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CATERPILLARS

BOHDAN ZELINKA, Liberec
(Received February 2, 1976)

A caterpillar is a tree C with the property that after deleting all terminal edges
and all terminal vertices of C a snake (a tree consisting of one simple path) or the
null-graph (a graph without vertices and without edges) is obtained. This concept
was introduced by F. HARARY and A. J. SCHWENK in [1].

Evidently caterpillars together with the one-vertex graph form a class of trees
which is closed under taking subtrees and under connected homomorphisms. Every
star and every snake is a caterpillar.

If C is a caterpillar, then we denote by B(C) the graph obtained from C by deleting
all terminal vertices and all terminal edges. If B(C) is the null-graph, then C is a tree
with two vertices; this case is trivial. In the other cases B(C) is a snake; we shall call
it the body of C. ’

The vertices of B(C) will be denoted by vy, vy, ..., v, Where d is the length of B(C)
and the vertices v;, v;,, for i =0, 1,...,d — 1 are adjacent. If ¢, is the number of
terminal edges of C incident with v; fori = 0, 1, ..., d, then C is uniquely determined
by the vector [to, t,, ..., t;]. Note that ¢, and #, must be different from zero; other-
wise vy or v; would be a terminal vertex of C and this would contradict the fact that v,
and v, belong to B(C). Nevertheless, ¢, for 1 £ i < d — 1 may be equal to zero.
Evidently each (d + 1)-dimensional vector whose co-ordinates are non-negative
integers and the first and the last of them are different from zero determines uniquely
a caterpillar in which ¢; have the described meaning. In general, two vectors may
correspond to every caterpillar with at least three vertices; this depends on the choice
of v, (for v, we choose one of the two terminal vertices of the body of C). The vector
of a caterpillar does not depend on the choice of v,, if and only if there exists an
automorphism of C whose restriction onto the body of C is not an identity mapping.
If we want to assign a unique vector to every caterpillar, we may take that one which
precedes the other in the lexicographical ordering of the set of all (4 + 1)-dimensional
vectors. However, in the sequel, when we speak about the vector of a caterpillar,
we mean anyone of the two vectors which are assigned to that caterpillar. A caterpillar
with at least three vertices is a snake, if and only if its vector [to, ty, ..., t;] has the
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property that t, =t; =1,¢t;, =0fori =1,...,d — 1. A caterpillar is a star, if and
only if its vector is one-dimensional.

There exist various ways how to determine a tree. We shall mention some of them
and show characterizations of caterpillars in terms of them.

L. NeBeskY [3] has defined tree algebras. A tree algebra (M , P) is an algebra with
an element set M and with a ternary operation P which satisfies the following axioms:

L P(u, u,v) = u;
IL. P(u, v, w) = P(v, u, w) = P(u, w, v);
1. P(P(u, v, w), v, x) = P(u, v, P(w, v, X));
IV. P(u,v, x) = P(v, w, x) % P(u, w, x) = P(u, v, x) = P(u, w, x).

Every finite tree T determines uniquely a tree algebra (M, P), whose element set
is the vertex set of T and in which P(u, v, w) is the common vertex of the path con-
necting u and v, the path connecting u and w and the the path connecting v and w
in T. Conversely, every finite tree algebra determines uniquely a tree. Thus there is
a one-to-one correspondence between finite trees and finite tree algebras. This was
proved by L. Nebesky.

Theorem 1. Let T be a finite tree with at least three vertices, let (M, P) be the tree
algebra corresponding to T. The tree T is a caterpillar, if and only if for any nine
elements x,, X,, X3, VY1, V2, V3s Z1> 225 23, Where x; £ X, + X3 F X1, ¥, £y, +
*+ y3 % V1, 2 ¥ 2, * 23 + 2y, the vertex P(P(x,, X3, X3), P(¥1, ¥2, ¥3), P(z1, 22,
z3)) coincides with some of the vertices P(x,, X5, x3), P(y1, 2, ¥3), P(21, 22, 23).

Proof. Let T be a caterpillar. As x; =+ x, % x5 * x,, P(x,, x,, x3) cannot be
a terminal vertex of T, because a terminal vertex of T can be contained only in such
a path whose terminal vertex it is. Thus P(x,, x,, x3) and analogously also P(y,, y,,
y3) and P(z,, z,, z;) belong to the body of T. The body of T'is a snake, therefore for
any three of its vertices there exists one of them which lies between the other two. This
implies that at least one of the vertices P(x,, x,, X3), Py, 2, ¥3)s P(zy, z,, 23) lies
on the path connecting the other two and thus it is equal to P(P(xy, X, x3), P(yy, ¥2,
¥3), P(zy, 25, z3)). If Tis not a caterpillar, then it contains a subtree isomorphic
to the tree in Fig. 1; this was mentioned in [1]. If x;, x,, X3, ¥y, V2, V3, 23, 2, 23 are
such as is denoted in Fig. 1, then P(x,, x,, X3) = X, P(yy, ¥2, ¥3) = V2, P(zy, 25,
z3) = z,, but P(x,, ¥,, z,) = X3, which is different from x,, y,, z,.

Another way of determining trees was described by E. A. SMOLENskii [4]. If
uy, ..., u, are terminal vertices of a tree T and d;; is the distance between u; nad u;
in Tfor 1 £i<n,1=Zj < n, then the matrix,"dij" is called the distance matrix
of T. The tree T is uniquely (up to an isomorphism) determined by its distance
matrix. In the following theorem the letter u with subscripts has this meaning and
the letter v with subscripts has the meaning as in the definition of the vector of
a caterpillar.
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Theorem 2. Let T be a tree with n terminal vertices, let D = |d;;|| be its distance
matrix. The tree T is a caterpillar, if and only if any three pairwise distinct
numbers i, j, k from the numbers 1, ..., n satisfy

(1) min (d;; + djy — dy, dij + dy — djg, dy + djy — dy;) = 2.

Proof. Let T be a caterpillar with the vector [to, ty, ..., t;,]. Let vy, vyjy, V1x) be
the vertices of the body of T which are adjacent to u;, u;, u, respectively. Without
loss of generality let I(i) < I(j) < I(k). Then

di; =2+ 1(j) = 1(i), dj =2+ (k) = 1(j), dy =2+ I(k)— 1(i)
and therefore
dij+dy —dy =2,
dij+dy —dy =2+21() —21(i) 22,
dy +dy —dy =2+ 21(k) —21(j) 2 2.
Thus the equality (1) holds. Now suppose that (1) holds and prove that T'is a cater-

pillar. Let again u;, uj, u, be three pairwise distinct terminal vertices of T. Let v =
= P(u;, u;, u;); this symbol is taken from the tree algebra defined above. Evidently

di; = d(ug, v) + d(uy, v), dy = d(uj,v) + d(u, v), dy = d(u,v) + d(u, v),
where d(x, y) denotes the distance of vertices x and y in T. Then |

dij +dy —dy =2d(uj,v), dj+dy—d

dy'+ djp — di; = 2d(uy, v) .

ik = 2d(u", v) ,

J

If (1) is fulfilled, then at least one of the vertices u;, u;, u, has the distance 1 from
v = P(u;, uj, u,). But this excludes the existence of a tree isomorphic to that in Fig. 1
and T must be a caterpillar.

Now we shall study some problems of embedding.
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L. Nebesky has defined a completely separable tree as a tree which can be embedded
into every block graph which has exactly two blocks and the same number of vertices
as this tree. (A block graph is a graph, each of whose blocks is a clique. The problems
of embedding trees into block graphs were studied in [5]. Here we shall define
a stronger concept of a completely separable rooted tree.

A rooted graph is a graph in which one vertex is chosen and called the root of this
graph. If this graph is a tree, it is called a rooted tree. A rooted tree is called complete-
ly separable, if it can be embedded into every rooted block graph which has exactly
two blocks and the same number of vertices as this tree and its root is not a cut-
vertex in it, in such a way the root of the tree and the root of the block graph
coincide.

Theorem 3. A rooted tree is completely separable, if and only if it is a caterpillar
whose root is a terminal vertex adjacent to a terminal vertex of its body.

Proof. Let C be a rooted caterpillar whose root is a terminal vertex adjacent to
a terminal vertex of its body. Let the vector of C be [#,, t,, ..., t;], let the root of C
be a vertex r adjacent to vy. Let the number of vertices of C be n; then d + 1 +

d j
+Yt;=nForj=0,1,...,dletn; = j + 1 + ) t, Let G be a block graph having
i=0 i=0

exactly two blocks, one with k vertices, the other with n — k +1 vertices, where k
is a positive integer, 2 = k < n — 1. Let B, be the block of G with k vertices and B,
the block of G with n — k + 1 vertices. Let a be a cut-vertex of G. Let the root r,
of G be in B,. If k — 1 < n,, then we identify the vertex v, of C with the vertex a
of G, choose k — 1 vertices from the n, vertices of C adjacent with vy, one of them
being r, and identify them with the vertices of B; so that r is identified with r,.
The remaining vertices will be identified with vertices of B,. The embedding is com-
plete. If k — 1 > ng, then there exists j such that n; <k — 1 < n;,,. Then we
identify v;,, with a. From the ¢;,, terminal vertices adjacent to v;,; we choose
k — 1 — n; ones. These vertices, the vertices Vg, ..., v; and all terminal vertices
adjacent to some of the vertices vy, ..., v; will be identified with the vertices of B,,
r being identified with ry, and the remaining vertices will be identified with the vertices
of B,.

Now we shall prove that no other rooted tree is completely separable. A root of
a completely separable rooted tree must be its terminal vertex. If we have a block
graph with n vertices and two blocks, one of which has only two vertices and the root
of this block graph is the vertex of the two-vertex block whicH is not a cut-vertex,
then this root has the degree one. If we embed a tree with n vertices into this block
graph, only a terminal vertex of this tree can be identified with this root. Let us have
a rooted tree T which is not a caterpillar and suppose that it is completely separable.
Then T contains a vertex w such that there exist at least three branches A4,, 4,, 45
outgoing from w, each of which contains at least three vertices including w. The:
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vertex w is not a root of T, because it is not terminal. Thus the root r of T belongs
to a branch A4, outgoing from w. The branch A, may coincide with some of the
branches A,, A,, A;; without loss of generality suppose 4, + A, Ay + A,. Let 4,
have k vertices. Take a rooted block graph G with n vertices and two blocks, one of
which has k + 1 vertices, contains the root r, of G and is denoted by B,. No vertex
of A, can be identified with the cut-vertex a of G; otherwise some vertices of B,
would be identified with no vertex of T. Thus the whole A, is embedded into B,
and a must be identified with a vertex a, of T adjacent to w and not belonging to A4,.
Without loss of generality suppose that a, does not belong to A,. Then 4, must be
embedded into the same block of G as B, but this is not possible, because this block
has only k + 1 vertices and they are identified with the vertices of A, and with the
vertex aq. This is a contradiction with the assumption that T'is completely separable.
Now let C be a caterpillar with n vertices with the vector [to, t,, ..., t,] and let its
root be a terminal vertex adjacent to some v;, where j % 0, j # d. Suppose that C
is completely separable. Take a rooted block graph G with n vertices and two blocks,
one of which has three vertices and contains the root of G. Then either v;_,, or v;,,
must be identified with the cut-vertex of G. Now by a similar argument as in the
preceding case we obtain a contradiction.

Now we shall consider embedding caterpillars into the graphs of n-dimensional
cubes (or shortly n-cubes). A graph of the n-cube, where n is a positive integer, is the
graph whose vertices are all n-dimensional vectors whose co-ordinates are zeros and
ones and in which two vertices are joined by an edge if and only if they differ from
each other in exactly one co-ordinate. Embedding trees into n-cubes was studied by
I. HAVEL and P. LieBL [2]. Every finite tree is embeddable into an n-cube for some n.
If T is a finite tree, then the minimal n such that T is embeddable into the n-cube
will be called the dimension of T and denoted by dim T.

Theorem 4. Let T be a tree with k = 2 vertices. Then

Jlog k[ £ dmT=< k- 1.
These bounds cannot be improved.

Remark. The symbol ]x[ denotes the least integer which is greater than or equal
to x; some authors call it “the post-office function”.

Proof. If I is a positive integer and ! < Jlog, k[, then I < log, k. The number
of vertices of the I-cube is 2' < k and thus a graph with k vertices cannot be embedded
into it. Therefore Jlog, k[ < dim T. The upper bound will be proved by induction.
If k = 2, then T'is isomorphic to the one-dimensional cube and dim T = 1; thus the
assertion is true. Now let k > 2. Let u be a terminal vertex of T, let e be the edge
incident with u, let v be the other end vertex of e. By deleting u and e from T we
obtain a tree T’ with k — 1 vertices. Let m = dim T'. According to the induction
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assumption, m < k — 2. Consider a graph Q,_, of the (k — 1)-dimensional cube.
Its vertices are (k — 1)-dimensional vectors whose co-ordinates are zeros and ones.
Let Q,_, be the subgraph of Q,_, induced by the set of all vertices of Q,_, whose
last co-ordinate is O; this graph Q,_, is a graph of the (k — 2)-dimensional cube.
We embed T' into Q,_,. Let [ay, ..., a;—,, 0] be the vertex of Q,_, with which v
is identified in this embedding (the co-ordinates ay, ..., a,_, are zeros or ones).
Then we identify u with [ay, ..., a,-,, 1] and T is embedded into Q,_,. Therefore
dimT=< dim T' + 1 £ k — 1. The bounds cannot be improved, because a snake
with k vertices can be embedded into the cube of the dimension ]log, k[ (as a part
of its Hamiltonian path) and a star with k vertices cannot be embedded into the cube
of the dimension smaller than k — 1 (in such a cube there exists no vertex of the
degree at least k — 1).

Theorem 5. Let k, m be positive integers such that k = 2 and
Jog, k[ s m <k —1.
Then there exists a caterpillar C with k vertices such that dim C = m.

Proof. For any positive integer h such that 2 < h < k — 2 let C(h) be a cater-
pillar with the vector [to,t,,...,1,], where d =k —h —1, to=h—1, t, =1
and t; =0 for i =1,...,d — 1. The caterpillar C(2) is a snake with k vertices and
dim C(2) = ]Jlog, k[. The caterpillar C(k — 2) can be emebedded into the (k — 2)-
dimensional cube so that v, is identified with [0, ..., 0], v, with [1,0,...,0], the
terminal vertices adjacent to v, are identified with [0, 1, 0, ..., 0], [0, 0, 1,0, ..., 0], ...
.. [0, ..., 0, 1], the terminal vertex adjacent to v, is identified with [1, 1,0, ..., 0].
But C(k — 2) cannot be embedded into the (k — 3)-dimensional cube, because it
contains the vertex v, of the degree k — 2. Therefore dim C(k — 2) = k — 2. Now
let us take the caterpillars C(h) and C(h + 1) for some h, 2 < h < k — 3. The
caterpillar C(h + 1) is obtained from C(h) by deleting one terminal vertex and adding
another. In the proof of Theorem 4 we have proved that by adding one terminal
vertex the dimension of a tree increases at most by one; by deleting a vertex obviously
it cannot increase. Thus dim C(h + 1) £ 1 + dim C(h). This implies that dim C(h)
for 2 < h < k — 2 attains all integral values in the interval (Jlog, k[, k — 2).
There exists a caterpillar C with k vertices and dim C = k — 1, namely a star.
Thus the assertion is proved.

In the end we propose two problems.

Problem 1. A universal caterpillar for caterpillars with n vertices is a caterpillar
into which each caterpillar with n vertices can be embedded. Determine the least
number of vertices of a universal caterpillar for caterpillars with n vertices.

Problem 2. Characterize graphs whose spanning tree is a caterpillar. (This is a gener-
alization of graphs with Hamiltonian paths.)
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