

Werk

Label: Table of literature references

Jahr: 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0102 | log40

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Let us define bijections $\pi: \mathcal{P}_1 \to \mathcal{P}_2$ and $\lambda: \mathcal{L}_1 \to \mathcal{L}_2$ such that $(x, y)^\pi = (x \circ_1 2, y)$, $[m, b]^\lambda = [m \circ_1 2, b]$, $(m)^\pi = (m \circ_1 2)$ and $[x]^\lambda = [x \circ_1 2]$. It is possible to verify that $x \circ_1 m = (x \circ_1 2) \circ_2 (m \circ_1 2)$ for all $x, m \in \mathcal{S}$. This statement together with the condition (a) of Theorem 1 imply the following results: if $(x, y) \mathcal{I}_1[m, b]$, then $(x, y)^\pi \mathcal{I}_2[m, b]^\lambda$. For the other couples of incident points and lines from $\mathcal{P}_{\mathbf{R}_1}$ the incidence in $\mathcal{P}_{\mathbf{R}_2}$ is obviously preserved. It means that (π, λ) is an isomorphism of the projective planes $\mathcal{P}_{\mathbf{R}_1}, \mathcal{P}_{\mathbf{R}_2}$. The following holds: $(\infty_1)^\pi = (\infty_2)$, $(O)^\pi = (O)$ and $[O]^\lambda = [O]$. The isomorphism (π, λ) satisfies the assumptions of Theorem 4.

If we construct an isotopism $(\alpha, \beta, \gamma, \delta)$ of PTR's \mathbf{R}_1 and \mathbf{R}_2 in the same way as in Theorem 4, then $x^{\gamma} = x_{01} 2$, $x^{\beta} = x_{01} 2$, $x^{\alpha} = x$ for all $x \in \mathcal{S}$. Since O is the zero in the PTR's \mathbf{R}_1 and \mathbf{R}_2 , we have $\varphi_1 = \varphi_2 = \mathrm{id}_{\mathcal{S}}$. Then $\alpha = \delta = \mathrm{id}_{\mathcal{S}}$ and $\beta = \gamma$. Since (π, λ) is an isomorphism and $(x, y) \mathscr{I}_1[m, b] \Leftrightarrow (x, y)^n \mathscr{I}_2[m, b]^{\lambda} \Rightarrow (x^{\beta}, y) \mathscr{I}_2[m^{\beta}, b]$, it means that for each $x, y, m, b \in \mathcal{S}$ for which the above mentioned relation holds, $x_{01} = x_{01} = x_{02} = x_{02$

References

- [1] V. Havel: A General Coordinatization Principle for Projective Planes with Comparison of Hall and Hughes Frames and with Examples of Generalized Oval Frames, Czech. Math. Journal 24 (1974), 664-673.
- [2] D. E. Knuth: Finite Semifields and Projective Planes, J. Algebra 2 (1965), 182-217.
- [3] G. E. Martin: Projective Planes and Isotopic Ternary Rings, Amer. Math. Monthly 74 (1967) II, 1185-1195.
- [4] F. W. Stevenson: Projective Planes, W. H. Freeman and Co., San Francisco, 1972.

Author's address: 70833 Ostrava, Třída vítězného února (Katedra matematiky a deskriptivní geometrie VŠB).