

Werk

Label: Table of literature references

Jahr: 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0102 | log49

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

 $g(x_0)$ u' and $g(x_0)$ u'' are edges of H. Hence $E(H, g(x_0)) \cap E(H(s_1)) \neq \emptyset \neq E(H, g(x_0)) \cap E(H(s_2))$. Clearly, $E(H, g(x_0)) \subseteq E(H(s_1)) \cup E(H(s_2))$. From $(2_{H,h,J}/A_2)$ it follows that there exist $y^* \in E(H, g(x_0)) \cap E(H(s_1))$ and $y^{**} \in E(H, g(x_0)) \cap E(H(s_2))$ such that $h(y^*)$ and $h(y^{**})$ are adjacent in J. Denote $w_1 = h(y^*)$ and $w_2 = h(y^{**})$. It is obvious that $w_1 \in f^{-1}(s_1)$ and $w_2 \in f^{-1}(s_2)$.

We have proved that $(3_{J,f,G})$ holds. Hence G is a partition graph of J.

Now we assume that $(2_{G,g,H}|A_2)$ and $(2_{H,h,J}|A_3)$ hold. This implies that also $(2_{G,g,H}|A_1)$ and $(2_{H,h,J}|A_2)$ hold. Let r' be an arbitrary vertex of G. From $(2_{G,g,H}|A_2)$ it follows that H(r') is nontrivial connected. From $(2_{H,h,J}|A_3)$ it follows that J(r') is also connected. Since $V(J(r')) = f^{-1}(r')$, we have that $(4_{J,f,G})$ holds. Hence G is a contraction of J, which completes the proof.

Corollary. Let G be a graph such that $\delta(G) \geq 2$. Then G is a contraction of L(L(G)).

Note that if G is a graph without a triangle which can be obtained from a cycle of a length at least six by adding one new edge, then G is not a partition graph of L(G).

References

- [1] M. Behzad, G. Chartrand: Introduction to the Theory of Graphs. Allyn and Bacon, Boston 1971.
- [2] F. Harary: Graph Theory. Addison-Wesley, Reading (Mass.) 1969.
- [3] E. Sampathkumar, V. N. Bhave: Partition graphs of a graph. Progress of Mathematics 9 (1975), 33-42.

Author's address: 116 38 Praha 1, nám. Krasnoarmějců 2 (Filozofická fakulta Karlovy univerzity).