > 0, te R*-and je {0, 1,..., n}.
Let us now put for 6 > 0

(27) Ny = U{N,,;:teR*, trational, je{0,1,..., n}}.

We see from (26) and (27) that

(28) the set N, is Borel measurable for every é > 0.
It follows from (13) (the continuity of m{’( -, s) follows by 4.1), (25) and (27) that

(29) CN, = {s P, )| <

= 5(\'{%1') (nN + 6) e**9(1 + [aql(s) a,(s) .. aq,(s)l)

forevery teR* and je{0,1,..., n}} forevery 6 > 0.
Now we need to prove that
(30) &(N;) =0 forevery 6>0.

It is seen from (12) that it is sufficient for the validity of (30) to prove that
&(N;) 8(X)x = Oforevery d > 0, xe E and X € &, i.e. that

(31) 6(N;nX)x =0 forevery 6 >0, xeE and Xe&.
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On the contrary, suppose that (31) is not true. Then there exist 6 > 0, x € E and
X e & so that &(N; N X)x % 0. Consequently, by (27) we can find te R* and
je{0,1,...,n} so that

8Ny, N X)x % 0.
Hence by (25)

j ImP(e, 5)|? [ £(ds) x| >
Ng,e,jnX

> Ez—(_ftl—) (nN + 6)% ex*o¢ J.N 1+ |aql(s) a,(s) ... a,(s)|) ué’(ds) x|2.

8,6,5nX

Since N;,; N X € & by (9) and (26), the last inequality obviously contradicts (24)
and this proves (31).

The statements (29) and (30) represent the needed growth properties of the func-
tion m and will now be used to estimate the roots of the characteristic polynomial.

By Fundamental Theorem of Algebra, there exist functions z;, z,,...,2,€ C = C
such that

(32) "+ ays) "+ ..+ as) =
= (z — 24(5)) (z — 22(5)) ... (z — z,(s)) forevery s,zeC.
Applying 4.5 to (32) we obtain easily
(33) | e < (1 + |z(s))" 1 (1 + |ay(s)| + |ax(s)| + --.
T+ |a,—1(s)]) (|m(t, 5)| + |m'(z, 5)| + ... + |m{"~ (e, 5)|)

forevery teR*, seC and ie{l,2,..,n}.

We get from (29) and (33)
(34) - e""‘(”.' = [ = (1 + |zs))" 1 (1 + |ay(s)| +
+ [ax(s)] + oo + |ay-s($)]) v2 (5i tlob (1;) (nN + 3).

L XTI 4 a, (s) ay(s) ... aq,(s)l) =

=t Va (G et )N O el

1+ |ay(s)| + |ax(s)| + .- + |a(s))) (1 + |a,,(s) ag,(s) - . aqr(s)|)]
' forevery teR*, 6>0 and seC\N;,.
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Since the member in the last brackets does not depend on ¢, it follows immediately
from (34) that

(35) Rez(s) <%+ 6 forevery 6 >0 and se C\N,.
Let us now put

(36) N=U{N;:ke{l,2,..}}.
It follows from (30) that

(37) &(N)=0.
On the other hand, by (35) and (36)

(38) Re z{(s) £ » forevery seC\N.

The last results (37) and (38) allow us to estimate the growth of a general Duhamel
solution which is our task from (3).

However, to this aim we need still an auxiliary result, namely

(39) for every Duhamel solution u for the operators

Ay, Ay, ..., A,, every teR* and ie{l,2,...,n}

J (t = ot = 9(0) e

=

_ 1)!
J‘(t — ) o, B

a()

ror=s

To prove (39) let u bé an arbitrary Duhamel solution for the operators
Ay, Agy ooy A,

By (12), we can choose a sequence X,. ve {1, 2, ...} such that
(40) X, e & for every ve {1 2,...}, X, S X,y, for every ve{l,2,...} and
U{X ivefl,2,..}} =
(41) é&(X,)x > x (v—> ) forevery xekE.
By (16), (18), (20), (40) and (41), there exists a sequence u,, v € {1, 2, ...}, such that

(42) for every ve {1, 2, }, the function u, is a Duhamel solution for the operators
Ay, A,, ..., A, such that

u(v"_l)(0+) = &(X,)u""1(0,).

J' (t — O A, u(x) de

”é”(ds) u" 1’(0 )"z]

(43)

1)'
=[[ et 25, [ = 9 me o otas w2, el
=

forevery teR*, ie{l,2,...,n} and ve{l,2,...}.
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On the other hand, we establish easily by means of (8) that
(44) for every ve{l,2,...}, the function &(X,)u is a Duhamel solution for the
operators A,, 4,, ..., 4, such that (#(X,) u)"~(0,) = &(X,) u"~1(0,).

Now we get from (1), (42) and (44) that

(45) u, = 8(X,)u forevery ve{l,2,...}.

It follows from (43) and (45) that

f (:(t A, 6(X,) uO(e) de

) o=

forevery teR*, ie{l,2,...,n} and ve{l,2,...}.

[6(as) u<~-“<o+>u=]"’

By (8)

(@) !

(n = 1)
- g(x,)[

j (1 = =1 A, 8(X,) u® 9(x) dr =

— f (t = Pt A;u- "(r)dt]

for every teR*, ie{l,2,..,n} and ve{l,2,..}.

Letting v — oo, we see easily from (40), (41), (46) and (47) that (39) is valid.
Using Lemma 4.3 we see from (13), (32), (38) and (39) that (48) for every Duhamel
solution u for the operators Ay, 45, ..., 4, every te R* and i€ {1,2, ..., n}

< 31 + o) eu(0,)] -

j(t — )" 4,u (1) de

(n - 1)

But (48) clearly yields (3) if we take M = 3", » = x + 1.
The proof is complete.

5.5 Remark. The preceding theorem shows that the system of operators Ay, A,, ...

., A, with the properties 5.4 (&), (B), (Y) is correct if and only if it is exponentially
Hadamardlan

Moreover, in the course of the proof, we have shown that the system of operators
Ay, Ay, ..., A, with the properties 5.4 (), (B), (Y) is correct if and only if it is cor-
rect of class n — 1.

For Hadamardian systems, Theorem 5.4 does not hold and certain additional
restrictive assumptions on the operators A4,, 4,, ..., 4, must be introduced.
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One of such conditions is known from Gérding’s theory of hyperbolic equations
and says, roughly speaking, that the operators A, 4,,..., A, are polynomials of
certain n fixed operators.

We intend to return to these problems in another paper.

References

[1] Sova, M.: Linear differential equations in Banach spaces, Rozpravy Ceskoslovenské Akademie
véd, Rada matematickych a pfirodnich v&d, 85 (1975), No 6, 1—82.

[2]1 Hadamard, J.: Lectures on Cauchy’s problem in linear partial differential equations, 1923.

[3] Hille, E.: Lectures on ordinary differential equations, 1969.

[4] Sz.-Nagy, B.: Spektraldarstellung linearer Transformationen des Hilbertschen Raumes,
1967.

[5] Dunford, N., Schwartz, J. T.: Linear operators, Part III, 1971.

Author’s address: 115 67 Praha 1, Zitna 25 (Matematicky ustav CSAV).

269



Casopis pro p&stovini matematiky, roé. 102 (1977), Praha

GENERALIZED LC-IDENTITY ON GD-GROUPOIDS

V. SATHYABHAMA, Waterloo
(Received March 17, 1976)

Introduction. A generalized LC-identity [1, 2] is given by

(1) Ay(Ay(x, Ax(x, ), z) = Au(x, As(x, A6(y, 2))) -

This functional equation, when all the functions (operations) 4; (i = 1,2, ..., 6)
are quasigroups defined on the same non-empty set G is investigated in [2] and its
general solution is obtained by reducing it to a simpler equation. If this equation is
satisfied on non-empty sets G, (i =1,2,..., 7), then each of the operations 4;
(i=1,2,...,6) can be regarded as a GD-groupoid in a natural way.

In this paper we find the general solution of equation (1) defined on GD-groupoids,
in terms of a loop operation (+) and an arbitrary mapping ¥ such that i is a mapping
into the left nucleus of the loop (+).

Basic definitions and notaitons. 4 loop G(+) is a quasigroup with an identity. If the
loop G(-) satisfies the identity

(x.(x.y).z=x.(x.(y.2), forall x,y,z€G,

it is called an LC-loop [1]. When the operation (-) is replaced by quasigroups 4; (i =
=1,2,..., 6) defined on G, we get the functional equation (1).

A GD-groupoid is an ordered quadruple (G,, G,, G; A4) involving three non-empty
sets G, G,, G and the mapping A: G; x G, — G such that the equations 4(a, y) = ¢
and A(x, b) = ¢ always have solutions in y € G, and x € G, respectively, for every
ae G, be G, and ce G. When these solutions are unique, the GD-groupoid is
called a G-quasigroup. Throughout this paper we denote the GD-groupoids simply
by the operation involved in it.

A GD-groupoid (G,, G,, G; 4;) is homotopic to another GD-groupoid
(Hy, H,, H; A,) if there exist three surjections a: G, — H,, p: G, > Hyandy: G - H
such that y 4,(x, y) = 4,(ax, By), for every xe G,, y € G, in this case the triple
[, B, y] is called a homotopy.

The following notations are used.

L{a)y = Afa,y), R(b)x =A(x,b), (i=12,...,6).
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We consider the functional equation (1), namely A,(4,(x, 45(x, y)), z) =
= Ay(x, As(x, Ag(y, 2))), for all xeG,, ye G, and ze G, where the operations
(i=1,2,...,6) are the GD-groupoids (Gs, G, G; 4,), (G, G4, Gs; 4,), (G4, G,,
G4 A3), (Gy, Gy, G; Ay), (G, Ge, G7; As) and (G, G, Gg; Ag). Further, we assume
that Ag is a G-quasigroup and R,(c): Gs —» G, Ls(a): G¢ - G, and Ly(a): G; —» G
are bijections for fixed c € G; and a € G, respectively.

Putting x = a in equation (1), we get

(2 A,(Ly(a) Ly(a) y, z) = Ly(a) Ls(a) Ag(», 2) .
Also, with x = a and z = ¢ simultaneously in (1), we have
G) Ry(c) Ly(a) Ly(a) y = La(a) Ls(a) Rq(c) y -

Since Ly(a), Ls(a), Rg(c) and R,(c) are bijections, from (3), we see that L,(a) Lj(a)
is a bijection for x = a € G,. Hence, from (2) and (1) we obtain

(4)  Ly(a) Ls(a) A6((Lo(a) La(a)) ™" Ax(x, As(x, ¥)), 2) = Au(x, As(x, 46y, 2))) -
Putting z = ¢ € G, it follows from (4) that
(5)  La(a) Ls(a) Re(c) ((L2(a) Lo(a)) ™" Aa(x, As(x, y))) = Aa(x, 45(x, Re(c) ¥)) -
From (4) and (5) we have
(6) Ly(a) Ls(a) A6(Re(c) ™" Ls(a)™" La(a)™" Aa(x, 4s(x, Re(c) y), 2) =
= Ay(x, As(x, 44(y, 2))) -

Equation (6) could be rewritten as:
() Li(a) Ls(a) As(Re(c)™" Ls(a) ™" La(a) ™" Aulx, As(x, u)), z) =

= Ay(x, As(x, Ag(Re(c) ™ u, 2))),

where Rq(c) y = u € G.
Now let

8) Ls(a)™" Ly(a) ™" A4(x, As(x, u)) = K(x,u), xeG,, ueGs.
Then K is the mapping G, x Gg — Gg. By means of (8), (7) becomes,

9) A¢(Re(c) ™! K(x, u), z) = K(x, A6(Re(c) "' u, 2)),
xeG,, ueGqs, zeG,y.

On G define an operation (+) as follows:
s+t =A¢(Rs(c)™'s, Le(b)~'1), forevery s,teGs.
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That is
(10) . Aoy, z) = Re(c) y + Ly(b) z .

For the element s € Gg, there is only one element y e G, such that s = Re(c) y,
because Re(c) is a bijection. A similar argument holds for Lg¢(b) z also. Thus, the
operation (+) is well-defined on G¢. Further, we note from (10) that G¢(+) is the
homotopic image of the GD-groupoid A4 and is itself a GD-groupoid [3]. Besides,
since the equations A¢(y, ¢) = d and A¢(b, z) = d have unique solutions for y € G,
and z € G, (since 44 is a G-quasigroup) G¢(+) is a quasigroup.

Next, we will show that G¢(+) is a loop. That is, G¢(+) has an identity. Putting
y = b in (10), we have Ly¢(b) z = Rg(c) b + Lo(b) z, which implies that Re(c) b is
the left identity in G4(+), since for every u € Gg, there is a unique z € G, such that
Lg(b) z = u. Similarly, by putting z = c in (10), we get Rq(c) y = R¢(c) ¥ + Le(b) ¢,
showing thereby that Lg¢(b) ¢ is the right identity in G¢(+). Thus, G¢(+), having
a left and a right identity, has an identity namely 44(b, c) denoted by 0, and therefore
Go(+) is a loop.

From (9) and (10) we have

(11) K(x,u) + v=K(x,u +v), x€G,, ueGs, Lsb)z =veGg.

Put u = 0, the identity element in G¢(+). Then from (11), we get

(12) K(x,0) + v = K(x, v).
Let
(13) K(x,0) = yx, where y is the mapping G; - Gg .

Then, (11), (12) and (13) yield,
(14) (Wx +u)+v=yx+ (u+0v),

where ¥ is a map G, — G¢ and (+) is a loop operation defined on G4 and hence yx
belongs to the left nucleus of (+).
Equations (2) and (10) yield,

(15) Ay(w, 2) = Ly(a) Ls(a) (Re(c) (Ly(a) Ly(a))™* w + Lg(b) 2),
weGs, zeG,s.
From (5) and (8), using (3) and (12), we get
(16) A3(x, A5(x, y)) = Ly(a) Ly(a) Rg(c) ™" K(x, Re(c) y) »
= Ly(a) Ly(a) Re(c) ™" (¥x + Rq(c) y).-
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From (8) and (12), we have
(17) Aq(x, As(x, u)) = Ly(a) Ls(a) (¢x + u).

Putting L,(a) Ly(a) = a, Ly(a) Ls(a) = B, Re(c) = 7, L¢(b) = 6, equations (15), (16),
(17) and (10) yield

(18) Ay(w, z) = B(ya~'w + 62), weGs, zeGj;,
Ay(x, As(x,y)) =y~ (Yx + yy), x€G,, yeG,,
Ay(x, As(x,u)) = p(Yx + u), xeG,, ueGs,
Ag(y,z) =yy + 6z, yeG,, zeG;.

Thus, we have proved part of the following theorem.

Theorem. Let (Gs, G3, G; A,), (Gy, G4, Gs; 4,), (Gy, Gz, Gy; A43), (G4, G7, G; Ay),
(G4, Go, G7; 4s) and (G,, Gs, Gg; Ag) be GD-groupoids satisfying the functional
equation (1) and let Ry(c): Gs - G, Ls(a): G¢ = G, Ly(a): G; — G be bijections
for fixed ce G;, ae G,. Further, let A¢ be a G-quasigroup. Then there exists
a loop (+) defined on the set Gs and a mapping Y: G; — Gg such that § is a mapping
into the left nucleus of the loop (+) and the general solution of equation (1) is given
by (18) and conversely. '

The converse part of this theorem can esily be established by simply substituting
(18) into (1) and taking into account that yx belongs to the left nucleus of the
loop G, (+). g

Now we will deduce the result proved in [2] from Theorem 1, that is let us consider
the case when all the GD-groupoids 4; (i = 1,2, ..., 6) are quasigroups defined
on the same set G. If we represent the quasigroups 45 and A4, as

(19) As(x, y) = C(x, y),

and

(20) Ay(x, y) = BK(x, y),

then C and K are quasigroups. From (5) we have

(21) Ay(x, As(x, y)) = oy~ K(x, C(x, 7y)) »

and, from (18),

(22 Ay(x, y) = Blya~'x + 8y), Ae(x,y) =7yx + dy.

Substituting (19), (20), (21) and (22) into (1) and in the resulting equation replacing yy
by y and 6z by z, we get

(23) . K(x, C(x, y)) + z = K(x, C(x, y + z)),
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which is precisely the reduced equation (7) in [2]. Also, with y = 0, the identity of
the loop (+), and writing K(x, C(x, 0)) = y(x), from (23) we obtain

-

(24) Y(x) + z = K(x, C(x, z)) .
From (23) and (24) we see that
Wx)+y)+z=y(x)+( + 2),

which shows that (x) belongs to the left nucleus of the loop G, (+), [2].
I sincerely thank Professor PL. KANNAPPAN for taking pains to go through this
work and for his valuable suggestions.
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NOTE ON VOLTERRA-STIELTJES INTEGRAL EQUATIONS

STEFAN SCHWABIK, Praha
(Received May 6, 1976)

This note is a supplement to the paper [2] which is devoted to the Volterra-Stieltjes
integral equation in the space BV,[0, 1] of n-vector functions of bounded variation
on the interval [0, 1].

Assume that K(¢, s) is an n x n-matrix valued function defined on the square
[0, 1] x [0, 1] = J such that

(1) u(K) <
and
2) varg K(0, *) < o

where v(K) denotes the twodimensional Vitali variation of K on the square J and
vary K(0, ) is the variation, of K(0, 5) in the second variable on the interval [0, 1].
The notions of variation are defined in the usual way by the norm in the space I(R,)
of all n x n-matrices which is the operator norm for linear operators on R,
(see [1], 121, [3D.

In [2], Theorem 3.1 asserts the following:

If K:J - L(R,) satisfies (1), (2) and for any te (0, 1] the inverse matrix
[I — (K(t, 1) — K(t,t—))] ! exists then the homogeneous Volterra-Stieltjes integral
equation

t
o) () ~ [ a1 x(0) = 0
0
possesses only the trivial solution x = 0 in BV,,[O, 1].
This states that the condition
(4) I — (K(t,t) — K(t,t—)) is a regular matrix for all te (0, 1]

is sufficient for the equation (3) to have only the trivial solution x = 0 € BY,. Our
aim is to prove that (4) is also a necessary condition for the equation (3) to have this
property. .
Note that the limit lim K(t, t) = K(¢, 1—) exists since (1) and (2) hold (see [1]).
L and Sl i
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1. Theorem. If K : J — L(R,) satisfies (1) and (2) then the homogeneous Volterra-
Stieltjes integral equation (3) has only the trivial solution x = 0 in BV, if and
only if the condition (4) is satisfied.

Proof. The sufficiency of (4) is stated in the above quoted theorem from [2].
It remains to prove the necessity. We show in the sequel that if (4) is not satisfied
then (3) has a nonzero solution in the space BV,

It was shown in [2] that for the operator

xe BY, -+ J AK(t, $)] x(s) € BY,

0

we have

¢ [ECCDECERISORED
where

(6) K41, s) = K(t,s) — K(1,0) if 0<s=<t<1,

KA(t,s) = K(t, 1) — K(1,0) = K4(t,7) if 0Zt<s<1.

For the new “triangular” kernel K* we have varg K40, +) < oo, v(K*) < oo,
K(t, 0) = Ofor t € [0, 1]if (1) and (2) is satisfied for the kernel K. Hence the equation
(3) can be written in the Fredholm-Stieltjes form

x(1) — j:d,[KA(t, s)] x(s) =0.

Since (1) and (2) hold we have varg H < oo for the matrix valued function
H: [0, 1] — L(R,) defined by the relations

H(t) = K(t,1) — K(1,t—) for te(0,1], H(0) =10
and there exists a sequence {t;};Z;, t;€(0, 1] such that H(f) = 0 for t€[0, 1],
t+t,i=1,2,.. (see Lemma 3.1in [2]). Hence ). ||H(t;)| < oo because varg H =
i=1

=2y "H(t,)" + |H(1)|. This implies that |H(f)| < } for t € [0, 1] except for
1:€(0,1)

a finite set of points in (0, 1). Hence the matrix I — H(r) can be singular only at
a finite set of points T;, i =1,..,k, 0 < T, < T, <...< T, = 1.

Let us assume that the condition (4) is not satisfied. Then by the facts shown above
there is a point T; € (0, 1] such that I — H(r) = I — (K(t, t) — K(t, t—)) is a regular
matrix for t € [0, Ty) but I — H(T,) = I — (K(Ty, Ty) — K(T}, T, —)).is not regular.
Hence there exists z € R, such that the linear algebraic equation

(7 [I - (KT, T,) — KT}, T,-))] x =z
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has no solution in R,. If we define the function y” : [0, 1] —» R, by the relations
y*(t) = 0forte[0,1], ¢t + T, and y*(T,) = z then y" € BV,. Let us now consider
the Volterra-Stieltjes integral equation

® wo—ﬁmwmqvw=y%m

Since I — (K(t, ) — K(t, t—)) s regular for t € [0, T}), every solution x of (8) vanishes
on the interval [0, T) by the first part of the theorem and for t = T; we have

x(Ty) — j :ld,[K(Tl, =) = .
Using the relation
[} ek, 91x6) = (K. 7) - K3, 7)) X(T)
(see [1]) we get
x(Ty) — (K(Ty, T,) — K(Ty, T,—)) x(Ty) = z

but the value x(T;) cannot be determined since the linear algebraic equation (7) has
no solution. Hence there is no x € BV,[0, 1] satisfying the equation (8), i.e. the range
of the operator

x € BV, - x(t) — J‘;ds[K(t, s)] x(s) € BY,

is a proper subspace in BV,[0, 1].

Since the Volterra-Stieltjes integral equation is a special case of the Fredholm-
Stieltjes integral equation we obtain by the Fredholm Theorem (see Theorem 6
in [3]) that there exists in BV, a nonzero solution of the homogeneous equation (3)
and our theorem is completely proved.

2. Corollary. Let K: J — L(R,) satisfy (1) and (2). Then the nonhomogeneous
Volterra-Stieltjes integral equation

©) wrﬁﬂmm@wm

has a unique solution x € BY,[0, 1] for any y € BV,[0, 1] if and only if the condition
(4) is satisfied.

Proof. Since (5) holds the equation (9) can be written in the Fredholm-Stieltjes
form

1
() = [ Ak 91 x6) = ()
0
where K* : J — L(R,) is given by (6). By Theorem 1 the corresponding homogeneous
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equation has only the trivial solution x = 0 in BV, and consequently by the Fredholm
Theorem (see Theorem 6. in [3]) we obtain the statement of the corollary.

3. Theorem. Let K : J — L(R,) satisfy (1) and (2). If the condition (4) is satisfied
then for every y € BV,[0, 1] the unique solution of the equation (9) is given by the
formula

(10) ) =) + | ANy rel0.1]

where I(t,s), 0 <s <t =<1 is a uniquely determined n x n — matrix valued
function such that

t
) I(t,s) = K(t 5) — K(1, 0) + J a[K(t ] I(r, 5)

0
if 0 <s <t =<1 If we define I'(t,s) = I'(t,t) for 0 <t <s <1 then o(I') < o
and.varg I'(t, *) < oo for every t€ [0, 1].

Proof. Since the equation (9) can be rewritten in the form of a Fredholm-Stieltjes
integral equation

x(t) - f;d,[m(,, 91 x(5) = ¥(0)

we obtain by Theorem 8. from [3] that the unique solution of this equation can be
given by the formula

(12 () = () + [ 4Lr(. 9] 0
where I' : J — L(R,,) satisfies the equality
I(t, s) = K41, s) — K1, 0) + Iod'[KA(t’ ] I(r,s)

for all t,se [0, 1], varg I'(0, +) < oo, I'(t, 0) = 0 for all te[0, 1], and o(I') < 0.
Using the definition (6) of the “triangular” kernel K* and the relation (5) we obtain

'[ |4 [K(, ] I, §) = f 4K, D] I, 5)

0 o

and this yields the relation (11) for 0 < s < t < 1. Further, evidently I'(t, s) =
=T(t,1)for0 £t <5 .= 1and also

[[arre 9156 = [ atre v

for every y € BV,. Hence by (12) we obtain the representation (10) for the solution
of the equation (7). Let us finally mention that by Theorem 8. in [3] the matrix
valued function I'(t, s) is uniquely determined on the square J.
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IDEALS OF BINARY RELATIONAL SYSTEMS
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The concept of an ideal of a partially ordered set was introduced for the purpose
of investigating systems with a partial ordering. This concept is a generalization of the
lattice ideal (see [1], [7]). However, in [6] another definition of an ideal of a partially
ordered set is given which is more general than the classical one and makes it possible
to obtain deeper results for some partially ordered systems, especially for I-groups.
The aim of this paper is to generalize this definition to the case of general binary
relation and to show its applicability to some problems in binary relational systems.

1. ELEMENTARY PROPERTIES OF @-IDEALS

Let ¢ be a binary relation on a set A. The pair (4, ¢) is called a binary relational
system. We introduce U(a, b) = {x€ 4; ag¢ x, bo x} and L(a,b) = {xe 4; x ¢ a,
x ¢ b} for arbitrary a, b € A. The system (4, ¢) is said to be gu-directed (ol-directed)
if U(a, b) & ®(L(a, b) + 0, respectively) for each a, be A. If {4, ¢) is both gu-
directed and gl-directed, it will be called g-directed. The set B is called a gu-directed
subset of A if (A,¢@) is a binary relational system, B < 4 and U(a, b)) n B + @
for each a, b € B. Analogously we introduce gl-directed and g-directed subsets.

Definition 1. Let (A4, ¢) be a binary relational system and I a non-void subset of A.
If the conditions

(I,) ae A, iel, agi imply a€l,

(I,) i,j el implies U(i,j) NI + 0
are satisfied, then I is called a g-ideal of {4, @).

An arbitrary subset I of A fulfilling the condition (I,) is called a semi g-ideal
of <4, 0. ,

A non-void subset D of A is called a dual g-ideal of {A, @) if the following con-
ditions (dual to (I,), (I,)) are satisfied:

(D,) be A, de D, dgb imply be D,

(D,) d, g € D implies L(d, g) n D + 0.
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The set of all g-ideals of {4, ¢) will be denoted by #(4). It is clear that {#(4), =)
is a partially ordered set.

Definition 2. A g-ideal I of {A4, ¢) is called maximal, if the conditions I < J,
I # J are fulfilled by no g-ideal J of {4, ¢)>. A g-ideal I of {4, @) is called prime, if

(P) a,beA, 0+ L(a,b)<=I imply ael or bel.

Dually we obtain the concept of a dual prime g-ideal.
An arbitrary subset C of A is called a g-convex subset of (A4, g),ifa,be C, x € A,
agx,x@bimply xeC.

Notation. Let ¢ be a binary relation on the set A. The transitive hull of o
is denoted by the symbol #(g); i.e. for a, b € A we have a t(g) b if and only if there
exist ag, ..., ad, € A with ag = a,a, =b,a;_,ea;fori=1,...,n.

Example 1. If ¢ is a partial ordering on A, Definition 1 introduces the concept
of an o-ideal from [6]. Moreover, if {4, @) is a lattice, the concept of a g-ideal
coincides with that of a lattice ideal. If ¢ is an equivalence relation on A, then

F(4) = Ale.

Proposition 1. Let ¢ be a binary relation on a set A. Then -

(a) Each g-ideal of (A, @) is a ¢-convex and gu-directed subset of A.

(b) If <A, @) is gl-directed, then each g-ideal of A, ¢) is a g-directed subset of A.
(c) <4, @) is gu-directed if and only if Ae #(A). .

Proof. Let I be a g-ideal of {4, ¢>. By (), I is g-convex and, by (I,), I is ou-
directed. If (A4, @) is gl-directed, then L(a, b) % 0 for each a, bel. Let t € L(a, b).
Then 1 ¢ a, hence by (I,) it is te€l. Thus @ % L(a, b) < I, i.e. I is also gl-directed;
(a) and (b) are proved. If A is a g-ideal of <4, g), then @ # U(a, b) n A = U(a, b)
for ach a, b € A, thus (4, ¢) is gu-directed. Conversely, if (A4, ¢) is ou-directed,
then @ =% U(a, b) = U(a, b)) n A. As (I,) is satisfied automatically, we obtain
Ae #(A).

Proposition 2. Let {Iy; yel‘} be a chain of g-ideals of {A,¢) (i.e. I, = I;or
I; < I, for each y, 0 €T). Then I = \J I, is also a g-ideal of (A, ¢).

yel'

Proof. Let ae 4, iel and agi. Then iel, for some y e I' and, by (I,), ael,.
Henceael. If i,jel, theniel,, jel, for some y, § € I'. Without loss of generality,
suppose I, < I,. Then i, j € I;, thus U(i, j) nI; + 0. As I, = I, also U(i, j) n I + 0,
which completes the proof.

Corollary. Each g-ideal of {A, ¢) is contained in a maximal g-ideal of (A, g).
This follows directly from Proposition 2 by Kuratowski-Zorn theorem.
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Proposition 3. Let (A, ¢) be a gl-directed binary relational system and I a prime
o-ideal of (A, ). If A — I % 0, then D = A — I is a dual prime g-ideal of {A, ).

. Proof. Lett D=A -1+ 0. Let be A, de D and dgob. If b¢ D, then bel
and, by (I,), d €1, a contradiction. Thus (D,) is satisfied.

Let c,d e D and L(c, d) n D = 0. As (4, @) is gl-directed, we have 0 + L(c, d) <
< I. By the assumptions, I is a prime g-ideal of (A4, ¢), thus ce I or d € I, also a con-
tradiction. Thus also (D,) is satisfied and D is a dual g-ideal of {4, ¢).

Suppose a,be A and 0 + U(a,b) = D. If ael and bel, by (I,) we have 0 +
% U(a, b) n I, which is a contradiction to U(a, b) < D. Thus either ae D or be D,
i.e. D is a prime dual g-ideal of {4, g).

Proposition 4. Let (A, ¢> be a gl-directed binary relational system and I a prime
¢-ideal of (A, @). ThenI, n1, = I implies I, < I or I, < I for each two g-ideals
11’12 Of <A’ Q>

Proof. The assertion is evident for I = A. Let I + 4. By Proposition 4, D =
= A — I is a dual prime g-ideal of (A4, ¢)>.If x, €I, — I, x, eI, — I, then x,, x, € D
and, by (D,), I(xy, x,) n D # 0. If t € L(x,, x,) N D, then t ¢ x,, t ¢ x, and by (I,)
we have tel, nI, < I, which is a contradiction. Thus I, — I =Qor I, — I =0,
which implies the assertion.

2. PRINCIPAL ¢-IDEALS AND SUPREMAL RELATIONS

Definition 3. Let (A4, ¢) be a binary relational system and @ + M < A. If the
intersection of all g-ideals of {4, ¢) containing M is also a g-ideal of {4, gD, we
denote it by I(M) and call it a g-ideal generated by M. If M = {a, ..., a,} is a finite
set, I(M) is denoted briefly by I(a,, ..., a,) and called a finitely generated g-ideal.
For M = {a}, I(a) is called a principal g-ideal generated by a.If I(a) exists for each
ae A, {A, ) is called principal. '

Notation. If {4, ¢) is principal, #y(4) denotes the set of all principal g-ideals
of {4, ).

Lemma 1. Let ¢ be a binary relation on A, a, be A and let I(a), 1(b) exist. If
a t(e) b, then I(a) < I(b).

Proof. By Definition 3, b € I(b). If a t(g) b, then there exist ao, ..., a, € 4, a, =
=a,a,=banda;_,ga;fori=1,..,n; thus by (I,) also a,-, €I(b) and induc-
tively a = a, € I(b). Hence I(a) < I(b). '

Definition 4. A binary relation g is called supremal on A, if for each a,be A
there exists at least one element s(a, b)e U(a, b) such that xe U(a, b) implies s(a, b) =
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= x or s(a, b) ¢ x. Each element s(a, b) with this property is called a g-supremum
of a, b.

It is clear that the g-supremum of a, b need not be determined uniquely. If for
example 4 = {a, b} and aga, agb, boa, bob, then a is a g-supremum of a, b
as well as b is. However, if s(a, b) # s'(a, b) are two g-suprema of a, b, then s(a, b) ¢
o s'(a, b) and 5'(a, b) ¢ s(a, b).

If ¢ is supremal on A and each a, be A has just one g-supremum, ¢ is called
uniquely supremal on A. Clearly, each antisymmetrical supremal relation on A4 is
uniquely supremal on A. The dual concepts are infimal and uniquely infimal
relation on A. .

The following examples show that for a uniquely supremal binary relation ¢ the
system {A, ¢)> need not be a semilattice.

Example 2. Let A be the set of all integers and ag b if and only if b — a = 1.
Then g is uniquely supremal on A and s(a, b) = max {a, b} + 1. However, s(a, a) +
% a, thus {4, g) is not a semilattice.

Example 3. Let < be a reflexive, uniquely supremal and uniquely infimal relation
on A. Then {4, X) is a weakly associative lattice (see [3]). However, {4, X) is
not generally a semilattice, since it is not necessarily transitive (see [2]).

Lemma 2. Let ¢ be a supremal relation on A and J a g-ideal of {A, ¢). Then
s(a, b) € J for each a, b € J and for an arbitrary g-supremum s(a, b) of a, b.

Proof. Let a, be J, s(a, b) be a g-supremum of a, b and s(a, b)¢ J. As J is
a g-ideal of <4, @), there exists x € U(a, b) n J. Thus x * s(a, b). By Definition 4
we have s(a, b) ¢ x, thus x € J implies s(a, b) € J, a contradiction.

Proposition 5. If ¢ is a supremal relation on A, then every set {I,,; yel‘} of
g-ideals of (A, @) has an infimumI = (I, in { #(A4), =) provided I + 0. Moreover,
yel

if (A, @) is also gl-directed, then { #(A), =) is a conditionally complete and join
complete lattice.

Proof. If g is supremal on 4, then (4, ¢) is gu-directed and, by Proposition l(c),
A is the greatest element of {( #(A4), ). Let {Iy;yel'} < #(A)and 0 + I =1,
vyel

IfaeA,icl,agi,then iel, for each y e I' and, by (Il), alsoael, foreachyer.
Hence ael. If i, j e I, then, by Lemma 2, s(i, j) € U(i, j) n I, for each y e I and an
arbitrary g-supremum s(i,j) of i,j. Hence s(i,j)e U(i,j) nI. Accordingly, I is
a g-ideal of {4, @). It is evident that I is the infimum of {I,;y e I'} in {(#(4), =).

Let {A, ¢) be gl-directed and I,, I, € }’(A). Then I, n I, % 0, since the relations
ael,, bel, imply xel, nI, for each xe L(a, b) + 0. By the former result,
I, N1, is the infimum of {I,,I,} in {#(A4), €). Let {I,;yeI'} = #(A). Denote
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by & the set of all g-ideals of {4, ¢) containing () I,. By the first result, Ae &,

yell

thus & # 0. Then J = & is a g-ideal of {4, ¢). Clearly J is the supremum of
{I,; ve I} in (#(A), =). The proof is complete.

Corollary. Let ¢ be a supremal relation on A. Then {A, @) is principal and,
moreover, there exists I(M) for each ® + M < A.

Proposition 6. Let ¢ be a supremal relation on A.If {#(A), <) contains the least
element, then it is an algebraic lattice and the finitely generated g-ideals are its
compact elements.

Proof. If {#(A), =) contains the least element, then by Proposition 5 it is a com-
plete lattice. By Corollary of Proposition 5, (4, ¢) is principal and I(M) exists for
each 0 + M < A.

Let I € #(A). Then clearly I(x) < I for each x € I. Hence U I(x) 1. As xel(x),

also I UI(x) thus I = UI(x) Now UI(x) is a g- ideal of {4, @), hence I =
= U I(x) VI (x) (where V stands for the supremum in the lattice { #(4), =
Let ac A and I(a) = VI for some I, € #(A), y € I. By the proof of Proposmon 5,
VI =I( U IY) ie.ae I(a) c VI =I( UrI,). By Proposition 2 and Proposition 5,
ye

(A) is thc algebralc closure system with M — I(M) as an algebraic closure operator

on A (see [4], Theorem 1.2). This means that there exists a finite subset M of I,
yel‘

such that a € I(M). Now there ex1sts a finite subset {yl, vooVup ST with M < U I
This yields a e I(M) < I( UI,,) = VI,‘, ie. I(a) < VI,‘ Thus I(a) is a compact

element in (#(4), =) for each a eA. As g is supremal, each finitely generated
g-ideal is principal, which completes the proof.

Notation. Let ¢ be a binary relation on 4. We introduce operators

£, L:24 — {9} — 24
by the rules ;
#(X) ={aeA; agx for some xe X},

LX) = #(X) UX.

If ¢ is supremal on A, we introduce operators &, S : 24 — {0} — 24 by
#(X) ={aeA; a =s(x, y) for some xe X, ye X and ¢-supremum s(x, y)} ,

S(X) = Z(X)UX.
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Lemma 3. Let ¢ be a binary relationon Aand 9 + X < Y < A. Then

X c LX) = L(Y).
If ¢ is also supremal on A, then

X c S(X) = 8(Y).
The proof is clear.

Notation. Let ¢ be supremal on 4 and @ + X < A. Define (SL)' (X) =
= (SL)(X) = S(L(X)) and for any integer n recursively

(SLY™* (X) = (SL) ((SL)" (X))
Analogously, for the operators & and & let us write (#£)' (X) = (¥%)
gg; 5;(,?(}()) if £(X)#+ 0 and (££)*!(X) =(£2)(£L) (X)) if L(&<€)"
+ 0.

-

Proposition 7. Let ¢ be a supremal relation on A. Then I(M) = U (SL)" (M)
for each® £+ M < A. s

Proof. Let M be a non-void subset of 4. First we prove that I,, = U (SL)" (M)
is a p-ideal {4, @). L

Let ae A, xely, and ag x. Then x € (SL)" (M) for an integer n, thusae
€ L((SL)" (M)) and, by Lemima 3, a € (SL) ((SL)" (M)) = (SLy"** (M). Hence a € I .
If i, j € Iy, then there exist integers n, m with i € (SL)" (M), j € (SL)™ (M). By Lemma
3, for k = max {n, m} we have i,je(SL)*(M), thus s(i,j)e(SL)(SL)* (M)) =
= (SL)*** (M) < Iy, for each g-upremum s(i,j) of i, j. Hence U(i,j) NIy * 0,
thus I, is a g-ideal of {4, g). Clearly M < I,,.

It remains to prove Iy = I(M). Let I be a g-ideal of (A4, ¢) with M < I. From (I,)
and Lemma 2 we obtain (SL)(M) < I. By induction we can easily extend it to
(SL)* (M) < I for each integer k, thus I, < I, i.e. Iy < I(M). The converse inclusion
is evident, thus I, = I(M).

Corollary. Let ¢ be a reflexive and supremal binary relation on A. Then I(M) =
= U (£ZL)" (M) for each non-void subset M of A.
n=1

Remark. From Proposition 7 we can derive an explicite description of the suprema
of {I,; yeI'} in {#(A), <) in the case g is supremal on A. Indeed,

VI, = U(SLy (U1,).
yell n=1 yell
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3. SPECIAL BINARY RELATIONS

For some special binary relations frequently used in mathematical investigations
the set of g-ideals can be characterized more precisely.

A binary relation ¢ on the set A is called complete, if either agb or bga is
satisfied for each a, b € A. Clearly, g is complete if and only if its symmetrical hull
is a universal relation on A.

Proposition 8. If ¢ is a complete binary relation on a set A, then
(a) <4, @) is principal and I(a) = {x € A; x t(¢) a} for each a € A.
(b) Every finitely generated ¢-ideal of A, ¢) is principal.

(¢) Each g-ideal of {A, @) is prime.
(d) <F#(4), = is a chain.

Proof. (a) Le ¢ be a complete relation on 4. Then a ¢ a for each a € 4, i.e. g is
reflexive. If a, be A, then agb or bga. As aga, bo b, it implies a € U(a, b) or
b e U(a, b). Suppose a € U(a, b). If ce U(a, b), then agc, bgc, thus a = s(a, b).
For be U(a, b) clearly b = s(a, b). Thus g is also supremal and, by Corollary of
Proposition 5, (4, ¢) is principal. For ae 4 fix denote M = {x€ A4; x t(¢) a}.
Clearly a € M.

If be A, xe M, bg x, then there exist ay, ..., a,€ A with a5 = x, a, = a and
a;-yea; for i =1,...,n Thus bgx implies b #(¢) a, i.e. be M. If i, je M, then
either i € U(i, j) or j € U(i, j). Hence U(i, j)n M + 0 and M is a g-ideal of {4, ¢)
containing a.

Conversely, let I be a g-ideal of {4, ¢) containing a. If te M, then tgay,...
vey@y_y0a, =aforsomea,,...,a,e A. Asa€l, itis also a,_, €I and, inductively
by (I;), tel. Hence M < I, i.e. M = I(a). As a € A was chosen arbitrary, the state-
ment (a) is proved.

(b) By Corollary of Proposition 5, there exists finitely generated g-ideal I(ay, ..., a,)
for every finite subset {a,, ..., a,} of 4. Without loss of generality, suppose a, ¢ a,.
Then clearly I(ay, ..., a,) =I(a,, ..., a,). With respect to the finiteness of
{ay, ..., an}, by n — 1 steps we obtain I(ay, ..., a,) = I(a,) for some ie{l,..., n}.

(c) Let I be a g-ideal of <4, ¢) and i, je A. As ¢ is complete, i€ L(i, j) or je
€ L(i, j) is fulfilled. Then @ + L(i, j) < I implies i €I or j € I, thus I is prime.

(d) Let I, J be g-ideals of <4, ¢). By Proposition 5, I n J is also a g-ideal of
{A,¢)yandby (c) I nJ is prime. As I nJ = I n J, by Proposition 4 we obtain
IcInJcJorJ<InJcl,thus {#(A4), =) is a chain.

Remark. If ¢ is complete on A, clearly S(X) = X for each 0 + X = A. As ¢ is
also reflexive, we have L = #. Then by Proposition 7 we have I(M) = U £"(M)
© n=1
and by Proposition 8, {x € 4; x (g) a} = U £"({a}).
n=1
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Definition 5. Let ¢ be a binary relation on a set 4, ce B = A. We call ¢ the g-
greatest element of B, if b ¢ c is true for all b € B.

An element d € B is called g-maximal of B,if d ¢ b is true for none of the elements
beB, b Fd.

We say that {A, ¢) satisfies the g-maximal condition if each non-void subset of 4
has a g-maximal element.

Lemma 4. Let B be a semi g-ideal of {A, ¢) with the g-greatest element b € B.
Then B is the principal g-ideal and B = I(b).

Proof. If x, ye B, then x ¢ b, y ¢ b and it means b € U(x, y) n B. As B is a semi
g-ideal, B is a g-ideal of {4, ¢). Further, if I is a g-ideal of {4, ¢> containing b,
then t ¢ b implies t €I for each te A. However, t g b is true for each t € B, thus
B c I. Hence B = I(b).

Lemma 5. Every gu-directed subset B in a binary relational system (A, @) has at
most one g-maximal element. If such an element exists in B, it is at the same time
the g-greatest element of B.

Proof. If B is a gu-directed subset of 4 and a, b € B are g-maximal elements of B,
thenagt, botforeachte U(a, b) N B =+ @, thus it remains only a =t = b. Let B
have a g-maximal element m. If x € B, then there exists se U(x, m) N B since B
is gu-directed, i.e. x ¢ s and m g s. As m is g-maximal, we have m = s, thus x ¢ m.
As x was chosen arbitrary, m is the g-greatest element of B.

Proposition 9. Let {A, ¢) satisfy the g-maximal condition. Then each g-ideal
of {A, @) is principal and has a g-greatest element.

Proof. By Proposition 1, each g-ideal I of (A4, @) is gu-directed and, by Lemma 5,
I has the g-greatest element because {4, ¢) satisfies the g-maximal condition. By
Lemma 4, I is principal.

Definition 6. Let {4, ¢)», {B, o) be binary relational systems. A homomorphism
of (A, ¢y into (B, o) is a mapping h of A into B such that a ¢ b implies h(a) o h(b).
If h is a surjective and injective homomorphism of {4, ¢) onto (B, ¢) and h~! is
also a homomorphism of (B, a) onto {4, @) we call h an isomorphism of {A, ¢)>
onto (B, o) and wirte {4, ¢) = (B, o). For this definition see e.g. to [5].

Notation. If (A4, 0> is principal, then by Lemma 1 the mapping J, :a — I(a)
is a homomorphism of {4, ¢)> onto {#,(4), =). Denote by ©, the equivalence
relation induced by J, on A. By the notation introduced in [5], {4, ¢)/®, means
the binary relational system {A’, ¢"), the support A’ of which is the factor set 4/,
and the relation ¢’ on A/@, is defined by X, Ye A/@, X ¢’ Y if and only if x ¢ y
for some xe X, ye Y.

Denote by [a] the class of 4/@, containing the element a.
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Proposition 10. Let (A, ¢> be principal. If each principal g-ideal of {A, @) has
the g-greatest element, then { #o(A), S) = (A, ¢)[O,.

Proof. Clearly the mapping [a] — I(a) is a bijection of 4/@, onto #y(A). Sup-
pose a, b € A, [a] ¢’ [b]. Then there exist a’ € [a], b’ € [b] with a’ ¢ b". By Lemma 1,
I(a’) = I(b’), hence I(a) < I(b) and the mapping [a] — I(a) is a homomorphism.

Let I(a) < I(b). Denote by c the g-greatest element of I(b). Then ag ¢, b g ¢ and
cel(b), i.e. I(b) < I(c). Clearly I(c) < I(b), thus I(b) = I(c). From a ¢ ¢ we have
[a] ¢’ [c] and from I(b) =I(c) it follows that [b] = [c], thus also [a]e’[b].
Accordingly, also the converse mapping of [a] — I(a) is a homomorphism of
(4, 0|0, onto {F(A4), =), thus {(F(4), =) = {4, e)[O,.

Corollary. Let (A, @) be a principal binary relational system satisfying the
¢-maximal condition. Then {#(A), ) is a lattice if and only if {A, )0, is
a lattice. )

This follows directly from Proposition 10, since by Proposition 9 each g-ideal
of (A, @) is principal and has the g-greatest element.

It is well-known (see e.g. [1]) that for a partial order < the mapping a — I(a)
is an isomorphism of (A4, <) onto {#(A4), ). It can be proved that also the
converse proposition is true. These facts show that partially ordered sets can be fully
characterized by their sets of principal <-ideals. This characterization is given by
the following

Proposition 11. Let (A, ¢) be a binary relational system. The following con-
ditions are equivalent:

(a) <A, @)is principal and a is the ¢g-maximal element of I(a) for each a € A.
(b) Jo is an isomorphism of {A, @) onto {F(A), =).

(¢) Jo is an injective mapping of A onto #,(A).

(d) e is a partial ordering on A.

Proof. Clearly (b) = (c) and (d) = (b). Prove (c) = (a). The existence of J,
implies that {4, ¢) is principal. Let a € A. Suppose the existence of b € I(a) with
agb. By Lemma 1, a ¢ b implies I(a) < I(b), from beI(a) we have I(b) < I(a),
thus I(a) = I(b). From the injectivity of J, we have a = b. Thus a is the ¢-maximal
element of I(a) for each a € A4.

It remains to prove (a) = (d). Let a € A be the g-maximal element of I(a). As I(a)
is a gu-directed subset of 4, by Lemma 5 a is the o-greatest element of I(a). Thus
aga, i.e. @ is reflexive on A. Let a,be 4 and ag b, b g a. By Lemma 1 we have
I(a) = I(b) and, by Lemma 5, a = b, since I(a) = I(b) has just one ¢-maximal
element. Thus g is also antisymmetrical. Suppose a ¢ b, b ¢ ¢ for a, b, ce A. Then
I(a) = I(b) < I(c), i.e. a€l(c). As c is the g-greatest element in I(c) (by Lemma 5),
we have a ¢ c¢. Accordingly, ¢ is also transitive, i.e. g is a partial order on A.
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Lemma 6. Let g be a transitive binary relation on A. If ae A and a g a, then
I(a) exists and I(a) = {x € 4; x ¢ a}.

Proof. Suppose a€ A and a g a. Denote M = {xe€ 4; x ¢ a}. Then ae M and
x, y€ M implies x ¢ a, y ¢ a, thus an(x,y)mM. If be M, xe A, xo b, then
b ¢ a and the transitivity of ¢ implies x ¢ a and hence x € M. Accordingly, M is the
g-ideal of {4, ¢) containing a. If I is also a g-ideal of {4, ¢) containing a, then x e M
implies x ¢ a, thus, by (I;), xeI, i.e. M < I. Hence I(a) = M.

Proposition 12. For an arbitrary binary relational system (A, ¢) the following
conditions are equivalent:

(a) <4, @) is principal and I(a) < I(b) if and only if a @ b;

(b) <4, @) is principal and I(a) = {x € 4; x ¢ a};

(c) ¢ is a quasiorder on A.

Proof. If ¢ is a quasiorder, by Lemma 6 we obtain the implication (c) = (b).
Suppose (b). Then I(a) < I(b) implies a ¢ b, the converse implication is given by
Lemma 1, thus (b) = (a). Suppose (a). I(a) < I(a) for each a € 4, ¢ is reflexive. Let
a,b,ce Aand agb, boc. By Lemma 1 we obtain I(a) < I(c) and the assumption
(a) implies a g c, thus ¢ is also transitive. Thus also (a) = (c), which completes the
proof.

Proposition 13. Let ¢ be a quasiorder on A. If ¢ is uniquely supremal on A, then

Proof. Let ¢ be uniquel.y supremal on A. As g is reflexive and transitive, from
unique supremality we have also the antisymmetry, thus ¢ is a partial ordering on A
and, by Proposition 11, {#o(A4), S > = (4, o).

Remark. Proposition 13 can be clearly dualized for ¢ uniquely infimal on A.

4. EMBEDDING OF RELATIONAL SYSTEMS INTO POSETS

The concept of a replica for the general case of algebraic structures is introduced
in [5]. Its modification for the case of binary relational systems is given by

Definition 7. Let € be class of binary relational systems and let (A4, ¢)> be an ar-
bitrary system not necessarily from ¢. A homomorphism h of {4, ¢) onto a system
(D, é) € ¥ is called an embedding of {A, @) into € and {D, J) is called a €-replica,
if for each system (B, 8> € ¥ and an arbitrary homomorphism g of {4, ¢) onto
{B, B) there exists a homomorphism f of (D, é) onto (B, ) with g = f. h.

Denote by # the class of all partially ordered sets. It is known (see e.g. [5], § 11.3)
that 2 forms a quasivariety of algebraic systems. Thus, by Theorem 5 from § 11.3
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in [5], for an arbitrary binary relational system {4, ¢) there exists an embedding
into & and a P-replica. In this section we shall give a condition for {4, ¢) to have
a P-replica (£o(4), =).

Definition 8. A binary relational system {4, @) is called strictly principal, if it is
principal and I(a) < I(b) implies a #(o) b.

Example 4. If ¢ is a complete relation on A, then, by Proposition 8 (a), <4, ¢)
is strictly principal.

If ¢ is a quasiorder on A, then {4, ¢) is strictly principal by Proposition 12 (a).

If (A,¢) is a finite cycle, ie. A={a,,...,a,} and a, ¢ ay,...,a,; @ a,,
a,0a, (¢ need not be transitive or reflexive), then I(a) = A for each ae A and
a t(g) b is also true for each a, b € A4, thus {4, g) is strictly principal.

Proposition 14. Let {A,¢) be a strictly principal binary relational system.
Then { #o(A), =) is a P-replica and J, is an embedding of {A, ¢) into 2.

Proof. By Lemma 1, J, is a homomorphism of {4, ¢) onto {#y(4), =) e 2.
Let (P, £)> e Z and let g be a homomorphism of {4, ¢) onto (P, <). Introduce
the relation #,(A4) — P by the rule I(a) —» g(a) for each a € A.

1°. If I(a) = I(b), then a t(e) b, b t(¢) a, i.e. there exist ag, ..., a,, by, ..., b€ A
such that ap =a =b,, by =b =a, and a;_,0a; (i=1,...,n), bj_;0b; (j =
=1,...,m). As g is a homomorphism, it follows that g(a) < g(b) and g(b) < g(a).
As < is a partial order, g(a) = g(b). Accordingly, the relation — is a mapping
of #4(A4) onto P. Denote this mapping by f.

2°. If I(a) < I(b), then a t(g) b because (A, g is strictly principal, i.e. there exist
ag, ..., d,€ A with ay =a, a, =b, a;_,0a; for i =1,...,n. As g is a homo-
morphism, we have g(a) < g(b). Thus the mapping f is a homomorphism of

{Fo(4), =) onto (P, ).

3°. Evidently, f(Jo(a)) = f(I(a)) = g(a) for each a€ A4, thus {Fy(4), ) is
a P-replica and J, an embedding of (A4, ¢) into 2.

Corollary 1. Let ¢ be a reflexive binary relation on a set A and let (A, ¢) be
principal. If a principal g-ideal generated by a € A in (A, ) is equal to the principal
#(o)-ideal generated by a € A in (A, (o)) for each a € A, then J, is an embedding
of A, @) into 2 and { #(A4), =) is a P-replica.

Proof. If g is reflexive, then ¢ = () is a quasiorder on A4, and by Proposition 12,
A4, @) is principal and I(a) < I(b) = a o b, i.e. a t(g) b. AsI(a) is the same in {4, ¢
as in {4, o), it follows that (A4, g) is strictly principal and, by Proposition 14, we
obtain the result.
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Corollary 2. Let ¢ be a complete relation on A. Then the ?-replica { #(4), <)
of (A, @) is a chain.
It follows directly from Proposition 14 and Proposition 8.

Corollary 3. Let ¢ be an equivalence relation on a set A. Then the P-replica
of A, @) is the antichain (i.e. a complete unordered set) {Ale, ).

Proof. By example 1, #(A4) = A/ for an equivalence relation ¢ on 4. Then clearly
I(a) = [a] for each a € 4, where [a] denotes the class of the partition 4/, I(a) <
< I(b) is equivalent to [a] < [b], which is equivalent to [a] = [b], i.e. aob.
Hence {4, @) is also strictly principal and, by Proposition 14, the assertion is ob-
tained, because #o(4) = #(4) = Afo.
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UNIVERSAL SIMULTANEOUS APPROXIMATIONS
OF THE COEFFICIENT FUNCTIONALS

PETR PRIKRYL, Praha
(Received June 14, 1976)

Universal approximations, a concept which appeared in numerical mathematics
some years ago [1], [2], had resulted from the attempt to avoid problems con-
nected with the choice of the space over which the given functional should be (best)
approximated. BABUSKA and SoBOLEV [3] pointed out that the dependence of the
best approximation on the space can have unpleasant numerical consequences. The
information at our disposal is usually not sufficient to determine a unique space over
which the given functional should be approximated optimally and the conclusions
on the advantage of optimum methods are thus “unstable” in practice. This implies
the importance of finding approximations the error of which does not differ “too
much” from those of the best approximations in a wide class of spaces. Such approxi-
mations are then called universal.

In an earlier paper of the author the universal approximations of Fourier coef-
ficients in a particular class of Hilbert spaces were studied [5] Later, the author
announced some results valid for general classes of Hilbert spaces [6]. This paper
treats the approximations of the coefficient functionals associated with a basis of
Banach spaces and the conclusions of [6] are here contained as a special case. Since
the fundamental ideas here are similar to those of [5] we proceed rather briefly in
this paper, referring to [5] whenever convenient*).

1. BEST APPROXIMATIONS: SOME LOWER BOUNDS

We shall deal with classes B of Banach spaces (B-spaces) E over the field of complex
numbers, generated by a common Schauder basis {x;}. Let E € B and assume that
we want to compute the values F j(x), j=1,2,...,r where

x =j§1F,-(X) X
and r > 1.

*) The results of this paper were presented at the Third Conference on Basic Problems of
Numerical Mathematics (Prague 1973) (cf. [7]).
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We shall approximate the vector [F j] of functionals from E* by another vector
[G,], G; € E*. The approximating functionals are assumed to be of the form

(1.1) G(x) =k; a(x) 9:(J) »
where 1 < n < r, a; € E* and g, are complex-valued functions of an integer argu-
ment j: Thus instead of calculating r values F;(x) we compute n values a,(x), n < r.
The main question we ask in this paper is how to choose the matrix [g,(j)] (k =
=1,2,...,n j=1,2,...,r) properly.

For a given n, denote by M, the set of all the approximations [ G;] where G; is of the
form (1.1). We define the error of the approximation as

(12) o[G]) = max |F; = Gyle..

Let M = M, for some n. Then the best (or optimal) approximation from the set M
(if it exists) has the error

(13) Qx(M) =[‘;i;]1efM wg([G,]) -

Obviously Qi(M) = Qg(M,) for any M = M,.

A positive lower bound can be derived for Q¢(M,), which is of decisive importance
for further considerations.

Theorem 1.1. Let E € B and choose n + 1 integers jy,j;, ..., ju+1 in such a way
that 1 < j, < r and j; % j, whenever s = t. Then

i

(174) QxM,) 2 (: 2 %,

Proof. We shall make use of Lemma 4.1 of [5], which is obviously valid also
in B-spaces. We reformulate it for the reader’s convenience, but without proof.

Lemma 1.1. Let E € B and denote by 0 the zero element of E. If for every x€ E
and all approximations [G;] € M,

(1.5) inf  max |Fi(x) = Gi(x)| 2 Ce(x, g1, 2 -+ Gn)
J=1,2,..,r

K
k=1,2,...,n

is valid, then

(1.6) Q2M,) 2 inf sup (|x]7* - Celx, 91> 925 ---» 9w)) -
o xe

k=1,2,...,nx%0
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Therefore, we need a lower bound for

. inf max |Fj(x) — Gi(x)| =

ak Jj=1,2,

= inf  mm (Fl- Y adsed) -

ay J =
k=1,2,..,n
This can be found in the same manner as in [5] We choose n + 1 integers j,,
s=1,2,...,n + 1 satisfying the hypotheses of the theorem. Then we compose
n + 1 n-dimensional vectors

[91(s), 920s), -+ 9alis)]s s=1,2,...,n + 1.

These vectors are linearly dependent and we can find numbers 4, 4,, ..., 4,4+, such
that

n+1

(1.7) YAgli)=0, k=1,2,..,n,
s=1

and
n+1

(1.8) ; ] = 1.

Every vector A = [, 4,, ..., 4,+,] satisfying (1.7) and (1.8) will be called deter-
mined by the matrix [g,(j,)]. For any such A and any x € E we have

n+1 n+1

s; As(Fjs(x) - st(x)) =S=Zl As FJx(x) ®
In virtue of (1.8) we obtain

s=

and further
n+1

(1.9) inf  max |Ffx) = Gfx)| 2 | T4 Fiul)

k=1,2,...,n

for every x € E and [G;] € M,. The right-hand side of (1.9) is independent of a,’s
and this bound thus satisfies the hypothesis of Lemma 1.1. In fact, for every [G j] eEM,
(1.9) generally represents a family of bounds (we can obtain different bounds with
different solutions of the problem (1.7), (1.8)). This ambiguity is, however, in-
significant and we can avoid it by assigning each [g,(j)] some fixed vector determined
by [g:(ji)]-
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Let N < E. Using Lemma 1.1 we now get easily

n+l n+l
‘ s .ls(x)l I s Jl(x)l
(1.10) QiM,) = inf sup =————— 2 inf sup =
b x5 AT

where the second infimum is taken over all A’s satisfying (1.8)*). We shall take for N

the linear subspace of E spanned by x;,, x;,, ..., x;,, . Put
n+1 I
2) =X X
A " Js

obviously £(A) € N. For every A satisfying (1.8) we have

n n+1

[SAF0 [SAF®]

as F; (%) = Z,. |x;,[| " and |[£] < 1. In view of (1.10) we have thus obtained

(1.12) Qi(M,) 2 inf (zl ﬁzlz-”)

where the infimum has the same meaning as above.

(1.11) sup = >
v x| |4

x¥0

The proof can now be readily finished. Firstly,

n+1 2’ 2 n+1

” - (s;1“xj’ )

which can be easily verified by the Cauchy inequality, and this lower bound is actually
the least one since for

(1.13)

’

jl

;L’ =t
2 ”x,-r
t=1
(1.13) becomes equality. The theorem is proved.

Proving Theorem 1.1 we have obtained also the following result regarding the
set M5 = M, of the approximations with a fixed matrix [g,(j)] (cf. (1.11)).

Theorem 1.2. Let E € B. Given a matrix [g,(j)], choose integers jy, j,,
in such a way that 1 £ j; < r and jg + j, whenever s + t.

ceo Jnt 1

*) It can be shown (by assigning each A a fixed [g,(j)] such that (1.7) holds) that even the equali-
ty sign could be written in the second part of (1.10).

295



Then
n+1 A 2
(1.14) QMf) 2 Y =
’ =1 x|
for any \ determined by [g,(j,)]-
The above bounds on Q are generally improvable since e.g. for a special class of

Hilbert spaces we obtained in [5]
n+1

Qu(M,) 2 (L [x.]*)

and

Qu(M;) 2 ("i‘ ‘IH:)”2 -

5= 2

Nevertheless, for our further qualitative considerations the bounds of Theorems 1.1
and 1.2 are sufficient.
We can see from Theorem 1.1 that Q¢(M,) > 0. Hence, we can form the ratio

0:(M, [G))) = %ZJ)D

and use this ratio to measure the quality of a given approximation [G;]e M = M,
with respect to the set M.

2. UNIVERSAL APPROXIMATIONS

In [5], we constructed the approximation [K}] which was optimal in a given
Hilbert space H, from a class $ and we showed that this approximation can be very
“bad” in other spaces from the class $ considered. Namely, we proved that for any D
positive a space Hpe $ existed such that Qg (M, [Kf]) > D — even if
Qu,(M,, [K}]) = L. This effect led us to the introduction of the concept of a universal
approximation.

Definition 2.1. An approximation [G;] € M, is said to be universal for a given
class B of B-spaces if there exists a constant D such that

(2.1) | Qe(M,, [G)]) = D

for any E € B.
So, in contrast with the optimality, universality is related to some class of spaces.
Itis clear that for a sufficiently small class B (e.g. consisting of only a finite number of
spaces E) every approximation from M, would be universal. On the other hand, for
wider classes of spaces a universal approximation need not exist [5]. It is therefore
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reasonable to search for some (as general as possible) conditions on B that would
guarantee the existence of a universal approximation. The concept of a conservative
class of spaces will play an important role in such conditions.

Definition 2.2. We shall call the class B of B-spaces E conservative, if the elements
of the common basis can be assigned subscripts in such a way that

(22) [xl = xf < - < ]

in every E € B.

In the remainder of the paper we shall be concerned with conservative classes of
B-spaces only and we shall assume that the basis {x;} has been ordered in such a way
that (2.2) holds.

We now formulate some conditions on B that are sufficient for a universal ap-
proximation to exist. We denote by S, the (continuous) linear operator given by

S,(x) =j; Fi(x) x;,
(xe€E, n=1,2,...). Further denote
v(E) = sup “S"”

1<nsr

and
WE) = sup |s,]
(the norm of the basis {x,})
Theorem 2.1. Let B be a conservative class of B-spaces. If
(2.3) v(E) £ K

for every E€ B and K is independent of E, then for each n, 1 £ n £ r, there
exists an approximation [ B;] € M, universal with respect to B. This approximation
is defined by (1.1), where

(2.4) ak=Fk, k=l,2,-..,n,

al)=26;, k=12,..,n, j=12,..,r.%

Moreover,

(2.5) Qx(M,, [B;]) < 2K(n + 1)

in every E € B.
*) x; = O unless k = j, in which case J;; = 1.
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Proof. The error of [B,] is

(26) : of[B,]) = max [F,

Er =
where n + 1 < g < r. Using Theorem 1.1 withj, = 5,5 = 1,2, ..., n + 1 we obtain
n+1
E* » Z "xs” 5
s=1

We need to estimate "Fq” g» by means of ” xq” ~1, Tt will prove sufficient to proceed
in a very simple manner. We write

F0)] = J—J'F«”(")”"q -

27) 0iM,. [B)) < |F,

This yields

1|ZF(X)XI|+HZF(x)xIl

Rl 5 =5

< 2v(B) |x] . ] -
[l I L Hx,,l[

Hence,

(2'8) “ “E‘= " “

From (2.7) and (2.8) we now get

0u(M, [8]) S 2Ky, H

Since B is conservative and q¢ = n + 1, we have
and

n+1,

Qu(M,, [B;]) = 2K(n + 1),
which completes the proof.

Remark 2.1. It can be seen from the proof of Theorem 2.1 that we could assume
||xj|] < ”ku| whenever 1 < j <n + 1 < k < r instead of the conservativeness to
obtain the same result for a fixed n.

Remark 2.2. A basis {xj} of a B-space E is said to be monotone if we have
n n+m
I E e

for all finite sequences of complex numbers a,, a,, ..., %,+,. Monotone bases satisfy
the condition (2.3) of Theorem 2.1 trivially since their norm is v(E) = 1 in any B-space
[8]. In Hilbert spaces, monotonicity is equivalent to orthogonality.
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We now give some examples of classes B satisfying the hypotheses of Theorem 2.1.

Example 2.1. The spaces I*([0, 1]) and the Haar functions. It is well-known [8]
that the sequence of equivalence classes {J;}, where y; are the Haar functions, i.e.
the functions defined on [0, 1] by

(2.9) () =1,

21-2 21 -1
k
2 for te[——-zkH e ),

yaerdt) = _J2 for reBol) 2
gk+1 2 ok+1 2

0 for the other 1,

(I=1,2,..,25 k=0,1,2,...) constitutes a basis of the space I?([0, 1]) (p = 1).
Further, it may be shown that this basis is monotone [8]. An easy computation yields

2.10) [l = 1 [anail, = 2528,

(I=1,2,..,2% k=0,1,2,...) where ||, denotes the norm in ([0, 1]). From
(2.10) we see that the class B, of the spaces I”([0, 1]), p = 2, with the Haar basis is
conservative. Hence, B, satisfies the assumptions of Theorem 2.1 with K = 1.

Example 2.2. General separable Orlicz spaces with the Haar basis. Let M(u)
be an even convex continuous function defined on (— o0, + o) with the following
properties:

@11) ) imM® o,

n-0 U

b) limM=oo,

n~+o U

c) there exist constants k > 0, uy = 0 such that M(2u) < k M(u) for
u = ug.

The general separable Orlicz space*) Ly([0, 1]) is then the space of the equivalence
classes i given by real-valued functions u(t) defined on [0, 1] for which

(2.12) J M(u(d) dt < o

*) Proofs of the properties of Orlicz spaces and functions M(«) used in this example can be
found e.g. in [4].
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The norm “1’2“ u can be introduced by the relation

(2.13) . J.IM [L‘)] dt=1.

o Ll

It can be proved that Ly([0, 1]) with this norm is a separable B-space and, moreover,
the equivalence classes {J;} where y;(t) are the Haar functions defined by (2.9)
constitute a monotone basis of Ly([0, 1]) [9].

For example, M(u) = |u|" (p > 1) satisfies (2.11) and this choice yields Ly([0, 1]) =
= I?([0, 1]). Another possible choice of M(u) is

(2.14) M(u) = [uf?(|in [u]] + 1)

with p > 1; the resulting Orlicz spaces are different from the [P-spaces.
According to (2.13), the norms of the Haar functions are

(2.15) 194 = H‘IB

2k
ll)’zku”M = F(Z") >
(I=1,2,...,2%k=0,1,2,...), where M~ !(v) is the inverse function for the func-
tion M(u) considered on [0, + o). (It may be shown that every M(u) that satisfies

(2.11) is increasing on [0, + 0).)
Let B, be the class of separable Orlicz spaces Ly([0, 1]) whose M(u) satisfy

(2.16) M(u \/2) = 2 M(u)

for u 2 M~'(1). The class B, contains e.g. the spaces I*([0, 1]) for p = 2 and the
spaces Ly([0, 1]) with M(u) given by (2.14) for p = 2.

We now show that B, with the Haar basis is conservative. It is sufficient to prove
that (2.16) implies

(2.17) 212 M~Y(v) 2 M~ !(2v)

for v 2 1. Denote v = M(u). We can write (2.16) as 2v < M(u \/2). Since M(u) is
increasing for u = 0, M ~!(v) is increasing for v = 0 and we have

M™'(20) S u /2 =22 M (v),

which is (2.17). (2.17) yields the conservativeness immediately.
We recall that the Haar ‘basis is monotone and conclude that the class B, satisfies
the assumptions of Theorem 2.1 with K = 1.
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3. OPTIMAL UNIVERSAL APPROXIMATIONS

It is a priori clear that e.g. in the case described by Theorem 2.1 more than one
universal approximation exist. For example, the approximation [B;] with the same
[9:(j)] as [B;] and a, = Fy + ¢,F,, qx = n + 1, ¢, arbitrary complex numbers,
k =1,2,..., n, is also universal with respect to the class B described in the above
theorem. It is reasonable, therefore, to search for the universal approximations with
minimum error.

To be able to do this we need a characterization of the set U, = M, of all the ap-
proximations universal with respect to a given class 8. We shall describe U, by means
of some conditions on [g,(j)] which the universal approximations satisfy necessarily.
Such results are also of interest in answering the question of the proper choice of
[9x(j)]- In order to find the necessary properties of matrices [g,(j)] we must suppose,
however, that the class B considered is sufficiently wide.

Theorem 3.1. Let B be a conservative class of B-spaces. Let v(E) < K for every
E € B (K independent of E) and let n be an integer,1 < n < r, such that for any D
there exists a space Ep e B in which

(3.1) [xarilen o .

[l

Then the matrices [gi(j)] of a universal approximation [G;]e U, have the
following two properties:

(3.2) a) g(ij)=0, k=1,2,...,n, j=n+1,..,r,
b) rank ([gi(/)Jk,j=1) = n.

Proof is exactly parallel to that of Theorem 5.6 in [5] and will be only sketched.

For every s such that n + 1 < s < r denote by [g,(j)], the n x (n + 1) submatrix
of [g,(j)] consisting of the columns 1, 2, ..., n, s. We shall investigate the solutions
X = [A 40, s L4 of

(33) [0}l A® = 0
satisfying
n+1
(34) YA =1.
i=1

Denote [A9| = [|27], 48], ..., |42 1[]" and let e, be the k-th unit vector.
The proof is based on Lemma 5.1 of [5], which we present in a somewhat modified
form:

Lemma 3.1. The conditions (3.2) are equivalent to the following statement:
There exists a unique system of vectors {|{M®|};_,. such that A®, s = n + 1,
n + 2,...,r,satisfy (3.3) and (3.4), namely A"+ | = D0*2| = | = D] = e,,;.
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The proof of the theorem is by contradiction. If the conditions (3.2) are violated,
then using Lemma 3.1 we conclude that for some s, n + 1 < s < r, there exists

a vector A'? satisfying (3.3) and (3.4) whose p-th component, 1 < p < n, is not zero.

According to Theorem 1.2, we have for the approximation [G,] violating (3.2)

(39) oG] 2 5 H ﬁzH

To complete the proof we need an appropriate upper bound for (M,). It is
sufficient to make use of the trivial fact that Q(M,) < w([1;]) for any approximation
[1;]€ M,. Choosing for [I;] the approximation [B;] from Theorem 2.1 and using
(2.8) we obtain

(3.6) 2K

where n + 1 < g < r. (3.5) and (3.6) now yxeld for the approximation [G;]

oM, [6)) 2 L Prasal

|l
and, in view of (3.1), [G,] is not universal.

The classes B, and B, from Examples 2.1 and 2.2 do not satisfy (3.1). It is easy,
however, to construct classes of Hilbert spaces with orthogonal bases [5], [6]
satisfying the assumptions of Theorem 3.1. The strongly periodic spaces described
in [5] may serve as an example.

Theorem 1.2 and Lemma 3.1 imply immediately that the error of an optimal ap-
proximation from U, is bounded by

1

(B

in all spaces satisfying the assumptions of Theorem 3.1.
Let us consider again the approximation [ B;] from Theorem 2.1. This approxima-
tion belongs to U, and we can compare its error with (U,,).

(3.7) QU,) z

Theorem 3.2. Let B be a conservative class of B-spaces. Let v, (E) < K for every
E € B and let n be an integer, 1 < n < r, such that for any D there exists a space
Ep € B in which (3.1) holds. Then

(3.8) | 2x(Un [B;]) = 2K

in every E e B.
If, moreover, the basis {x;} is orthogonal*); then [B;] is an optimal universal
approximation in every E € B, i.e. Qi(U,, [Bj]) =1 in every E€ B.

*) A basis {x;} of E is orthogonal, if every permutation of {x;} is a monotone basis of E.
In Hilbert spaces this is the orthogonality in the usual sense [8].
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Proof. From (2.6) we have

wE([Bj]) = “Fq

Using (3.7), (2.8) we obtain

E* > n+1§‘1§"-

s o] = 2k el < o

Il

The orthogonality implies (cf. [8], p. 556) ”F,-HE. = "x,-”,;l and, instead of (3.9),
we have

(3.9) Qx(U.. [B)]) = ||F,

Qe(Un [B]) = [xg| ™" - xnea]| = 1.
The theorem is proved.

Remark 3.1. The conclusions on the advantage of the approximation [B;] can
be given more practical meaning by replacing the functionals F, in (2.4) by sequences
of functionals assumed to be convergent to F, in every E € 8. The whole procedure
would be the same as in [5] where this was done for a special class of Hilbert spaces.
So, asymptotic results analogous to the above “theoretical” ones could be obtained
having computational character. Since the procedure would bring nothing new as
compared with [5] we have omitted this aspect in the present paper.
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COMPACT ELEMENTS OF THE LATTICE OF CONGRUENCES
IN AN ALGEBRA

JitkA SEVECKOVA, Brno
(Received June 16, 1976)

In [5] I, a basic information about partitions in a set and congruences in an
algebra can be found. Here, only necessary concepts will be introduced. A partition A
in a set G is a system of pairwise disjoint nonempty subsets of G. These subsets will
be called blocks of the partition A4, its union JA the domain of A.Of course, 4 is a
partition on the set |JA. Partitionsin G are in a 1-1-correspondence with the symmetric
and transitive binary relations (ST-relations) in G, analogously as partitions on G
correspond to equivalence relations in G. For this reason, we shall sometimes not
distinguish partitions and ST-relations. If (G, F) is a partial algebra then the ST-
relations in the set G which are stable with respect to F are called congruences
in (G, F). For the sake of completeness we give the definition of a stable binary
relation 4 in a partial algebra (G, F): Let fe F be n-ary (n = 1) and a;4b; (i =
=1,2,...,n),letf(ay,...,a,) and f(by, ..., b,) exist. Then f(ay, ..., a,) Af(by, ..., b,).

The theory of partitions in a set and of congruences in an algebra has been an
object of systematic study only recently even though the concepts appeared in the
- literature not less than forty years ago [2, 3,4,5, 7]. Nonetheless, the congruences
“in” actually acted latently much earlier, already in the classical group theory, e.g.
in connection with the Schreier-Zassenhaus theorem in which congruences on sub-
groups are considered and not only those on the whole group. It was in this domain
where “in” approach yielded formal as wel as matter-of-fact means for generalizing
this theorem to algebras [7].

The sets R(G) of all binary relations in a set G, P(G) of all partitions in G and
X' (G, F) of all congruences in a partial algebra (G, F) are complete lattices under
set inclusion. In all these cases the infimum of a system of relations — elements of the
corresponding lattice — is equal to their set-intersection [4, 5]. Also the lattices IT (6)
of all partitions on a set G and 4(G, F) of all congruences on a partial algebra (G, F)
are complete, the latter being a closed sublattice of the former which is not true in
the situation “in”. I1(G) is a closed sublattice of P(G). The lattices I1(G) and %(G, F),
are algebraic. In Section 1, we shall prove the same property for the lattices R(G)
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P(G) and X(G, F) (1.3, 1.4, 1.6, 1.13). It is shown that the compact elements of
A (G, F) are precisely the upper & -modifications (see Def. 1.5) of compact elements
of P(G) (or of R(G)) and the compact elements of P(G) and R(G) are exactly the finite
relations in G (1.3, 1.4, 1.6, 1.14).

In Section 2, we construct the upper ¥ -modification ¥, of a binary relation 4
in a partial algebra (G, F) (2.7). The construction is similar to that of the upper
#-modification @, of a relation A given in [6] 5.3, 5.4. It is identical with it if we
replace the algebra (G, F) in the construction of @, by its subalgebra (U¥,, F)
(2.14). For this purpose we need to know the set |J¥,; this is established in 2.11.

1. PROPERTIES OF LATTICES R(G), P(G) AND X'(G, F)

1.1. ([5] I 1.2). Let (G, F) be an algebra, and {A,} < H(G, F). Then \ A, =
= VpBg, where By stands for the congruence A, V x ... V xA,, for an arbitrary

B
finite choice A,, ..., A, in {4,}.
In general, the theorem does not hold for partial algebras.

1.2 ([5] T 1.2.0). Let (G, F) be an algebra and {A,} an up-directed subset of
H(G, F). Then \Vxd, = VpA, = UA,. '

Proof. The first equality is proved in [5]. The other is obvious.

1.3. Theorem. The set R(G) of all binary relations in a set G is an algebraic
lattice with respect to inclusion. The compact elements of R(G) are exactly the
finite relations in G.

Proof. Evidently, R(G) is a complete lattice. Infima are intersections and suprema
are unions.’

Let Te R(G), T = {xy, ..., x,} and let n be a positive integer. Suppose that a system
{T,:0€el} satisfies U T, 2 T. For each x;e T there exists a;el with x;e T,,

ael

(i=1,..,n).Thus YT, 2T.
i=1

Let Te R(G) be an infinite relation. Define T, = {x} foreach xe . Then T = U T,
and TR UT, forall T, € Tand T, + T. xT

xeTy

Finally, let Te R(G). Then T = U {x} and {x} is compact in R(G) for all xe T.
xeT

1.4. Theorem. The lattice P(G) of all partitions in a set G is algebraic. A partition
is compact in P(G) if and only if it contains only finitely many blocks, each of them
being a finite set. .
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Proof. P(G) is a complete lattice by [2]. First, we shall prove that a partition
A = {A'} with one finite block A' = {x,,...,x,} is compact in P(G). If A =
={A,:6€4} < P(G) and VU = A then a certain block B' eV contains A".
Given x;, x; € A? there exist elements y,, ..., y,,—; of G and indices J,, ..., §,, of 4
with x;45, ¥ .. Ym-145,X;- "

Denote A; ; = {A; :k=1,...,m} and B, = U U, ;. Then VB, = 4 and B,

ij=1
is a finite subsystem of 2. If the partition A consists of finite blocks 4, ..., 4 (k a posi-
tive integer) we construct a (finite) system B, = A for every A’ (1 < t < k) in the
k
described manner; then VB = A for B = U B, and B is a finite subsystem of .
t=1

Next, we shall prove that a partition A 1) with at least one infinite block or 2) with

infinite many blocks fails o be compact.

1) Let A" be infinite, A € 4, x, y € A*. Denote by A, , the partition in G which
we obtain from A taking the block {x, y} instead of A" (the other blocks of A remain
unchanged). The join of the system U of all partitions 4, , (x, y € 4') equals A.
The blocks of the join of an arbitrary finite subsystem 2, of U are all blocks of the
partition A except 4! and in addition some blocks which together cover only a finite
part of A'. Thus VU, > A.

2) Let A = {4%:5€ 4}, card 4 2 X,. Define one-block partitions A4; = {4°},
ded. Then V{A;:6€ 4} = A. It is evident that none of the finite subsystems of
{A;: 6 € 4} has supremum 2 A.

It remains to prove that an arbitrary element of P(G) is the join of compact ones.
Given A€ P(G), A'€ A and x, ye A" we construct a one-block partition 4, , =
= {{x, y}}. All these partitions are compact elements of P(G) and its supremum is
equal to A. The theorem is proved.

1.5. Definition. Let Lbe a partially ordered set, ) + K < Land a € L. An element
b e K is said to be an upper K-modification of a if b is the least element of K con-
taining a. ‘

1.6. Theorem. Let (G, F) be an algebra. Then X (G, F) is an algebraic lattice.
The upper X -modifications of compact elements of P(G) are compact in X (G, F).

1.7. Remark. In 1.14 we shall prove that all compact elements of X(G, F) are of
the above mentioned form.

Proof. Let T'be a compact element of P(G) and K the upper & -modification of T.
Let {K,:ael} < #(G,F) and V4K, 2 K..By 1.1, VpLs = V4K, where L;
ael pel ael
runs through the & -suprema of all finite subsets of {K, : x e I}. We have VpL; =
’ pel
=Vx K, 2 K 2 T. There exists a finite subset J, of J with Vp Ly = T. Therefore

ael Pely
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VxLs 2 VpLs 2 T and thus V, Ly = K. For each fe J, there exists a finite
BeJy pety peJy

subset I(B) of I such that Ly is a X -supremum of the system {K;} (6 € I(B)). Let I,
be the join of all sets I(8) with B running over J,. Then I, is finite and VK, =
2 Vx Ly = K. Consequently, K is a compact element of % (G, F). vely
eJy

"’i‘he lattice (G, F) is complete by [5] I 1.1. It remains to prove that it is compactly
generated. An arbitrary congruence K is a partition, hence it is Vp of a set of compact
elements of P(G), say B. For Be B let A be the upper X -modification of B; let A
be the set of these modifications 4. Evidently K = VpB < VU < VA < K.
Thus K = V2.

1.8. In what follows we shall need some known concepts definitions of which will
be introduced now for convenience of the reader (see e.g. [1], [6]).

The closure operation on a partially ordered set Lis a mapping A : L —» Lwith the
following properties: 1) a < Aa (a€ L), 2) a < b= 1a < Ab, 3) Ma = la (ae L),
4) 20 = 0 (provided 0 exists). The set of all compact elements of L will be denoted
by L*. The closure operation A of L will be called algebraic if every a € L* satisfies
the following condition: If ¢ < Ax then there exists x’ € L* with x" < x and a < Ax'.

1.9 ([6] 4.7). A closure operation A of an algebraic lattice Lis algebraic if and
only if it fulfils \V .S € AL for every directed subset S of AL.

1.10. Definition. Let G be a set. Then 4, : R(G) —» P(G) is defined as follows:
A4(A) is the upper P-modification of A € R(G). If (G, F) is an algebra we define the
mappings 4, : P(G) - X(G, F) and 1, : R(G) - X(G, F) analogously.

1.11. Theorem. The maps A; (i = 1,2, 3) from Definition 1.10 are algebraic
closure operations.

Proof. It is clear that 4, (i = 1,2, 3) is a closure operation. Further, by 1.9, it is
enough to fulfil the condition UA € P(G) (as for 4,) or YA € #(G, F) (as for 4,
and 4,),for an arbitrary directed subset % of P(G) (as for 4,) or of #(G, F)(as for 4,
and 4,), respectively.

Ay Let A = {4, : a €I} be a directed subset of P(G). It suffices to prove that U4,

is symmetric and transitive. The first property is evident, the other follows from the fact
that for x, y e G we have x(U¥) y if and only if xAy for some A€ U (since A is
directed). The assertions for 4, and A, follow from 1.2.

1.12 ([6] 4.3). If A is an algebraic closure operation of an algebraic lattice L
then AL is again an algebraic lattice, and it holds A(L*) = (AL)*.

1.13. Now, the property to be algebraic for P(G) (G a set) and X (G, F) ((G, F)
an algebra) follows by virtue of 1.11 and 1.12. In fact, P(G) = A, R(G) and 4, is
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algebraic by 1.11. Thus by 1.12, P(G) is algebraic. Analogously for X#(G, F) with
aid of 4, or 4;.

In the following theorem the characterization of (G, F)* will be completed.
Simultaneously, we discover the structure of P(G)*.

1.14. Theorem. Let G be a set. Compact elements of the lattice P(G) are exactly
the upper P-modifications of compact elements of R(G) (i.e. of finite subsets of
G x G). Analogously for X (G, F) if (G, F) is an algebra.

Also, compact elements of P(G) (G a set) are exactly the finite partitions whose
blocks are finite sets and if (G, F) is an algebra then compact elements of #'(G, F)
are exactly the upper A -modifications of compact elements of P(G).

Proof. According to 1.12, the first assertion follows from the fact that A, and 4,
are algebraic (1.11) and that the compact elements of R(G) are precisely the finite
subsets of G x G (1.3).

To obtain the other description of compact elements of P(G) it suffices to verify
that the upper P-modification B of a finite relation A in G is finite again. It holds
A< C x C,where C =4 uUA™!, sothat B< C x C (as C x Cis a partition
in G) and C x C is finite.

The last assertion follows from 1.12 since 4, is algebraic (1.11).

2. DETERMINATION OF THE UPPER X-MODIFICATION
OF AN ARBITRARY BINARY RELATION IN A PARTIAL ALGEBRA

The aim of this section is the determination of the upper -modification ¥, of
an arbitrary relation 4 in a partial algebra (G, F). The construction is similar to that
of the upper ¥-modification @ 4 of 4 given in [6] 5.3 and 5.4. It is identical with it if
we replace the algebra (G, F) in the construction of @, by its subalgebra (U¥,, F)
(2.14). Therefore we need to know the set [J ¥ ,; this is established in 2.11.

2.1. Definition. (See [6] 2 and 5) Let (G, F) be a partial algebra and X a non-
empty set. For every pair of positive integers i, n (i < n) we define the n-ary opera-
tion €"!(x,, ..., x,) on G by

e"ay,...,a,) = a; forall ay,...,a,eG.

Further, we put F* = F U {e"'}, ..

If w= w(x,, ..y X,) is @ word over X generated by F* and if we substitute k
(0 < k = n) of its variables (e.g. Xp—g+1s---» X,) by fixed elements a,_,,,, ..., a,
of G then the resulting symbol

W(X1s o vos Xyms Bt 15 <005 Bn) =3 P(Fgs oo0p Xpi)

308



defines an (n — k)-ary operation in G. It will be called an algebraic function in
(G, F). For k =n — 1, p(x) is a unary operation which is said to be a unary
algebraic function. ‘

2.2. The symmetric-transitive hull AT of a binary relation A in a set G is,

evidently, AT = U B", where B =AU A™'.
n=1

2.3. Definition. [6] Let (G, F) be a partial algebra and A € R(G). We define the
following relations in G: A¥, A¥, AY as follows:

A% is the set of all (u, v) € G x G to which there exist a word w(x,, ..., x,) generated
by F* and elements (a; b)eA (i =1,...,n) such that u =w(ay,...,a,), v =
= w(by, ..., by).

AF and AY is obtained by replacing the term “word” in the above definition of 4¥
by “an algebraic function” and “a unary algebraic function”, respectively.

Remark. If A + O then A" is a reflexive relation. (If a€ G and a;Ab, then a =
= e**(ay, a) A" e®*(b,, a) = a.)

2.4. Proposition. [6] If S denotes any of the symbols T, H, F and U then the
map A : R(G) > R(G), defined by A4 = A%, is a closure operation in R(G).
2.5. Denote
Ay = A, A, = AOHs A4, = A-f’ A = AIZ” . Y Ag‘i—l ’
A2i_1 =Agi_2 (i = 1,2,...).

Evidently, it holds 4o € 4, € 4, = ....
Denote

2.6. Definition. Let (G, F) be a partial algebra and A € R(G). Then ¥, and O,
denote the upper 4 -modification and the upper ¢-modification of A, respectively.

2.7. Theorem. If (G, F) is a partial algebra and A € R(G) then ¥, = A'.

Proof. By induction, let us prove A’ < ¥,. Evidently A = ¥,. Now, we shall
show A,;_, € ¥, = A,;, Az;s1 S ¥4 The first inclusion is evident because of
Ay =AY, =¥, Let Ay; = ¥, and (u,v) € Agiyy = AY,. There exist a word
w(xy, ..., x,) generated by F* and elements (a;, b;)e Ay; (j = 1, ..., n) such that
u =w(ay, ..., a,), v =w(by, ..., b,). Hence the congruence ¥, contains (u,v) =
= (w(ay, ..., a,), w(by, ..., b,)) because of (a;, b))e¥,(j=1,...,n). S0 4’ = ¥,
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The equality will follow if we prove that A’ is a congruence. A’ is symmetric since
every (u,v)e A’ belongs to A,; (= A7;—,) for some i and this is symmetric. By
a similar argupent, A’ is transitive. Analogously, 4’ is stable since 4,;4, (= A%) —
— for all i — is stable.

2.8 ([6] 5.3). Let (G, F) be a partial algebra and A€ R(G). Then O, is the
union of the sequence of relations A < AF < AT < AF™F < ...

2.9. Proposition. Let A be a congruence in a partial algebra (G, F). Then (JA, F)
is a subalgebra of (G, F) and A is a congruence on (UA, F).

Proof. Evidently, A is a partition on the set (J4. Let (ay,..., a,) € D(f, G) n
N (UA).*) Itis a;Aa; (i = 1,..., n) hence f(ay, .... a,) A f(ay, ..., a,) and therefore
f(ay, ....a,) e UA.

2.10. Definition [2] 2.3. Let A be a binary relation in a set G and B = G. The
intersection of the relation A and the subset B is the relation B[ A = {(a, b) € 4:
a, b e B}.

2.11. Theorem. Let (G, F) be a partial algebra and A€ R(G). Then U¥ is the
subalgebra (UA U UA™"') **) of (G, F) generated by the set YA U y4-t

Proof. From the symmetry of ¥, it follows that U4 u U4~ c ¥,
and consequently (U4 u U4™'> =< U¥, by 2.9. Conversely, the intersection
(U4 v UA~ty [ ¥, is a congruence containing 4, hence (U4 v UA™ D M ¥, =2
2 ¥,. The reverse inclusion is evident so that U((U4 v UA™) M ¥,) =UY,
Thus Y?, =<UAuv U4 "> nU¥, =<U4ulUda 1.

2.12 [6] 5.5 and 5.4. Let (G, F) be an algebra and A€ R(G). Then AT = A™"
and AT = A"V, Consequently, @, = AT if A + 0.

2.13. Let (G, F) be a partial algebra, (B, F) a subalgebra of (G, F)and A < B x B.
We need to distinguish the least congruence in (G, F) containing A from the least
congruence in (B, F) containing A. We shall denote the latter by ¥ ,(B) and the former
by ¥,(G). Similarly, we distinguish @ ,(B) from O ,(G) and 4°® from AS? for
S=H,FandU.

2.14. Theorem. Let (G, F) be a partial algebra, Ae R(G), and B = |J¥ 4(G)
(= CUA U UALY). Then ¥ ,(G) = O ,(B) = A U AF® U 4FET ) AFOTF®)
If (G, F) is an algebra then ¥ ,(G) = @ ,(B) = A"®".

Proof follows from 2.8, 2.9 and 2.12.

*) By D(f; G) the set of all (a,, ..., a,) € G" is denoted for which f(ay, ..., a,) exists.
**) U4 = {y €G: Ix € G, yAx}, [5] LIl Df. 3.5.
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2.15. Corollary. Let (G, F) be an algebra, Ae R(G) and B = (U4 uUA™".
Then (u,v)e ¥, if and only if there exist a sequence u = 2y, zy, ..., 2, = v of
elements of B, elements (a;, b)e A (i =1, ..., n) and unary algebraic functions
Pi(x), ..., p(x) in (B, F) such that pfa;) = z;y, pib;) =z; or pyb) = z;_,,
pla)=z,i=1,..,n

2.16. Denotation. If A = {(a, b)} is a one-element relation we put ¥,, instead
of ¥i@my

2.17. Corollary (see [6] 5.5). Let (G, F) be an algebra, A = {(a, b)} a one-element
relation in G and B = J¥ 4. Then (u, v) € ¥, ,.if and only if there exist a sequence
U = 2zg, Zyy..., 2y = U 0of elements of B and unary algebraic functions p,(x),
ooes Pu(X) such that z;_; = p{a), z; = p(b) or z;—, = p(b), z; = p{a).

This is a special case of 2.15.
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STRUCNE CHARAKTERISTIKY CLANKU OTISTENYCH V TOMTO CiSLE
V CIZIM JAZYKU

IvaN CHAJDA, Pferov, BOHDAN ZELINKA, Liberec: Permutable tolerances. (Permutovatelné
tolerance.)

Korhpatibilni tolerance na algebie je definovana analogicky jako kongruence, pouze je vyne-
chan poZadavek transitivnosti. V ¢lanku se studuji kompatibilni tolerance na algebrach, které jsou
permutovatelné vzhledem k soudinu bindrnich relaci.

MILAN MEDVED, Bratislava: On a class of nonlinear evasion games. (O jednej triede nelinear-
nej hry vyhybania sa.)

V ¢&lanku je dokdzand existencia stratégie vyhybania sa pre diferencidlnu hru opisanid systémom
diferencidlnych rovnic z(™ + 4,z "V 4 4 4, _ 2"+ Az = f(u0) + pg(z,2, ..., 2"V, ),
kdezeR™, f: RP X R? - R", A;, i = 1,2,...,n st konStantné matice, pre p € R! dostatodne
malé.

WerADYSLAW WILCZYNsKI, L6dZ: Remark on the theorem of Egoroff. (Pozndmka k Jegorovové
vété.)

Autor dokazuje vétu, kterd je v jistém smyslu zostfenim Jegorovovy véty. Podobné zostieni
Luzinovy véty bylo publikovdno v tomto &asopise 96 (1971), 225—228, v €lanku I. Vrkode:
,,Remark about the relation between measurable and continuous functions*‘.

BOHDAN ZELINKA, Liberec: 4 remark on isotopies of digraphs and permutation matrices.
(Poznédmka o isotopiich orientovanych grafti a o maticich permutaci.)

Jsou-li G, G’ orientované grafy, pak isotopie G na G’ je uspofadana dvojice {fy, f5) bijekc
mnoziny vrcholi G na mnozZinu vrcholi G’ s touto vlastnosti: pro kazdé dva vrcholy u,v z G
je existence hrany f,(u) f,(v) v G’ ekvivalentni s existenci hrany uv v G. V ¢&lanku jsoil ukdzany
aplikace matic permutaci pti zkoumadni isotopii orientovanych grafu.

MIROSLAV Sova, Praha: On Hadamard’s concepts of correctness. (O Hadamardovych pojmech
korektnosti.)

Clanek je vénovan studiu pojmu korektnosti linearnich diferencialnich rovnic v Banachovych
prostorech, tj. rovnic typu u(™(1) + A,u" " V() + ... + A4, u(t) = 0, kde A,, A4,, ..., A, jsou
(obecné& neohrani¢ené) operatory z Banachova prostoru do sebe. Je zaveden zeslabeny pojem
korektnosti, ktery je porovnan s obvyklou definici.

V. SATHYABHAMA, Waterloo: Generalized LC-identity on G D-groupoids. (Zobecnéna LC-identita
na GD-grupoidech.) . ;

Autor vySetfuje funkciondlni rovnici 4,(4,(x, A5(x, »)), 2) = Ay(x, As(x, Ag(y, 2))), ktera je
zobecnénim tzv. LC-identity (x.(x.y)).z= x.(x.(y.z)) na lupé. Naléz4 feSeni zobecn&né
LC-identity na GD-grupoidech, pfitemz GD-grupoidem rozumi &tvefici (Gy, G,, G; A), kde 4:
Gy X G,—> G a rovnice A(a, y) = ¢, A(x, b) = ¢ pro x, y jsou feSitelné. V zavéru &lédnku autor
aplikuje dosaZeny vysledek na kvazigrupy definované na stejné mnozing.

312



STEFAN SCHWABIK, Praha: Note on Volterra-Stieltjes integral equations. (Poznédmka k Volterro-
vym-Stieltjesovym integralnim rovnicim.)

Podminka regularity matice I — (K(t,1) — K(t,1—)) pro kazdé ¢ € (0,1) je nutna a staci
k tomu, aby Volterrova-Stieltjesova integrdlni rovnice x(r) — j'? d [K(t, 5)] x(s) = f(2), t€
€ [0, 1] méla jediné feseni pro kazdé f € BV,. Pro rovnice splitujici podminku regularity je déna
rezolventni formule.

JarRoMIR DUDA, Brno, IVAN CHAJDA, Pierov: Ideals of binary relational systems. (Idedly binar-
nich rela¢nich systém.)

Pojem svazového idedlu lze zobecnit i pro pfipad obecného binarniho rela¢niho systému.
V préaci je ukazano, Ze tyto tzv. g-idedly maji vétSinu dileZitych vlastnosti poZadovanych pro
svazové idedly a dale, néktera tvrzeni o svazovych idedlech lze zesilit i pro pfipad obecnych bindr-
nich systému. V dal3i &asti prace je dana nova charakterizace ¢asto uzivanych relaci, jako jsou
uspofadani, kvaziuspofadani, ekvivalence a plna relace pomoci g-idedll a je odvozena jednodu-
chd metoda pro vnofeni jistych bindrnich rela¢nich systému do tiidy &astedné uspofddanych
mnozin.

PETR PRIKRYL, Praha: Universal simultaneous approximations of the coefficient functionals.
(Universalni simultinni aproximace koeficientli rozvoje podle dané baze.)

Clanek pojednava o aproximaci koeficientli rozvoje podle dané baze spoleéné pro uréitou
tfidu Banachovych prostord. Tyto koeficienty se chapou jako linearni funkcionaly nad danymi
prostory a studuji se aproximace kone¢né mnoziny koeficienti pomoci linedrnich kombinaci
mensiho poétu jinych linedrnich funkciondli. Formuluji se podminky na tfidu prostor, za nichz
je jista jednoduch4 aproximace tohoto typu pro uvazovanou tf¥idu universdini ve smyslu Babusky
a Soboleva. Udavaji se postadujici podminky pro to, aby tato universdlni aproximace byla
optimalni.

JiTkA SEVECKOVA, Brno: Compact elements of the lattice of congruences in an algebra. (Kom-
paktni prvky svazu kongruenci v algebre.)

Svazy R(G) viech binarnich'relaci v mnoziné G, P(G) viech rozkladl v G (tj. viech symetrickych
a transitivnich relaci v G) a X(G, F) viech kongruenci v algebfe (G, F) (tj. stabilnich rozkladi
v (G, F)) jsou algebraické. Jsou popsany mnoziny jejich kompaktnich prvki; pro posledni z nich
je to mnoZina viech hornich & -modifikaci koneénych relaci v G. Jsou ddny dva zpisoby kon-
strukce téchto modifikaci.
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Casopis pro p&stovini matematiky, ro¢. 102 (1977), Praha

RECENSE

Oscar Zariski - Pierre Samuel: COMMUTATIVE ALGEBRA, Volume 2. Graduate Texts

in Mathematics, Vol. 29. Springer-Verlag, New York — Heidelberg— Berlin 1975. Stran X + 414,
cena DM 36,20.

O charakteru Zariského a Samuleovy knihy o komutativni algebfe a o jejim prvnim dilu bylo
referovano v Cas. pést. mat. 102 (1977), 208. Proto se tu jen struéné zminim o obsahu druhého
dilu. Tento svazek je reprintem svého prvniho vydani z roku 1960. Tvofi pfimé pokradovani
prvniho dilu knihy; obsahuje tfi kapitoly a sedm dodatkii. Algebraicko geometrické aspekty tu
vystupuji uZ mnohem vic do popfiedi nez v prvnim dilu.

Prvni kapitola 2. dilu (¢islovana jako Sestd kapitola celého dila) je vénovana teorii ohodnoceni.
Ctenaf zajimajici se o algebraickou geometrii tu nalezne mnoho uzite¢ného materialu, napf.
i vyklad o Riemannové varieté nadtélesa K nad télesem k a o normalnich modelech variet nad k.

Tématem druhé kapitoly je teorie okruhii polynomi a formalnich mocninnych ¥ad a jeji apli-
kace pro algebraickou geometrii. Kromé klasickych vysledk( pojedndva kapitola o graduovanych
okruzich a modulech a jejich charakteristickych funkcich.

Treti kapitola se zabyva lokalni algebrou. V prvni elementarni &asti se ¢tendf dovi o teorii
zaplnéni, o zdkladnich vlastnostech Gplnych modult, o Zariského okruzich, Henselové lemmatu;
dalsi ¢ast se pak vénuje teorii dimenze a ndsobnosti v lokdlnich okruzich, studiu vlastnosti regu-
larnich lokalnich okruht a aplikaci vysledka v algebraické geometrii (analyticky ireducibilni
a analyticky normalni variety). V celé této kapitole je opét zdtraznéna tésnd souvislost probirané
Jatky se studiem lokdlnich vlastnosti algebraickych variet.

Obsahem jednotlivych dodatki je vySetfovani nékterych specialnégjsich témat navazujicich na
pfedchozi latku knihy: napf. ohodnoceni v noetherovskych okruzich, Macaulayovy okruhy,
jednoznaénost rozkladu v prvoéinitele v regularnich lokalnich okruzich.

K tomu, co bylo fe¢eno v referatu o prvnim dilu knihy dodejme uZ jen, Ze zejména tento
druhy dil je velmi uZite¢ny kazdému, kdo se chce zabyvat algebraickou geometrii: tvofi pro jeji
studium potfebny algebraicky zadklad.

Viclav Vilhelm, Praha

Gheorghe Mihoc, Mariana Craiu: INFERENTA STATISTICA PENTRU VARIABILE
DEPENDENTE. (Statistickd inference pro z4vislé veli¢iny.) Editura Academiei Republicii
Socialiste Romania, Bukurest, stran 301, cena 13 lei.

Kniha ma t¥i ¢asti: 1. Kapitola I o statistice nezavislych ndhodnych veli¢in. 2. Kapitoly II—1V
o statistice v Markovovych Fetézcich jednoduchych, vicendsobnych a s obecnou mnozinou stavi.
3. Kapitola V o fetézcich s uplnou vazbou.

1. V kapitole I i v pojeti celé knihy je pfedlohou Cramérovo dilo Mathematical Methods of
Statistics (1946). Odtud jsou pievzaty napf. véta 2§2 o ésymptotické vydatnosti odhadi metodou
maximélni vérohodnosti a véta 4§2 o odhadech modifikovanou metodou minimélniho x2, jejichZ
diikazy jsou témé&F doslovnym prekladem Cramérova textu. Viimnéme si podrobngji véty 2§2.
V jejim pfedpokladu 4 je vypusténa dilezitd podminka, Ze stfedni hodnota kvadratu logaritmické
derivace hustoty je kladn4, i kdyZ je na to v diikaze pfim4 odvoldvka. V zdvéru dikazu se fika,
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ze odhad f,, je ésymptoticky normdlni N(8,, 1/nk?). Odtud se vyvozuje Var (;,,) =1 /nk2 a tedy
vydatnost odhadu, nikoliv pouze asymptoticka vydatnost. Tento pojem neni v knize definovan.
Definice vydatnosti zahrnuje i nevychylenost odhadu. Kapitola I obsahuje rovn&Z odstavce
o testovani hypotéz, o x>-testu a o testu zalozeném na podilu v&rohodnosti.

2. Ve statistice v Markovovych fetézcich je stile zdkladnim dilem monografie P. Billingsleye
Statistical Inference for Markov Processes (1961). Novéjsi zpracovani této problematiky, napsané
s ohledem zejména na uZivatele matematicko-statistickych metod, ve svétové literatufe dosud
chybi. Recensovana kniha je i v této hlavni &asti pfehledem vysledkt a dikazovych postupt
riznych autor®, nékdy bez nélezité dislednosti v oznadeni a s tiskovymi chybami. Nejasnosti
se vyskytuji v pouZivani symbolu pro stfedni hodnotu. MizZe to byt, bez bliz§iho vysvétleni,
stfedni hodnota, podminéna sttedni hodnota i sttedni hodnota vzhledem ke staciondrnimu rozlo-
7eni. Nedéld se také rozdil mezi tvrzenim ,,feSeni (vérohodnostni) rovnice existuje** a tvrzenim
,,fedeni rovnice existuje s pravdépodobnosti libovoln& blizkou 1 p¥i n— 00, apod. Je pojedndno
o odhadech metodou maximalni vérohodnosti, metodou minima x2, o testech zalozenych na
podilu vérohodnosti, o0 Whittleové formuli a o sekven¢ni analyze.

3. Podrobné jsou vysvétleny fetézce s uplnou vazbou klasické (Onicescu-Mihocova typu)
i zobecnéné. Jsou uvedeny zdkladni vysledky, zejména v oblasti ergodickych vét. Statistika
v fetézcich s uplnou vazbou je doposud milo rozvinuta, nechceme-li za takové fetézce prohla-
Sovat libovolné posloupnosti nahodnych veli¢in, zadané hustotami sdruZeného rozloZeni.
Kniha je psdna rumunsky a nedini si jisté narokd byt monografii svétové urovné.

Petr Mandl, Praha

Hans-Jakob Liithi: KOMPLEMENTARITATS- UND FIXPUNKTALGORITHMEN IN
DER MATHEMATISCHEN PROGRAMMIERUNG, SPIELTHEORIE UND OKONO-
MIE. Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin—
Heidelberg— New York 1976. §tr. 145, cena DM 18,—.

Necht f je zobrazeni n rozmé&rného euklidovského prostoru R" do sebe. Problémem komple-
mentarity rozumime tlohu najit z € R" tak, Ze f(z)= 0, z= 0 a f(z) . z = 0. (. zna&i skaldrni
soudin). Je-li ftvaru f(z) = q + Mz, kde g € R" je dany vektor a M € R"*" dan4 matice, mluvi-
me o linedrnim problému komplementarity. ,

Kniha je rozdélena do dvou &asti: prvni &ast (88 stran) se zabyva problémy komplementarity,
druha &ast (45 stran) je v&énovana pevnym bodim spojitych a polospojitych zobrazeni v R".
Struktura obou &asti je zhruba stejnd. V ivodu se fesi otazky existence, dale se popisuji vypo&etni
postupy a uvadéji se moznosti aplikaci.

V ¢&asti o komplementarité je zvla§tni pozornost vénovéna linedrnim problémiim komplementa-
rity. Linearni problémy jsou podetné dobfe zvladnutelné a nachdzeji uplatnéni v oblasti kvadra-
tického programovani a pfi fe§eni dvoumaticovych her. Autor v této &asti pfinasi i svoje ptivodni
vysledky, tykajici se zejména zobecnéni teorie komplementarity na nelinedrni pfipad a nékterych
vypocetnich postup.

V &asti o pevnych bodech najdeme pfedeviim klasickou Brouwerovu vétu, Scarfiiv vypocetni
postup, Kakutaniho vétu o pevném bodé a odstavec, kde se ukazuje, jak lze dokazat existenci fe-
Seni ve Walrasové modelu ekonomické rovnovahy pomoci véty o pevném bodé, dale jak lze tuto
vétu aplikovat na fefeni lohy nelinearniho programovéni a v diikazu existence rovnovazného
bodu v nekooperativni hie n hra¢t. V zavéru je uveden asi &tyfstrankovy seznam literatury
vztahujici se k tématu knihy.

Préce je napsdna s némeckou dikladnosti, v jednotném stylu a jeji roz¢lenéni umoZiiuje udrzet
si pfehled po vyklddané latce. Je cennd tim, Ze poddva souhrn soudasnych teoretickych vysledki
v oblasti komplementarity a pevnych bodt. Pokud jde o popis algoritmi, neuvaZuje se problema-
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tika jejich vypoéetni efektivnosti. Pak vlastné neni ani nutné studovat oddélené algoritmy pro
problémy komplementarity a pro hleddni pevnych bodi, nebot problém komplementarity lze
pfevést na problém vyhledani pevnych bodii vhodné& zvoleného zobrazeni a obracené. V ukazkach
aplikaci se uvad®ji vétsinou véci jiz n&€kolikrat publikované, takze ¢tenaf asi oceni hlavné skutec-
nost, Ze je zde najde v souhrnu.

Miroslav Marias, Praha

J. Dénes - A. D. Keedwell: LATIN SQUARES AND THEIR APPLICATIONS. Akadémia
Kiad6, Budapest 1974. Stran 547, cena neudéna.

Necht je tento rozbor vielym doporudenim znamenitého dila, svédectvim opét jednoho $tast-
ného setkdni dvou vyznamnych matematik.

Recensovand kniha vznikla za spoluprdce dvou universit, tj. madarské Loridnd Eotvos
Egyetem v Budapesti v osobé J. Dénese a britské University of Surrey, kde ptisobi A. D. Keedwell.
Autofi pfedkladaji étenaftim rozsédhlou a hlubokou studii a u¢ebnici o latinskych &tvercich a pfi-
buznych strukturéch, jiZ 1ze pokladat za prvni tohoto druhu. Doposud se objevovaly jen kapitoly
o latinskych ¢&tvercich v pracich z kombinatoriky.

Pojem latinského &tverce je zhruba stary 200 let a byl vzapéti sledovan Eulerovou ulohou
o 36 dustojnicich, o niZ teprve na za¢atku tohoto stoleti bylo dokdzdno, Ze neméa fe$eni. Pomérné
nedavno se staly latinské ¢tverce opét pfedmétem vazného studia a byla otisténa ohromna fada
praci. Pfi¢inu nového rozmachu studia latinskych &tverca lze hledat jednak v objevech souvislosti
tohoto pojmu s algebrou zobecnénych binarnich systémii a s kombinatorickymi uvahami, jez se
tykaji zejména konednych geometrii, jednak v uZiti latinskych &tvercu pii vytvafeni schémat
statistickych pokust a v teorii informace. Pravé zdvaZnost téchto souvislosti a aplikaci, zdroven
s tim, Ze price tohoto oboru jsou zna&né roztrouseny po &asopisech, vedla autory k myslence
shromdazdit literaturu ke v§em zndmym problémim a vytvofit vy&erpavajici studii o vysledcich
této teorie.

Ze zb&Zného pohledu vidime, Ze nase kniha ma v podstaté dvé faze. V prvni z nich bézi o stu-
dium vlastnosti jednoduchych latinskych &tvercti v Gzké souvislosti s teorii kvazigrup a lap,
déle v mens$i mife také s teorii grafi. Ve druhé fizi mame studii mnoziny vzdjemné ortogonélnich
latinskych &tvercu. Zde pak nésleduje souvislost s teorii kone¢nych projektivnich rovin a konstruk-
ce statistickych schemat. Obé stranky studovaného pojmu se viak nezkoumaji pedanticky oddé-
len&. Ctenaf snadno nalezne mnoho vzijemnych styénych bodi, jak ani jinak, v tak Zivé podaném
textu, nemiiZze byt. Zfeteln& jsou sledovdny oba zakladni rysy latinského &tverce, a to jak kombi-
natoricky, tak i algebraicky.

Latinskym ¢&tvercem rozumime ¢&tvercovou matici fddu n, vytvofenou z n rtznych prvku,
z nichz kaZdy se vyskytuje pravé jednou v kaZzdém fadku a v kazdém sloupci matice. V kapitole 1
se ihned interpretuje latinsky &tverec jako multiplikativni tabulka kvazigrupy. Postupné& nasleduji
isotopie kvazigrup, definice transversaly latinského ¢&tverce, Giplné zobrazeni kvazigrup a latinské
sub&tverce. 2. kapitola za¢inad identitami kvazigrup, pokraduje zminkou o Steinerové systému
trojic a konéi Gplnymi latinskymi &tverci. Kapitola 3. obsahuje véty o latinskych obdélnicich,
fadkovych a sloupcovych latinskych &tvercich, ddle nékteré véty o existenci latinskych &tverct
a pojem neuplného latinského &tverce. V této kapitole b&zi o novou latku, pfipisovanou autoriim.
4. kapitola podava klasifikaci latinskych &tvercti a vyCerpévajici rozklad zndmych vysledka
o pottu latinskych &tverci daného fadu. Dva latinské &tverce [|a;;|, [|b;;| téhoZ Fadu n a vytvo-
fené tymiZz n symboly, se nazyvaji ortogondlni, kdyZ kaZdy uspofddany par t&chto symboll se
vyskytuje pravé jednou mezi viemi pary (a; jo b; j)- Tento pojem se studuje. v kapitole 5. spolu
s jeho roz3ifenim a zobecnénim na latinské krychle a hyperkrychle, fecko-latinské &tverce a pravo-
Ghla schemata. V kapitole 6 nachdzime popis konstrukce diagondlnich latinskych &tverci, ma-
gickych ¢&tvercli a typu magickych &tvercii pojmenovanych podle T. G. Rooma. Opét nasleduje
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vé&t$i mirou pavodni latka pfipisovand autoriim a to v kapitole 7. Zde se diskutuji jednotlivé meto-
dy konstrukce parti ortogonalnich latinskych &tvercti, na pfiklad permutaci fadk nebo sloupci
a dalsi. V kapitole 8. se v podstaté probird uz tradi¢ni latka o kone¢nych geometriich, hovofi se
totiz o k-tkanich a projektivnich rovinach, spolu se zavedenim soufadnic, dile o existenci
nedesarguesovskych rovin a souvislost ortogonalnich latinskych &tvercti s projektivni a afinni
rovinou. Poznadmky k teorii grafti v souvislosti s latinskymi &tverci nachdzime v kapitole 9.,
kde se shleddviame s nutnou podminkou o neexistenci transversialy R. H. Brucka a s nutnou
podminkou o doplnéni mnoZiny vzédjemné ortogondlnich latinskych &tvercti na viplnou S. S.
Shrikhanda. Z uziti teorie latinskych &tverci v teorii informace a ve statistice jsou uvedeny v ka-
pitole 10 jen tulohy o kodech, jez vyhleddvaji a opravuji chyby a ulohy o pldnovani pokust.
Kniha vrcholi 11. kapitolou a to vyvracenim Eulerovy domnénky (L. Euler se domnival, Ze pro
n = 4t + 2 neexistuji pary ortogondlnich latinskych &tvercit) a odvozenim viech zndmych dolnich
hranic funkce N(n), tj. maximalniho po&tu ortogondlnich latinskych &tverct fadu n. Nasledujici
dvé kapitoly pojednavaji o dalSich konstrukcich ortogondalnich latinskych &tverct a o pfibuznych
tématech. Zejména posledni kapitola uvadi ptrehled praci, jez vyuZivaji vypocetni techniky k
ziskani jak latinskych &tverct, tak i ortogondlnich latinskych ¢&tvercl. Poznamenejme jesté, Ze
i tam, kde to nebylo vyslovné fedeno, se fada oti§ténych vysledkli vyskytuje poprvé.

Uvedené dikazy vét jsou v&cné strudné a tplné, radost je je &ist. Navic se ¢tenaf nikterak
nevyhne vzrueni. Je totiZ kazd4 kapitola doprovazena v prib&hu textu historickym pfehledem
a komentafem praci, jeZ se vztahuji k tématu kapitoly. Rozsah historickych pozndmek sah4 od
magickych &tverct ddvnych dob aZ po zprdvy ze soucasnosti. V bibliografii jsou zachyceny ¢lanky
aZ do roku 1974 a autofi se nevyhybaji citacim praci, jez byly je§té v tisku. U praci je uveden také
odkaz na reSer§e v Mathematical Reviews. Odkazi je vice nez 600. Pohledem do budoucna
je seznam 73 formulaci dosud nerozie$enych problému. "

Kniha je urdena &tenaitim, ktefi uz prosli kursem matematiky na université. Je dobrym tivodem
k zahdjeni studia v této problematice, neméné v3ak také poclatkem k dal§i badatelské praci
v tomto oboru. Pro svilj rozsah, hodnotu a ptehled poslouzi vyte¢né nejen jako kniha na niZ se
Ize odvolavat, ale i k rychlé orientaci v problematice oboru. Pro posledni vlastnost, Ize otekavat,
Ze bude vyhledavana pracovniky jinych obori, ktefi latinské &tverce aplikuji.

Vyznam a kvalitu této knihy podtrhuje P. Erdos, ktery kromé& udasti na ni, napsal také dalsi
pfedmluvu. Mimo né&j byli radou ndpomocni vyzna¢ni matematici oboru, jako V. D. Bélousov,
D. E. Knuth, C. C. Lindner, H. B. Mann, N. S. Mendelsohn, A. Sade, J. Schonheim a dalsi.

Véroslav Jurdk, Podébrady

Jon Barwise: ADMISSIBLE SETS AND STRUCTURES. (An approach to definability theory.)
Springer-Verlag, Berlin— Heidelberg— New York 1975, XIV + 394 str., cena DM 72,—.

Barwisova kniha je prvni kniha nové série Perspectives in mathematical logic, kterou zaloZila
a fidi tak zvana skupina Q (R. O. Gandy, H. Hermes, A. Levy, G. H. Miiller, G. Sacks a D. S.
Scott), pasobici od r. 1969 a formalné sidlici v Heidelbergu. Cilem série je ,,zmapovat* sloZity
terén matematické logiky, pfi¢emz v kazdé knize ma byt poloZzen diraz na urcité dulezité téma,
tak aby kniha byla né&¢im vic nez pouhou sbirkou vysledkii a metod.

Barwisova kniha plné odpovidd témto zdmérim. Pojem pfipustnych mnoZin (admissible
sets) se bezesporu stal jednim z velmi dalezitych pojm soudobé matematické logiky; autorovi
viak nejde jen o shrnuti neprehledné hory &asopisecké literatury, nybr pojima teorii ptipustnych
mnoZin jako spole¢ny zéklad pro riizné zdédnlivé nesouvisejici  partie matematické logiky (&4sti
teorie mnozin, zejména teorie konstruktivnich mnoZin (constructible sets), teorie modeld v&etn&
modelt specidlnich teorii (Peanovy aritmetiky teorie mnozin), zobecnéné logiky, zejména logiky
s nekone¢né dlouhymi formulemi, zobecnéna teorie rekurse). Pojem pfipustné mnoziny je tech~
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nickym pojmem pro toto sjednoceni; tématem, na které se cela kniha soustfeduje, je pojem
definovatelnosti v jeho nejriizn&j§ich podobach.

Pfipustné mnoziny (resp. pfipustné ordinaly) zavedli nezivisle na sobé Kripke a Platek.
Ptipustné mnoi'iny jsou jisté ,,standardni‘‘ modely velice slabého systému axiom teorie mnoZin,
zvaného Kripkova-Platkova teorie mnoZin (KP); lze fici, Ze jsou to jisté rozumné ,,po&atedni
useky‘‘ universa mnozin. Pfipustné ordindly jsou systémy ordinalnich &isel pripustnych mnozin.
(Nejmen$i pfipustnd mnoZina je mnoZina vSech dédi¢né konednych mnoZin, nejmensi
ptipustny ordinél je & — prvni nekone¢ny ordinél.) Novinkou Barwisova pfistupu je, Ze studuje
od samého za&atku pfipustné mnozZiny nad systémem urelementii (= prvkd, které nejsou mno-
Zinami), coZ mu umoziiuje vybudovat nad libovolnou matematickou strukturou hierarchii
pfipustnych mnoZin. Pfisluiny axiomaticky systém se nazyva KPU (Kripke-Platek surelementy);
Ize ¥ici, Ze celou knihou se tdhne vzdjemna souhra (interakce) toho, co lze dokazat uvniti teorie
KPU a toho, co 1ze o modelech této teorie Fici z hlediska celého universa mnozin.

Kniha se déli na t¥i &asti (A, B, C) a ty celkem na osm kapitol (a dodatek). Kniha ma XIV 4
+ 394 °stran. Nazvy ¢&asti (zdkladni teorie, absolutni teorie, k obecné teorii) mnoho nefikaji;
mnohem uZite¢n&jsi jsou ndzvy kapitol a graf zavislosti kapitol (str. XIV). Zminim se stru¢né
o jednotlivych kapitolach.

Kap. I (Teorie pfipustnych mnozin). Zde se zavadi axiomaticky systém KPU a v ném se defi-
nuji zdkladni pojmy a dokazuji zdkladni v&ty (a schémata vét). Je zavedena dullezita t¥ida
Z-formuli, odvodi se princip definovani ) -rekursi a probiraji se dv& (v KPU neekvivalentni)
formy Mostowského véty o kolapsu.

V kap. II (Né&které pfipustné mnoziny) se studuji dilezité modely teorie KPU; vedle dédi¢né
kone¢nych mnozin se studuje pfipustnd mnozina HYPgy (kde M je néjaka relaéni struktura),
coz je nejmensi pFipustnd mnoZina A takova, Ze nosi¢ struktury MM tvofi mnozinu urelementi
mnoziny A a (zhruba fe¢eno) struktura M jako celek je prvkem mnoziny A. HYP ma pfipominat
hyperaritmetické mnoziny pfirozenych &isel, protoZe ty jsou v jistém pfirozeném vztahu k prvkim
mnoziny HY Py, kde N znadi strukturu pfirozenych &isel se s¢itdnim a nadsobenim.

Kap. III (Spocetné fragmenty logiky L ) studuje logiku s nekone¢né dlouhymi formulemi
ve vztahu k pfipustnym mnoZindm, zejména ke spo¢etnym pfipustnym mnozindm. Jde pfedev§im
o fundamentalni Barwisovy véty o uplnosti a kompaktnosti a o interpola¢ni teorém pro spocetné
pfipustné mnoziny. Dlkaz se opirdA o pojem konsisten¢nich vlastnosti (consistency properties)
zavedeny Keislerem; autorovi se podafilo vypreparovat zdkladni etapy dikazt s velikou doko-
nalosti a prizra&nosti.

Kap. IV (Elementarni vysledky o HYPgp) se predeviim zabyva teorii [[} a Y1 predikata,
tj. predikath (relaci) definovanych na MM formulemi 2. fadu s jednim blokem universalnich resp.
existen¢nich kvantifikatord 2. fadu. Zakladni véta pravi, Ze pro kazdou spo&etnou strukturu N
a kaZdou relaci R na M plati: R je I_H, pravé kdyz R je Y -definovateln4 &st struktury HY Pgy.
(Srv. pozndmku o HYPgy, vySe; pfipomindm, Z¢ mnoZina pfirozenych ¢&isel je hyperaritmeticka,
pravé kdy# ona i jeji komplement jsou []1-definovateiné.)

V kap. V (Teorie rekurse pro Y -predikéaty na pfipustnych mnozZinich) se studuji Y -predikaty
na pfipustnych mnoZinich jakoZto analogon rekursivn& spodetnych mnozin pfirozenych ¢&isel
a buduje se rozséhld analogie (véty o rekursi, normdlni forma, véta o separaci atd.). Déle se stu-
duji tzv. ,,rekursivné velké‘* ordindly (rekursivné nedosazitelné, stabilni atd.).

Kap. VI (Induktivni definice) je vénovéna studiu induktivné definovanych relaci na.libovolné
(ne nutnd spoletné) pfipustné mnoZin& A vzhledem k &istem mnoZiny A Y -definovatelnym
vHYP, )

Také kap. VII (Vice o L) a VIII (Striktni I—[{—predikéty a Konigovy principy) se soustfeduje
pfevdZné na vysledky o pfipustnych mnoZindch, které nevyzaduji pfedpoklad spocetnosti. Do-
datek je v&novan pojmu pfipustného pokryti (admissible cover) modell teorie mnoZin, zejména
nestandardnich.
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Kniha je psana velmi elegantné, je dobfe srozumitelnd, autor se snazi soustfedovat sebe i ¢tena-
fe na my3lenky a ne na technické detaily. To se mu také dafi; jedind dan, kterou musi zaplatit
za to, Ze buduje pfipustné mnoziny nad strukturami, je zna¢né technické zkomplikovéni definice
konstruktivnich mnozin. 1 zde v8ak autor vypreparuje potiebné myslenky a celou technickou
,,Jlopotu** soustfedi do diitkazu jednoho lemmatu, ktery zabere jeden cely paragraf. Tento paragraf
je zakonden receptem na zakusek, ktery se ma podavat, pokud se tento paragraf bude probirat
na né&jakém seminafi. Tento vtip je charakteristicky pro styl knihy. Velice cennd jsou cviceni,
kterymi je kniha hojné vybavena.

Kniha ponékud trpi nékterymi drobnymi nedtislednostmi a nepresnymi referencemi. Ctenafi,
oprav si napf. toto: Str. 37, misto Feferman [1975] ma byt Feferman [1974]; str. 1051 misto
Barwise [1973] ma byt Barwise [1973c]; str. 1234 misto for all I, R, F ma byt for all M’, R’, F.
Str. 1264: zde se — jako na mnoha jinych mistech — vyskytuje ozna&eni ,,the YY-compactness
theorem** misto ,,the Barwise compactness theorem*. Srv. str. 102, kde autor (spravné&) fikd, ze
oznaceni ,,Barwisova véta o kompaktnosti“ je tak vzité, ze by bylo nemistnou skromnosti (a ma-
touci) zavadét novy pojem. Pfitom YY je zfejmé& nutno &ist ,,bar-Y’s*, tedy opét ba:owais;
jde patrné o pozistatek drivéj$i nemistné autorovy skromnosti. Str. 141, ,: misto 11.8.6 ma byt
11.8.7. Str. 365'3; misto Barwise [1974] ma byt Barwise [1974a].

Barwisova kniha je bezesporu velice cennym pfinosem; po léta byla o¢ekdvana monografie,
ktera teorii pfipustnych mnozin u¢ini b&€zné dostupnou k prospéchu vsech logikd. Do&kali jsme
se velmi dobré knihy, ktera distojné zahajuje novou sérii. Lze se jen t&it na p¥ipravované dalsi
svazky (napf. Hinman: Inductive definitions and higher types, Scott a Kraus: Languages and
structures, Levy: Basic set theory, Smorynski: Metamathematics of arithmetics aj.).

Petr -Hdjek, Praha

Diocles: ON BURNING MIRRORS. The Arabic Translation of the Lost Greek Original.
Edited, with English Translation and Commentary by G. J. Toomer. Sources in the History
of Mathematics and Physical Sciences 1. Springer Verlag, Berlin— Heidelberg— New York 1976.
Stran I1X + 249, cena DM 68,—.

Podle svédectvi feckého matematika Eutokia z Askalonu (zil kolem r. 500; k Archimédovym
a Apolloniovym spisim pfipojil komentafe, které jsou dilezitym pramenem pro déjiny mate-
matiky) napsal Diokles pojednadni negt mvgiwv (O zédpalnych zrcadlech), vénované parabo-
lickym a sférickym zrcadlim a zdvojeni krychle. Matematickd &ast Dioklova dila, z n&hoz
Eutokius zachytil dva uryvky, je zaloZena na teorii kuzelose¢ek. Piekladatel Dioklova pojednani
do arabstiny neni zndm.

Kniha obsahuje tyto &asti:

I’Jvod.(str. 1—33) zahrnuje Dioklovu biografii a rozbory jeho dila, zvlaité teorie kuzelosetek
az po Diokla a kuZelosetek v dile samém. Nasleduje zhodnoceni vlivu Dioklova pojednani
a soupis rukopist i texti.

Na str. 34— 113 je vzdy na pravé strané arabsky text Dioklova dila, na levé anglicky pteklad.

Na str. 114—137 jsou fotografie arabského textu, ktery byl zdkladem pro vydani.

Str. 138— 175 zapliiuji editorské poznamky.

Na str. 177—216 jsou &tyfi dodatky: Recky text s anglickym piekladem vy$e zminénych
Eutokiovych uryvki; starovéké a stiedovéké dikazy fokélni vlastnosti paraboly; kone¢né dva
krat3i pfispé€vky O. Neugebauera, historika matematiky, fyziky a astronomie.

Obséhla bibliografie (str. 217—223), seznam technickych termini a obecny index zakon&uji
toto kritické vydani.

Zbynek Nddenik, Praha
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Wendell H. Fleming, Raymond W. Rishel: DETERMINISTIC AND STOCHASTIC OPTIMAL
CONTROL. Springer-Verlag, Berlin— Heidelberg— New York 1975, 222 str., cena DM 60,60.

Kniha sestdva ze dvou &asti. Prvni &ast pojedndva o teorii optimalni regulace a variaénim poétu
v deterministickém p¥ipadé&, druha je v€novana stochastické optimalni regulaci pro difuzni procesy.

Prvni kapitola obsahuje kratky uvod do klasického variadniho po&tu. Je popsdna nejjedno-
dudsi uloha minimalizace integrdlniho funkcionalu podél kiivek s pevnymi koncovymi body
s cilem vysvétlit postupy varia¢niho poétu v extremdlnich ulohich. Ve druhé kapitole se autofi
vénuji formulaci ilohy minimalizace funkcionalu ve tfidé funkci, které spliuji jistou diferencialni
rovnici s parametrem a poc¢iteéni podminky. Pro takové dlohy optimalni regulace formuluji
Pontrjaginiiv princip maxima a diskutuji jeho disledky pro ruzné pfipady a tlohy. V zavéru
této kapitoly je uveden dukaz principu maxima metodou variace trajektorii pomoci abstraktniho
pravidla multiplikatori. Pfedmétem III. kapitoly je otdzka existence optimalni regulace ve tfidé
integrovatelnych funkci pro bé&Zné regula¢ni ulohy a v zdvéru kapitoly autofi studuji otdzku,
za jakych podminek existuje spojitd regulace pro danou ulohu. Ctvrta kapitola je vénovéana
metodé dynamického programovani a otizkdm syntézy regulace (je vyloZen postup V. G.
Boltjanského pro konstrukci tzv. regularni syntézy) spolu s postadujicimi podminkami pro
optimalitu pro jisté specidlni pfipady tloh. Je také uvedeno srovnani vysledkd metody dynamic-
kého programovani s vysledky, které dava princip maxima.

Druh4 &4st knihy je uvedena patou kapitolou. Je piehledem té &asti teorie stochastickych pro-
cestl, kterd je potfebnd pro matematicky pfesné zpracovani teorie regulace difuznich procest.
Ve zhusténé, ale piehledné podobé je v ni zpracovana teorie spojitych stochastickych procesu,
stochastickych diferencidlnich rovnic a difuznich procesti. Posledni Sestd kapitola se pifevazné
zabyva teorii regulovanych diftiznich procesti. VyuZiva se pfitom metoda dynamického progra-
movani a tim se problém pfevede na zkoumadni jisté nelinearni parcidlni diferencidlni rovnice.
Maé-li tato parcidlni diferencidlni rovnice rozumné vlastnosti, 1ze nalézt syntézu opti'mélni regu-
lace. Zasadni je pfitom stejnomérnid paraboli¢nost rovnice dynamického programovani.

Vyklad je dopln&n bohatym ptfikladovym materidlem a dlohami. Dodatky v zdvéru knihy
pfipominaji pouZitd fakta z jinych oblasti matematiky (konvexni mnoziny a funkce, zaklady
pravdépodobnosti, parabolické parcidlni diferencialni rovnice apod.).

Stefan Schwabik, Ivo Vrkoé, Praha

MATHEMATICAL SYSTEMS THEORY. Proceedings of the international symposium
Udine, Italy, June 16—27, 1975. Edited by G. Marchesini and S. K. Mitter. Lecture Notes in
Economics and Mathematical Systems 131, Springer-Verlag, Berlin— Heidelberg—New York
1976, X + 408 str., cena DM 35,—.

Sbornik symposia vénovaného matematické ¥eorii systémi. Teorie systém@ je bouflivé se
rozvijejici disciplina, kterd objevila pfednosti matematického, analytického pfistupu pied inze-
nyrskym syntetickym postupem, ktery v pfipadech slozitych systému selhdva zdkonité, a obecné
vede k vysledkim kratsi, ekonomi¢t&jsi cestou. Matematické metody, které tvofi zdklad analytic-
ké teorie systémi maji velmi Siroké spektrum od linearni algebry, algebry kategorii, diferencialni
geometrie, kvalitativni teorie diferencidlnich rovnic az k hlub§im aspektiim teorie Hilbertova
prostoru a funkciondlni analyze.

Tento sbornik je vénovan jenom nékterym bodim tohoto spektra, kterym odpovida také jeho
rozdéleni do &4sti: teorie automatii, kone¢n&dimenzionalni lineirni systémy, bilinearni a nelinedrni
systémy, linearni nekonednédimenzionilni systémy, teorie kddovani a filtrovani pro sekvencidlni
systémy, obecné dynamické systémy a kategoridlni pfistup k systémiin. Obsahuje 27 pfispévki
2afazenych do t&chto &asti. Jsou zajimavé nejenom pro systémové teoretiky-inZenyry, také
matematik v nich najde mnoho materiilu, ktery s pochopenim pteéte z hlediska své specializace.

Stefan Schwabik, Praha
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