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ON INVERSION OF LAPLACE TRANSFORM (I)

MiIRrROSLAV SovA, Praha

(Received January 21, 1976)

The aim of this note is to show how a complex inversion theorem may be deduced
from the general Post-Widder inversion theorem.

1. We denote by R and C respectively the real and complex number fields and
by R™ the set of all positive numbers. Further, if M;, M, are two arbilrary sets,
then M; — M, will denote the set of all mappings of the set M, into the set M,.

2. Lemma. For every o = 0 and re {1, 2,...} such that r > a, we have

r d (r/r—a)a « _a?/(r—a)
<e = e’ ‘
ro—:o

Proof. Under our assumptions we have

and our result follows.
3. Lemma. For every ze C, (1 + z/q)? - €*(q - ).
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Proof. According to the binomial theorem, we can write

q q k q — — k
q) «¥=o\k/q" K=2 k! q
q _ _ k
—1tz4) q(q 1)...(kq k-i-l)z_=
k=2 q k!
q _ k
=1+z+2(1—1)(1—3)...(1———k I)Z_
k=2 q q q k!

for every ge{2,3,...}.
Let now z € C and & > 0. Then there exists a k, € {2, 3, ...} such that

) k
2) iR
k=ko+1 k! ~ 3
It follows from (2) that
ko zk e
3 oy )<t
( ) ’ k=o k!l — 3

Further by (1) and (2),

O R T

q
(- -(-5Y s 3 |t

€
k=ko+1 " k=ko+1 k! 3

IIA

for every q = ko + 1.
Finally it is easy to see that there exists a g, € {ko + 1, ko + 2, ...} such that

kzoff—[1+z+§j (1—1)(1—2)...(1—"—;1-)%]

k=0 k! k=2 q

IIA

£
3

()

for every q = qo.
Now we have immediately from (3), (4) and (5)

q
e’—(1—£>
q

for every g = g, and this gives the assertion.

< + =g

+

Wi,
W™

¢
3

4. Theorem (Post-Widder). Let fe R* — E and let M, » be two nonnegative

constants. If
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(@) the function f is measurable over R*,
(B) If(t)| < Me** for almost all te R*, then

-

0
(a) f e~ (PHVIDTP f(7) dt exists for every te RY and p + 1 > o,
0

(b) ll <p + 1>P+1 Jwe_(p+l)/t1pf(f) dtz| < Mew!ewztz/(p+l—wt)
p! -

t 0
for everyte Rt and p + 1 > wt,
ptl o
(©) ;)1_'(11 T 1) J e PV f(r)dr - f(1) (p— oo, p + 1 > wt)
! 0
for almost all te R™*.

5. Lemma. Let « be a nonnegative constant and J€{z : Rez 2 a} - C. If

(o) J is continuous on {z : Re z = a},

(B) J is analytic on {z: Rez > a}, .

() JA->0(A=a 4> ),

(8) there exist a constant K and a number k € {0, 1, ...} so that for every Re z =
> o, we have |J(z)| < K(1+ |z|)",

() J—w l.l(cx_+i_@[dﬂ<oo,

I
then for every 2 > a and pe{0,1,...},

ww =y L D

dar 27 J (A — a — ip)PT!

dg.

Proof. Let us first fixa 1 > a.
Moreover, we choose fixed numbers K, k so that the assumption (3) holds.
By virtue of Cauchy’s integral theorem, we obtain from (o), (B) that

(1) 2—”J<">(,1)=— N;J(a+iﬁ)dﬁ+
p! _n(x + B — ApPH?
N 1
+ J(a + 2N + if)dp —
J-_N(a{+ 2N + ip — ApP*! ( P ap
2N 1
— i J(e + n + iN)dn +
o(a+n+iN—,1)P+1( it )b
2N 1 ’
+ i J(e +n —iN)dn

o (x+n—iN— 2P+t
for every pe {0, 1,...} and N > }A.
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Using (5), we obtain

@)

N
1 .
J—N(a + 2N + 18 = AP+ J(ox + 2N + iB) dp| =

N
=j (A—a+ ZN;z + pA)eron [L + ((« + 2N)* + B*)'2]*dp =
-N

B -[ivzv(l - o -i 2N)P*1 [1 + ((x + 2N)* + N?)'2]* =

2N
N (A —a+2Np*! [1+ ((«+ 2N)? + N?)127,

2N
1
J@ +n + iN)dn| =
L (a+n+iN_,1)p+1( n )dn| =

2N
1
= J'o (2 + n — a)* + N¥)®+2 [1+(+ N2)1/2]k dn <

2N
1 2 2\1/27k l 2 2172k
é.[o Nl='+1[1+(OC + N?) ]éNp[l‘i'(tx +N) 1

2N 1 2
Ja+n—iN)dp £ =1 + (a2 + N2)V/2k
Jo (06+11+iN—l)p+1 ( g ) ”—N”[ ( ) ]

forevery pe{0,1,...} and N > }A.
Letting N — oo, we see from (2) that

N
1
: — J(@ + 2N + iB)df —>y- 0,
© .[-u(a+2N+iﬂ_,1)p+1( B)dB -
2N 1
J(@ + 7+ iN)dn -x.,,0,
L (@ + n + iN — )P+t (@ +7 )dn >y
2N 1
J 4+ 7 —iN)dy 5 5. 0
L (cx+q—iN_,1)p+x( n )dn =y

forevery pe{k + 1,k + 2,...}.
Now we conclude from (1) and (3) by means of (&) that

o = - 27 _Jetri)
4 J®(2) 2nj_w(a+iﬂ_l)p+ldﬁ

forevery A >« and pe{k + 1,k + 2,...}.
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On the other hand, let us define, on the basis of (&)

_ 1 Je+ip)
Jo(4) = ZnI_w(———a+iﬁ—l)dB for every A > «.

It is easy to verify that

(6) the function Jj, is infinitely differentiable on (a, o0),

) p@--£ rw (aj(“—ﬂ—*_’f;— ap
forevery A > a and pe{0,1,...},
(®) . Jo(A) >0 (A>a A ).
By (4)-(7),
o) JHG) = I

for every 4 > a. Consequently, by (9)

(10) J — J, is a polynomial .
Taking (Y) and (8) into account, we see that

(11) J(A) = Jo(A) >0 (A>a, A —> ).

Hence (10) and (11) imply J = J, and the conclusion of Lemma 5 follows im-
mediately from (7).
6. Theorem. Let fe R* - C and o > 0. If

() the function f is measurable,

(B) there exist two nonnegative constants M, w so that o < a and |f(t)| < Me**
for almost all te R™,

J.we_(““ﬂ)’f(t) dz

) j i a8 < o,
- 0
then
f(t) _ LJ«ao el tip (J.me_(a+iﬂ)rf(,r) d‘c) dp.
2n - 0

for almost all te R*.

Proof. Let us first fix the constants M, w so that the assumption (B) holds.
Further let us define a function F € (w, o) — C by

(1) F(3) = J':e-“ MYds Bor 4> w,
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By Theorem 4 we have
_1\r p+1
(2) (p:) (p':‘1> F(p)<p-: )—)f(t) (p—)oo p+1>0£t)

for almost all te R™.
On the other hand, let J be the function defined by

(3) J(z) = j e " f(r)de
0
for every Re z = «a.
It is easy to deduce from our assumptions that
(4) the function J has the properties 5 (o) —(€).
Hence by (4), we obtain from Lemma 5 that
© sop) = (-ip 2 (7 OB
cw (A= — ippP*!

for every A > o and pe {0, 1,...}.
Now it follows from (1), (3) and (5) that

- J(x + ip) df =

e iy e e il
(=) (p+1 pHF(”’ p+1 1 [ t
1

1 ot
p! t t 2n p+l—a——iﬁ
t
1 (* 1
= — J(a + if)d
27'! o 1_((X+ iﬂ)t>p+1 ( ﬁ) ﬂ
p+1

for every te R* and p + 1 > at.
By Lemma 2 we see that

| ! - L <
{ pt1 2 27(pt+1)/2 —
(1 — (« + i)t {_ o +(Bt
| p+1 p+1 p+1

1 < etxt at/(p+1—at)

ot pt1 =
1 —
( p+ 1)

for every te R* and p + 1 > at.

(7)

IIA
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