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INTRODUCTION

In this paper the existence of a solution to the equations

(0.1) u,(t,x) — u.(t,x) =eF(u)(t,x), teR*, xeR,
(0.2) u(t,x) = u(t,x + 2n) = —u(t, —x), teR*, xeR,
(0.3) u(t + 2n + €A, x) = u(t,x), teR*, xeR

is investigated for every ¢ e [ —éo, &o]. The number &, > 0 is supposed to be suf-
ficiently small and the number 4 > 0 is supposed to be fixed. The operator F, has
the form

(0.4) Fy(u) (1, x) = f(t, x, u(t, x), ut, x), u,t, x)).
The function f, is assumed to satisfy the next two conditions:
(0.5) St %, Yo, ¥4 yzi) =ft, x + 27, yo, y1, ¥2) =
= —ft, =%, = Yo, —¥1, ¥2) = ft + 21 + €A, X, Yo, Y1, V1)

for every (¢, x, o, 1, ¥2) € R* x R* and e € [—¢o, &]-
(0.6) If the derivative

D = D:D};D3;. D5}

satisfies @ + Bo + B, + B, <2, a £ 1, then the function Df, is continuous on
R* x R* for every g€ [—éo, &),

hf(l) sup {Ich(t’ X5 Yos V15 .VZ) - Dfo(t’ X5 Yos V1s .VZ)I >
te[0,2n + 1], xe R, |yo|. |yils |y2| =0} =0
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for every ¢ > 0 and

]ilgl sup {lDfe(t’ X5 Yos Y15 .Vz) - Dfe(” X, 5’-0’ }719 j’_z)l 5

te[0,2n + 1], xeR, ly,-—f,| Sri=0,1,2 ¢ee[—&,8]} =0

for every (yo, ¥y, ¥2) € R®.

The first section of this paper contains two assertions on the existence of periodic
solutions of the problem described (Theorems 1.1 and 1.2) which are deduced under
some additional assumptions on F,. This part is modelled by [1].

In the second section it is shown that a solution to (0.1)—(0.3) with F, given by

0.7) F(u) (t, x) = g(u, u,, u,) + hyt, x)
exists for every ¢ with Isl sufficiently small provided
(0.8) the second derivatives of g are continuous on R?,
(0.9) 9o ¥1,92) = =g(=Yo, =1, ¥2) for (vo,y1,y2)€R?,
(0.10) 95 (Vo> Y15 ¥2) Z v1»  |9y(Vor Y1 ¥2)| = %0
|9,:(yos ¥15 ¥2)| £ v2 for (yo» ¥4, ¥2) €R®,
©11) - 1= 72— 2% >0,
(0.12) h, = h(t,x): R* x R S R and (h,), are continuous for every ¢ € [ —&o, &),
h(t, x) = h(t,x + 2n) = —h(t, —x) = h(t + 2n + eA,x) for (,x)eR* x R

and
lim sup {|D, h(t, x) — D, ho(t,x)|; te[0,2n + 1], xe R} =0.
e—0

These assumptions, from which (0.11) describes “some sort of monotonicity of F,”,
are similar to those in [3] where 2n-periodic solutions were investigated. Eventually,
Section 2 contains a brief discussion of the existence of a (2r + &A)-periodic solu-
tion to

(0.13) Uy — Uy, = &(3u%u, + hyt, x))

for every & from a neighbourhood of 0 provided (0.12) is satisfied and

2n
J- ho(9, x — 9)d3 + O for some x € R.

o

Section 3 contains some auxiliary assertions.
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The problem analogous to (0.1)—(0.3) was investigated by J. P. FINK and W. S.
HALL in [1]. These authors developed a general theory for a system of first order
equations and ag a by-product they obtained the existence of periodic solutions for
one special type of the wave equation (cf. (0.13)). In their paper the difficulties con-
nected with the existence of periodic solutions whose periods depend on a parameter
were also thoroughly discussed and therefore everybody who wants to be informed
in detail is referred to [1].

The author is grateful to O. VEIVODA who attracted his attention to paper [1].

1. GENERAL THEOREMS

Let H, be the space of all real valued 2z-periodic functions s which have generalized
derivatives up to order k and satisfy

2n 2n
j s(¢)dé =0 and '[ (s®(¢))* dé < + .
0 0
The space H, endowed with the inner product

(. $h = rn’(k’(i) s®(¢) d¢

0

is a real Hilbert space. The norm in the space H, will be denoted by ||k Putting
#H) = {se H,; s(x) = —s(—x) for all xe R}
and endowing ¢, with the norm |- |,, we set

U, = C¥[0, ); #,) n C([0, o0); #,) n C*[0, ); ;)
and
Ur = C([0, T #2)  CH([0, T #,) 0 €0, TT; o)

for 0 < T < oo. The space Uy equipped with the norm

2
||u||u7 = i§0||"||cz-'([o.n;xn

is a Banach space. For the sake of simplicity we fix T = 2n + 1 and introduce an
operator Z : H, - U, by

Zs(t,x) =s(t + x) —s(t —x), teR*, xeR.

The space of all linear continuous mappings from X into Y will be denoted by [X,Y ].
For Ae[X, Y] we put

|Aflex,rn = sup {||4x[y; xe X, |

x|| <1},
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Using Lemmas 3.1 and 3.2, we verify that a function u € U,, satisfying (0.1)—(0.3)
for & + 0 exists if and only if there is a pair of functions (u, s) e Uy x H, such that

(L.1) Gy(u, s) (t, x) = —u(t,x) + Zs(t, x) +

t px+t—-9
+%JJ Fu)(9.8)ded9 =0, te[0,T], xeR,

0Jx—t+3

(1.2) G,(u, 5) (x) = i(s’(x) - s'(x — ed)) +

1 2n +eA
+§J' Fi(u) (% x — 9)d =0, xeR.
(0]

Sufficient conditions under which a solution of (1.1) and (1.2) exists are described
in the following two theorems.

Theorem 1.1. Let 2 > 0 and let a function f, satisfy (0.5) and (0.6). Let the fol-
lowing assumptions be satisfied:
(i) There exists so € Hy such that Ms, = O where

(1.3) Ms(x) = As"(x) + %IZRFO(ZS) (9, x —9)d3 =0, xeR.

(ii) There exists a constant m and a family of operators Y*e [Hy, H,] such that

(1.4) VeY: =1y, for ee[—ep 8], €¢+0,
(1.5) ” Ys"[Hl,Hz] é m fOl‘ E€E [_80, 80] ) & 4: 0
where

(1.6) Veo(x) = || (¢’(x) — o'(x — |e| 1)) + %J.:nF(’)(Zso) Zo(9,x — 9)d9, xeR.

Then there exists &, € (0, &) such that for every ¢, 0 < |e| < &, there is ueU,
satisfying (0.1)—(0.3). Moreover, denoting this u by u®, we have

lim |ju® — Zso[y, =0.
-0
Theorem 1.2. Let the assumptions of Theorem 1.1 be satisfied. Let us suppose that
YVE =1y, for ee[—¢p 8], €¢+0.

Then there exist two numbers r > 0 and ¢, € (0, &y ] such that for every e, 0 <
< |e| < e, there is a unique u € U, satisfying (0.1)—(0.3) and |u — Zso|y, < r.
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Moreover, denoting this u by u®, we have

lim ||u® — Zso|y, = 0.

- -0

Proof of Theorem 1.1. Let us put X = Uy x H,, Y=U; x H; and °G(u, s) =
= (*Gy(u, s), °G,(u, 5)) where °G, and °G, are given by (1.1) and (1.2) respectively.
Assuming ¢ € (0, &y ], we shall prove that the mapping °G satisfies the assumptions
of Lemma 3.3. Routine but lengthy calculations show that the mapping °G : X - Y
is continuous for every fixed ¢ € (0, &, ]. The derivative “G’ of °G with respect to (u, s)
is given by

*G'(u, s) = (°Gy(u, s), °G5(u, s))
where
(Gi(u, 5) (v, 0)) (1, x) = —o(t, x) + Z o(t, x) +

t prx+t—9
+§jj Fi(u) o(9, £)d¢d9, te[0,T], xeR,
0

x—t+9
(4G, 5) (0, ) (x) = () — '(x — o)) +
1 2r+ed
+ ~f Fyu)v(9,x — 9)d9, xeR
2)o
for (v, 6) € X. These relations imply that °G’(u, s) € [X, Y] for every (u, s) € X and

e€(0, &]. Denoting u, = Zs,, we obtain

lir;l sup {]|°G'(u, s) — “G'(uo, So)||x,x15 €€ (0, &), |
=0+

(4, 5) = (uo» So)|x < @} = 0.

The assumption (i) yields
]iI;l "aG(uo, SO)”Y = 0 .

We shall now define a pair of operators by

(40, ) (1, x) = —o(t, x) + Zo(t, %), te[0,T], xeR,
(A,(v, 0)) (x) = e N(0'(x) — o'(x — &A)) + %J‘:'F(;(uo) 9, x — 9)d9%, xeR.
Putting °4 = (4,, °A,), we easily verify |
(1.7) \cli_ff)‘JI‘G'(“o’ s0) = “Afxyy = 0.

We shall show that there exists a constant m, and a family of operators B e [Y, X],
0 < ¢ < g, satisfying

(1.8) AB =1,
(1.9) Bl ey.xy < my
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for every ¢ € (0, & ]. For the sake of simplicity we put

2n
Po(x) = %I Fo(uo) (9, x — 9)d9.
0
Then we set

By(w,n) = Y(n + Pw), Bi(w,n) = —w + Z By(w, n)

for (w, n) € Y. The assumptions (1.4) and (1.5) show that the operator B* = (Bj, B3)
satisfies (1.8) and (1.9). In virtue of (1.7) we can apply Lemma 3.5 to the operator
*G'(uo, o). Hence there are m > 0, & € (0, &, | and a family of operators T%,0 < ¢ < &
such that *G’(ug, so) T® = Iy and || T*|y,x; < ™. Thus all the assumptions of Lemma
3.3 are satisfied and therefore the theorem is proved for ¢ positive. The case €€
€[ —&o, 0) can be treated in the same way if Lemma 3.3 is applied to the pair of
operators (7°Gy(u, s), ~°G(u, 5)) where “G,(u, s) (x) = °G,(u, s) (x + &4). This com-
pletes the proof.

Theorem 1.2 can be proved analogously to Theorem 1.1 if Lemma 3.4 is applied.

2. APPLICATIONS
We start by proving the following assertion:

Theorem 2.1. Let two functions g and h, satisfy (0.8)—(0.12). Then there exist
&, €(0, &), r > 0 and s, € Hy with the following property: For every e,0 < |e| < ¢,
there is unique u € U, satisfying |u — Zs,|y, < r and (0.1)—(0.3) with F, given
by (0.7). Moreover, denoting this u by u’, we have

lim [[u® — Zso|y, =0.
-0

Proof. The theorem will follow from Theorem 1.2 if we prove:
(a) There is s, € H; which satisfies

2n

2.1) s5(x) + (24)* J' Fo(Zsg) (8, x — 9)d8 =0, xeR.
0

(b) There is (V*)~! e [H,, H,] satisfying

“(V')—l "[H. HyS=m

for every e € [—&, &), & ¥ O.
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Here V*is given by (1.6). Firstly, we shall show that (a) is valid. Let us denote by K
the linear operator from [H,, H,] given by

- x 2n
k() = @) (["s@ae + 7 [ Teste) ac) xer
0 0
and by @ the continuous and bounded operator from H, into itself given by

P o(x) = jano(2 AZKo)(9, x — 9)d3 =

0

_ J’"g (I o(&) d, o(x) — o(=x + 29), o(x) + o(—x + 29)) 49 +

-x+29

2n
+J ho(9, x — 9)d3, xeR.

0o

The operator K is a linear compact mapping from H, into itself which satisfies

(Ks, s); = (5,50 =0.
Denoting

0% &) =4, ( 'f " o) i, () = o), ol + a(c)), i=01,2,

¢

2n
R(x) = f ho(9, x — 9)d9
0

we have

(@) (x) = J' :"go(x, &) o(x) + (6105 &) + 9205, €)) () € + ().

Thus
(@0, o) = j j :"(gl(x, 9) + 9% O) (F()) + 9ol &) o(x) o'(x) dé dx +

2n
+ J E'(f) 0'(5) d¢ = 2n(y, — Vz) la'lg —2n )’ol‘-”'o la'lo - IE'|0 |U'lo .

]
As |a|0 =< |a'|0, the preceding inequality yields
(P0,0); >0

for all o€ H,, |o|, = R where R =1+ (2n(y; — 7, — %,))~! |W|o. Hence there
do not exist ¢ € [0, 1] and ¢ € H;, |o], = R such that

o+ tKdo =0.
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Really, if there were such t and o, then they should satisfy
0 = (¢ + tK®o, ®0), = (o, Ps); > 0.

But this is a contradiction. Therefore the Leray-Schauder theorem implies that there
is oo € Hy, |00|1 < R satisfying

0'0+K¢0'0 =O.

Let us set s, = 2 AKa,. Then sy € H, and s, satisfies (2.1). In virtue of (0.8) and
(0.12) we obtain sy € H;. Thus (a) is satisfied.

Secondly, we shall show that (b) is satisfied. Putting
g%, &) = gy (s0(x) = 50(&)s s0(¥) = s0(€), s0(x) + 50(£)) 5
j =0,1,2 we can write
Vio(x) = |f| ! (0'(x) — o'(x — || ) +
+ %f:n(éx(x, &) (o'(x) = (&) + Galx, &) (o'(x) + o'()) +
+ Go(x, ¢) (o(x) — o(¢))) d¢ .

Let us denote by C5, the space of infinitely differentiable 2n-periodic functions on R.
Let ne C3, n Hy,. Then

(Von, =n")o = [¢]™* (

n"|3 - J':"n/(x) r,"(x = |8| ,1) dx) +
* %J:" j:”(@ (%, &) + 72(x, &) (1"(X))* + Folx, &) n'(x) n'(x) dE dx +
+ % J‘:n ( J‘:"(gxx(x, E (' (x) = M(&) + Gaxl(x, &) ('(x) + n'()) +

+%wmwnmw©wmk

As |no < |n']o < |n"]o and

2
0

[Cre e~k pas s pr

we have 0

@2) -zt - v - )l - alrh Il 2
2 271y, = 72 = 70) i = clntn = 2 = 7)) I
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The constant ¢, does not depend on 7. Similarly,
- 1 2n M2n
(vnmoz j f Y (x) = n'(€)) n'(x) dx dé +
0 0
1 2n 2n
N RCERACRONOTTE
0o Jo
1 2n (2n
SN ECELCECHCEE
o Jo

2n pP2n
+ % f j Go(%, &) (1(x) — M) W () dx dE = I, + I, + 15 + I, .
: 0 0

Interchanging the variables x and ¢ in I, and using the relations g,(x, &) = g,(¢, x)
and g,(x, ) = y, we can write

2, = % j : ’[:u(gl(x, &) = 1) ('(x) = n'(¢))*dxd¢ 2z 0.

Thus simple estimations of I and I, yield

(2.2,) (Vi n')o Z myjn'fs

where y = y; — 7, — 2y,. Let A be an operator defined by

m

A= —n" + e, ¢ =ci2n Wyy — v0 — 1)) 7"
By (2.2) 4 satisfies
(2.3) (V*n, An)o Z v3|n’|s = v3|n|3
with y; = 271 n(y, — ¥, — 7). Let
(7 o) = (=D (@) = o/(x + || 2) -
- 1[0 0000 - o0 = [ @00, ) o) = ol +

+ 3] e & (o) — otep .
Then
(24) (V*n, @)o = (1, (V)* @)o
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for every 1, ¢ € C3, 0 H,. Using the negative norms (cf. [4], p. 165—167), we com-
plete the proof. The negative norm |-|_k, k positive integer is defined by

o] -« = sup {|(v, w)o| |w|,‘"1; 0+weH}.

The completion of H, with respect to the norm H-k will be denoted by H_,. Ap-
plying Fourier series, we easily show that for every ¢ € C5, n H, there exists a unique
n e C3. N H, such that An = ¢. By (2.3) and (2.4),

1]z |(V)* 0]- 2 = (1, (V)* @) = (Von, An)o = v3|n5 -
Hence

(25 (V) ol-2 2 vsln2 -
By definition,
Jol-1 = sup {j(o el [l 0 # we ) =
=sup {|(=n" + o', who| [W|T s O weH,} S (1 + c))n,.

This inequality together with (2.5) yields

(2-6) |(V€ ¥ q’l—z > 73(1 + cz)—l I‘PI—l

for every ¢ € C3, 0 H,. Finally, let ge H,. Let us put Q = (V*)*(C5, n H,). To
every ¥ € Q we assign the value’

l('/’) = (o, g)o

where § = (V°)* ¢. This is possible because by (2.6) the function ¢ is uniquely
determined for every y. Using (2.6), we conclude

|l(¢)l s I‘Pl-l |g|1 <(r3'(1 +cy) lgll) I'p‘—z .

Hence [ is a linear functional on Q = H_,. According to the Hahn-Banach theorem,
there is a linear functional I’ on H _, such that I’ is an extension of ! and the norm of I’
equals that of I. By Lax’s theorem ([4], p. 167) there exists a unique v € H, such that

I(Y) = (¥ v)o

and

27) o], < 731 + ¢5) gl -

Putting y = (V°)* ¢ for ¢ € C5, N H,, we have _
') = (9, 9)0 = (V)* @, )0 = (0, V0)o ,
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ie. (¢, 9 — V'), = 0. As g, V*v € H,, the last equality yields V°v = g. This implies
that (V¥)~! € [H,, H,] exists. By (2.7),

1)~ Nemroma < 73 '(1 + ¢c2)-

Hence the condition (b) is satisfied. This completes the proof.

In the second part of this section we show that for every ¢ from a neighbourhood
of 0 there is a solution u € U, to the equation

(2.8) u(t, x) — ult, x) = e(3u*u, + h(t,x)), teR*, xeR

satisfying the conditions (0.2) and (0.3). We shall suppose that the function h, fulfils
(0.12) and that the function

Bl J':"ho(s, % — 9)d9

does not vanish identically. The existence of solutions follows from Theorem 1.2 if
the next two conditions are satisfied.

(¢) There is a function s € Hy, s + 0 such that
(2.9) s"(x) + (24)71 J.:"S(s(x) — 5(8))? (s'(x) — s'(¢))dé + h(x) =0, xeR.

(d) The operator V*e [H,, H,] given by
Veo(x) = ||t (6'(x) — o'(x — |¢] 2)) +

3 2n ) , )
# 2] 60 - 0 ()~ o@pa +
+3 j 0"<s(x) ~ 5©) () - 5(®) (o(x) — () dE, xeR

has an inverse (V*)™! € [H,, H,] whose norm is bounded by a constant independent
of e.

The existence of solutions to (2.8), (0.2) and (0.3) was proved in [1] under the
assumption that h, is a function n-antiperiodic in the variable x. The authors obtained
this result as a by-product when investigating a system of two first order equations.
The same theorems as in [1] have to be applied to complete the proofs of (c) and (d)
which are indicated below. They can however be applied after simpler calculations
and without the assumption of zm-antiperiodicity of the function h,.

Firstly, we shall treat (c). Let L, be the space” of all 2n-periodic real functions s
satisfying

2n n
I s(§)dé =0 and jz sP(x) dx < oo .

] 0
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Let us denote by K the linear compact operator from L,,; into L, given by

K s(x) = j:s(é) dé¢ + (2m)7! J.:né s(¢)dé, xeR.

J':n {J:"(s(x) - s(¢))° dé} s(x) dx = 2n J. 2"54(x) dx

0

we can use the theorem which was applied in the corresponding step in [1]. Thus
there is s € L, such that

s + (2)! K(K"(s(-) - s(é))3d§) + K% =0.

Differentiating this equation, we can show that se H,. Clearly s # 0 and (2.9) is
satisfied.

In the end we shall show how to treat (d). Let g € H,. Let us denote W* = KV".
Then

Weax) = Jo| 1 (o) = olx — [¢] 1) +
3./ 2
- E.[ 5 (s(x) = s(£))* (o(x) — o(¢)) d&

and the equation W’c = Kg is equivalent to V’c = g. Let us put I = 3 [3" s%(¢) d¢.
Then we immediately verify

(Weo,0), 2 Ilal(z, ,
((W‘o’)’, O")o > I|a’|3 — M1|‘7|0 |‘7'|0 ,
(Wea)', 6")o 2 1]o"[5 — Mya’]o |o"]o

for every o € H, with M, and M, independent of ¢ and &. Using the Lax-Milgram
theorem in the same way as in [1], we see that (d) is satisfied.

3. AUXILIARY ASSERTIONS

Lemma 3.1. Let ¢ &+ 0 satisfy 0 < 2n + ¢ < T. Let ue U, and s € H, satisfy

t rx+t

(3.1) u(t,x)=Zs(t,x)+%J‘oJ. _st(u)(S,é)dédS, teR*, xeR

x—t+9
and

(3.2) u(t,x) =u(t + 2n + €A, x), teR*, xeR.
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Then the pair of functions consisting of the restriction of the function u to
[0, T] x R and the function s satisfies (1.1) and (1.2).

Proof. (3.1) implies that (1.1) holds. Thus only (1.2) has to be shown. Let us put
@ =27 + eA. Inserting u from (3.1) into (3.2) and making use of the obvious
relations ‘

x—t—w+9
f Fi(u) (8, &) dé = 0,

-x+t+to-9

t+o px+tt+to-9 t px+t—9
J j F.(u) (9, &) d& 8 = I Fi(u) (9, &) dE d9 +
1]

0 x—t—o+3 x—t+9

o px+t+o—9

+ J '[ F.(u) (5, &) e d9,
(1] x—t—o+$

we obtain

s(t+x+w)-s(t+x)+§j:J'

0

t+

TF(0) (9, £ + o — 9)dEds =

w t—x
=s(t—x+w)—s(t—x)+§f J' Fu)(5,& + @ — 9)dZdd
oJo
for every te R* and x € R. From here (1.2) follows immediately.

Lemma 3.2. Let ¢ + 0 satisfy 0 <2n + eA < T. Let ue Uy and se H, satisfy
(1.1) and (1.2). Let us denote by @ the function satisfying

(33) iu(t,x) = u(t,x), te[0,2n +el), xeR
and
(34) u(t + 2n + ed, x) = @(t,x), teR*, xeR.
Then ue U, and
3 P t px+t—9
(3.5) (i, =) = Zislty 5) + 2 j F.(@) (9, £) d¢ d9
2 0Jx—t+3

for every te R* and x € R.

Proof. From (1.1) it follows that
t
uft, %) = £(t + %) — st — %) + %j Fi(u) (8, x + t — 9)d9 +
b 0
t
+ ij,(u)(S,x —t+9)as,
2Jo .
t
ut, x) = 5t + x) + £t — %) + ;J' Fiu) (9, x +t — 9)d9 —
0
t
- fj F(u) (9, x — t + 9)d9
2}
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for te [0, T) and x e R. Let = 21 + . Using (1.2) we obtain
u(t + o, x) — ult,x) = ;—ﬂ{ﬂ(u) 9+ x+1t—39)— Ffu)(9 x +t— 9)}d9
+ gJ:{Fe(u)(S + o x—t+9)— Fu)(% x—1t+ 9)}d9,
e + 0,3) = (1, %) =2 J (:{Fc(u)(\‘) Fayx+t—9)— Fu)(Sx + t — 9} dI —
- gJ:{FE(u) O+, x—t+9)— Fu)(9x—1+ 9)}d9
for te [0, T — w) and x € R. In virtue of (0.2) we have
.91 5 [ e 0.

By Gronwall’s lemma we deduce from the last three relations:
u(t, x) = u(t + o, x)

for 1€ [0, T — w) and x € R. This shows that there is a function & € U,, satisfying
(3.3) and (3.4). Induction will be used to prove (3.5). Let n 2 1 be an integer such
that (3.5) holds for 1 € [0, nw]. Let T € (hw, (n + 1) @]. Then we have

A -0 pxtrt-o-—9%
i(t,x) = i(t — 0, x) = Zs(t — o, x) + gj J F(@)(9,¢)dédy =
(1] x—t+tw+d
T px+1—9
Zs(t, x) + = 'f J' F(@1) (9, &) d¢ d9 + E(t, x)
2 0Jx—1+9
where
o prx+1—39
E(t,x) = Zs(t — w,x) — Z sz, x) — gj j Fy(u)(9, &) déds.
0 Jx—1+9

By (1.2), &(t, x) = 0. Thus (3.5) holds for t€ [0, (n + 1) w]. This completes the
proof.

The next two lemmas are modifications of the implicit function theorem and are
closely related to Theorems 2.3 and 2.4 in [1].

Lemma 3.3. Let X, Y be Banach spaces, m, & positive numbers and x, € X. Let
a family of mappings °G : X — Y, e € (0, £] satisfy the following assumptions:
(i) The mapping °G : X — Y is continuous and its derivative °G' : X — [X, Y]
exists for every €€ (0, £].

(i) lim. sup {I*6'(x) = *G'(xo)]ex.xi; £€(0, 8], [|x — xofx < ¢} < 1/m.
e—04
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(iii) lixgl |*G(xo)|x = O.

(iv) For every.ee(0,&] there exists T°e[Y,X] satisfying °G'(x,) T® = Iy,
I T v = .

Then there exists &, € (0, £] such that for every ¢ € (0, &, ] there is x° € X satisfying
*G(x*) = 0. Moreover, lim x* = x,,.

-0

Proof. Let us choose a € (0, 1) and ¢ > 0 such that
sup {[*G'(x) — *G'(xo)|cx,r3; X € B(xo, @), €€(0, ]} < o/ .
Let &, € (0, £] be such that ¢ € (0, & ] implies
[*Gxo)lly = (1 — o) o/

Let us put x5 = xo and xp+; = X, — T°°G(x;) for e€(0,¢,], n =0,1,.... We
easily obtain

(3.6) Ixks1 = xilx < ]G]y

for k =0, 1,.... If for an integer n = 1 we have x; € B(x, ), k = 1, 2, ..., n, then
by [2] (relation 8.6.2),

61 G = [G0) - *6xt-1) — G x0) (< — )l S
= ||xi - Xk-1 Hx sup {[|’G’(x) - aG'("O)”U&r,n; e€(0,&], xeB(xo, 0)} <
< ofxi — xi i/ .
This estimate together with (3.6) implies
(9) [sbes = il S a5t - xioi]e
for k = 1,2, ..., n. Using (3.6) for k = 0 and (3.8), we obtain
(39) %1 = xollx = [ *Glxo) /(1 — «).
Thus x;, € B(x,, ¢) for all £€ (0, §,] and all positive integers n. By (3.8) we can put

x* = lim x,. °G(x®) = 0 and lim x* = x, are consequences of (3.7) and (3.9) respec-

n—o =0

tively.
Lemma 3.4. Let all the assumptions of Lemma 3.3 be satisfied. Let
T *G'(xo) =Ix for e€(0,&].
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