

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0102 | log37

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON INVERSION OF LAPLACE TRANSFORM (I)

MIROSLAV SOVA, Praha (Received January 21, 1976)

The aim of this note is to show how a complex inversion theorem may be deduced from the general Post-Widder inversion theorem.

- 1. We denote by R and C respectively the real and complex number fields and by R^+ the set of all positive numbers. Further, if M_1 , M_2 are two arbitrary sets, then $M_1 \rightarrow M_2$ will denote the set of all mappings of the set M_1 into the set M_2 .
 - **2.** Lemma. For every $\alpha \ge 0$ and $r \in \{1, 2, ...\}$ such that $r > \alpha$, we have

$$\left(\frac{r}{r-\alpha}\right)^r \leq e^{(r/r-\alpha)\alpha} = e^{\alpha}e^{\alpha^2/(r-\alpha)}.$$

Proof. Under our assumptions we have

$$\log\left(\frac{r}{r-\alpha}\right)^{r} = \log\left(\frac{1}{1-\frac{\alpha}{r}}\right)^{r} = -r\log\left(1-\frac{\alpha}{r}\right) = r\sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{\alpha}{r}\right) k \le$$

$$\leq r\sum_{k=1}^{\infty} \left(\frac{\alpha}{r}\right)^{k} = r\frac{\alpha}{r} \frac{1}{1-\frac{\alpha}{r}} = \alpha \frac{r}{r-\alpha} = \alpha + \frac{\alpha^{2}}{r-\alpha}$$

and our result follows.

3. Lemma. For every $z \in C$, $(1 + z/q)^q \rightarrow e^z(q \rightarrow \infty)$.

Proof. According to the binomial theorem, we can write

(1)
$$\left(1 + \frac{z}{q}\right)^q = \sum_{k=0}^q \binom{q}{k} \frac{z^k}{q^k} = 1 + z + \sum_{k=2}^q \frac{q(q-1)\dots(q-k+1)}{k!} \frac{z^k}{q^k} =$$

$$= 1 + z + \sum_{k=2}^q \frac{q(q-1)\dots(q-k+1)}{q^k} \frac{z^k}{k!} =$$

$$= 1 + z + \sum_{k=2}^q \left(1 - \frac{1}{q}\right) \left(1 - \frac{2}{q}\right) \dots \left(1 - \frac{k-1}{q}\right) \frac{z^k}{k!}$$

for every $q \in \{2, 3, ...\}$.

Let now $z \in C$ and $\varepsilon > 0$. Then there exists a $k_0 \in \{2, 3, ...\}$ such that

(2)
$$\sum_{k=k_0+1}^{\infty} \frac{|z|^k}{k!} \leq \frac{\varepsilon}{3}.$$

It follows from (2) that

(3)
$$\left| e^z - \sum_{k=0}^{k_0} \frac{z^k}{k!} \right| \leq \frac{\varepsilon}{3}.$$

Further by (1) and (2),

(4)
$$\left| \left(1 + \frac{z}{q} \right)^q - \left[1 + z + \sum_{k=2}^{k_0} \left(1 - \frac{1}{q} \right) \left(1 - \frac{2}{q} \right) \dots \left(1 - \frac{k-1}{q} \right) \frac{z}{k!} \right] \right| =$$

$$= \left| \sum_{k=k_0+1}^q \left(1 - \frac{1}{q} \right) \dots \left(1 - \frac{k-1}{q} \right) \frac{z}{k!} \right| \leq \sum_{k=k_0+1}^k \frac{|z|^k}{k!} \leq \frac{\varepsilon}{3}$$

for every $q \ge k_0 + 1$.

Finally it is easy to see that there exists a $q_0 \in \{k_0 + 1, k_0 + 2, ...\}$ such that

(5)
$$\left| \sum_{k=0}^{k_0} \frac{z^k}{k!} - \left[1 + z + \sum_{k=2}^{k_0} \left(1 - \frac{1}{q} \right) \left(1 - \frac{2}{q} \right) \dots \left(1 - \frac{k-1}{q} \right) \frac{z}{k!} \right] \right| \le \frac{\varepsilon}{3}$$

for every $q \ge q_0$.

Now we have immediately from (3), (4) and (5)

$$\left| e^{z} - \left(1 - \frac{z}{q} \right)^{q} \right| \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

for every $q \ge q_0$ and this gives the assertion.

4. Theorem (Post-Widder). Let $f \in \mathbb{R}^+ \to E$ and let M, ω be two nonnegative constants. If

- (a) the function f is measurable over R^+ ,
- (β) $|f(t)| \leq Me^{\omega t}$ for almost all $t \in \mathbb{R}^+$, then

(a)
$$\int_0^\infty e^{-((p+1)/t)\tau} \tau^p f(\tau) d\tau \text{ exists for every } t \in \mathbb{R}^+ \text{ and } p+1 > \omega t,$$

(b)
$$\left|\frac{1}{p!}\left(\frac{p+1}{t}\right)^{p+1}\int_0^\infty e^{-(p+1)/\tau}\tau^p f(\tau) d\tau\right| \leq Me^{\omega t}e^{\omega^2 t^2/(p+1-\omega t)}$$

for every $t \in R^+$ and $p + 1 > \omega t$,

(c)
$$\frac{1}{p!} \left(\frac{p+1}{t} \right)^{p+1} \int_0^\infty e^{-((p+1)/t)\tau} \tau^p f(\tau) d\tau \to f(t) \ (p \to \infty, \ p+1 > \omega t)$$

for almost all $t \in \mathbb{R}^+$.

- **5. Lemma.** Let α be a nonnegative constant and $J \in \{z : \text{Re } z \geq \alpha\} \rightarrow C$. If
- (α) J is continuous on $\{z : \text{Re } z \geq \alpha\}$,
- (β) J is analytic on $\{z : \text{Re } z > \alpha\},$
- (γ) $J(\lambda) \to 0$ $(\lambda \ge \alpha, \lambda \to \infty),$
- (δ) there exist a constant K and a number $k \in \{0, 1, ...\}$ so that for every $\text{Re } z \ge \alpha$, we have $|J(z)| \le K(1 + |z|)^k$,

$$\int_{-\infty}^{\infty} \frac{\left| J(\alpha + i\beta) \right|}{1 + |\beta|} \, \mathrm{d}\beta < \infty \,,$$

then for every $\lambda > \alpha$ and $p \in \{0, 1, ...\}$,

$$\frac{\mathrm{d}^{p}}{\mathrm{d}\lambda^{p}}J(\lambda)=(-1)^{p}\frac{p!}{2\pi i}\int_{-\infty}^{\infty}\frac{J(\alpha+i\beta)}{(\lambda-\alpha-i\beta)^{p+1}}\,\mathrm{d}\beta.$$

Proof. Let us first fix a $\lambda > \alpha$.

Moreover, we choose fixed numbers K, k so that the assumption (δ) holds. By virtue of Cauchy's integral theorem, we obtain from (α), (β) that

(1)
$$\frac{2\pi}{p!} J^{(p)}(\lambda) = -\int_{-N}^{N} \frac{1}{(\alpha + i\beta - \lambda)^{p+1}} J(\alpha + i\beta) d\beta +$$

$$+ \int_{-N}^{N} \frac{1}{(\alpha + 2N + i\beta - \lambda)^{p+1}} J(\alpha + 2N + i\beta) d\beta -$$

$$- i \int_{0}^{2N} \frac{1}{(\alpha + \eta + iN - \lambda)^{p+1}} J(\alpha + \eta + iN) d\eta +$$

$$+ i \int_{0}^{2N} \frac{1}{(\alpha + \eta - iN - \lambda)^{p+1}} J(\alpha + \eta - iN) d\eta$$

for every $p \in \{0, 1, ...\}$ and $N > \frac{1}{2}\lambda$.

Using (δ) , we obtain

$$\left| \int_{-N}^{N} \frac{1}{(\alpha + 2N + i\beta - \lambda)^{p+1}} J(\alpha + 2N + i\beta) d\beta \right| \leq$$

$$= \int_{-N}^{N} \frac{1}{((\lambda - \alpha + 2N)^{2} + \beta^{2})^{(p+1)/2}} \left[1 + ((\alpha + 2N)^{2} + \beta^{2})^{1/2} \right]^{k} d\beta =$$

$$= \int_{-N}^{N} \frac{1}{(\lambda - \alpha + 2N)^{p+1}} \left[1 + ((\alpha + 2N)^{2} + N^{2})^{1/2} \right]^{k} =$$

$$= \frac{2N}{(\lambda - \alpha + 2N)^{p+1}} \left[1 + ((\alpha + 2N)^{2} + N^{2})^{1/2} \right]^{k},$$

$$\left| \int_{0}^{2N} \frac{1}{(\alpha + \eta + iN - \lambda)^{p+1}} J(\alpha + \eta + iN) d\eta \right| \leq$$

$$\leq \int_{0}^{2N} \frac{1}{((\lambda + \eta - \alpha)^{2} + N^{2})^{(p+1)/2}} \left[1 + (\alpha^{2} + N^{2})^{1/2} \right]^{k} d\eta \leq$$

$$\leq \int_{0}^{2N} \frac{1}{N^{p+1}} \left[1 + (\alpha^{2} + N^{2})^{1/2} \right]^{k} \leq \frac{2}{N^{p}} \left[1 + (\alpha^{2} + N^{2})^{1/2} \right]^{k},$$

$$\int_{0}^{2N} \frac{1}{(\alpha + \eta + iN - \lambda)^{p+1}} J(\alpha + \eta - iN) d\eta \leq \frac{2}{N^{p}} \left[1 + (\alpha^{2} + N^{2})^{1/2} \right]^{k}$$

for every $p \in \{0, 1, ...\}$ and $N > \frac{1}{2}\lambda$.

Letting $N \to \infty$, we see from (2) that

(3)
$$\int_{-N}^{N} \frac{1}{(\alpha + 2N + i\beta - \lambda)^{p+1}} J(\alpha + 2N + i\beta) d\beta \rightarrow_{N \to \infty} 0,$$

$$\int_{0}^{2N} \frac{1}{(\alpha + \eta + iN - \lambda)^{p+1}} J(\alpha + \eta + iN) d\eta \rightarrow_{N \to \infty} 0,$$

$$\int_{0}^{2N} \frac{1}{(\alpha + \eta - iN - \lambda)^{p+1}} J(\alpha + \eta - iN) d\eta \rightarrow_{N \to \infty} 0$$

for every $p \in \{k + 1, k + 2, ...\}$.

Now we conclude from (1) and (3) by means of (ε) that

(4)
$$J^{(p)}(\lambda) = -\frac{p!}{2\pi} \int_{-\infty}^{\infty} \frac{J(\alpha + i\beta)}{(\alpha + i\beta - \lambda)^{p+1}} d\beta$$

for every $\lambda > \alpha$ and $p \in \{k + 1, k + 2, ...\}$.

On the other hand, let us define, on the basis of (ε)

$$J_0(\lambda) = -\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{J(\alpha + i\beta)}{(\alpha + i\beta - \lambda)} d\beta$$
 for every $\lambda > \alpha$.

It is easy to verify that

(6) the function J_0 is infinitely differentiable on (α, ∞) ,

(7)
$$J_0^{(p)}(\lambda) = -\frac{p!}{2\pi} \int_{-\infty}^{\infty} \frac{J(\alpha + i\beta)}{(\alpha + i\beta - \lambda)^{p+1}} d\beta$$

for every $\lambda > \alpha$ and $p \in \{0, 1, ...\}$,

(8)
$$J_0(\lambda) \to 0 \quad (\lambda > \alpha, \ \lambda \to \infty).$$

By (4)-(7),

(9)
$$J^{(k+1)}(\lambda) = J_0^{(k+1)}(\lambda)$$

for every $\lambda > \alpha$. Consequently, by (9)

(10)
$$J - J_0$$
 is a polynomial.

Taking (γ) and (8) into account, we see that

(11)
$$J(\lambda) - J_0(\lambda) \to 0 \quad (\lambda > \alpha, \ \lambda \to \infty).$$

Hence (10) and (11) imply $J = J_0$ and the conclusion of Lemma 5 follows immediately from (7).

- **6. Theorem.** Let $f \in \mathbb{R}^+ \to \mathbb{C}$ and $\alpha > 0$. If
- (α) the function f is measurable,
- (β) there exist two nonnegative constants M, ω so that $\omega < \alpha$ and $|f(t)| \leq Me^{\omega t}$ for almost all $t \in \mathbb{R}^+$,

$$\int_{-\infty}^{\infty} \left| \int_{0}^{\infty} e^{-(\alpha + i\beta)\tau} f(\tau) d\tau \right| d\beta < \infty,$$

then

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{(\alpha + i\beta)t} \left(\int_{0}^{\infty} e^{-(\alpha + i\beta)\tau} f(\tau) d\tau \right) d\beta.$$

for almost all $t \in \mathbb{R}^+$.

Proof. Let us first fix the constants M, ω so that the assumption (β) holds. Further let us define a function $F \in (\omega, \infty) \to C$ by

(1)
$$F(\lambda) = \int_0^\infty e^{-\lambda \tau} f(\tau) d\tau \quad \text{for} \quad \lambda > \omega.$$

By Theorem 4 we have

(2)
$$\frac{(-1)^p}{p!} \left(\frac{p+1}{t}\right)^{p+1} F^{(p)} \left(\frac{p+1}{t}\right) \to f(t) \quad (p \to \infty, \ p+1 > \alpha t)$$

for almost all $t \in \mathbb{R}^+$.

On the other hand, let J be the function defined by

(3)
$$J(z) = \int_0^\infty e^{-z\tau} f(\tau) d\tau$$

for every Re $z \ge \alpha$.

It is easy to deduce from our assumptions that

(4) the function J has the properties $5(\alpha)-(\epsilon)$.

Hence by (4), we obtain from Lemma 5 that

(5)
$$J^{(p)}(\lambda) = (-1)^p \frac{p!}{2\pi} \int_{-\infty}^{\infty} \frac{J(\alpha + i\beta)}{(\lambda - \alpha - i\beta)^{p+1}} d\beta$$

for every $\lambda > \alpha$ and $p \in \{0, 1, ...\}$.

Now it follows from (1), (3) and (5) that

$$\frac{(-1)^p}{p!} \left(\frac{p+1}{t}\right)^{p+1} F^{(p)} \left(\frac{p+1}{t}\right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\left(\frac{p+1}{t}\right)^{p+1}}{\left(\frac{p+1}{t} - \alpha - i\beta\right)^{p+1}} J(\alpha + i\beta) d\beta =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\left(1 - \frac{(\alpha + i\beta)t}{p+1}\right)^{p+1}} J(\alpha + i\beta) d\beta$$

for every $t \in R^+$ and $p + 1 > \alpha t$.

By Lemma 2 we see that

(7)
$$\left| \frac{1}{\left(1 - \frac{(\alpha + i\beta)t}{p+1}\right)^{p+1}} \right| = \frac{1}{\left[\left(1 - \frac{\alpha t}{p+1}\right)^2 + \left(\frac{\beta t}{p+1}\right)^2\right]^{(p+1)/2}} \le \frac{1}{\left(1 - \frac{\alpha t}{p+1}\right)^{p+1}} \le e^{\alpha t} e^{\alpha t/(p+1-\alpha t)}$$

for every $t \in R^+$ and $p + 1 > \alpha t$.