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INTERIOR REGULARITY OF SOLUTIONS TO SYSTEMS
OF VARIATIONAL INEQUALITIES

MiLaN KUCerA and JINDRICH NECAS, Praha

(Received December 4, 1975)

Let Q be a domain in an N-dimensional Euclidean space RY with a Lipschitzian
boundary. We shall denote by W,f(Q) the well-known Sobolev space with the norm

Further, let m be a positive integer. Denote by [W5(Q)]™ the Cartesian product
of W5() (m times) with the usual norm, which we shall denote by ||* || xq-

The elements of [W5(2)]™ will be denoted by u = [uy, ..., u,] (u;€ Wi(Q),
i=1,..,m).

Let I' be a given subset of the boundary of Q. Denote V = [W3(Q)]", V, =
={veV; v=0on I'}). (We write v = 0 if v; = 0 in the sense of traces for i =
=1,..,m)

Let af€ys - é,) (F=1,.:3 x) be real functions of » variables. Suppose that these
functions have measurable bounded derivatives da,[d&, (t, s = 1, ..., x). Further,
let N, (t =1,..., %) be differential operators defined on [W3(2)]™ by the formulas

N

N =3 e,

i=1j=1 ”651,

where cﬁ,,- (i=1...mj=1.,Nt=1,.., x) are constants. We shall suppose
that the following conditions are fulfilled (with C > 0):

(1) Z _3a, ('1) (g, =2C Z &% for each &, neR*;
t,s=1 563 ' t=1
&) J‘ Y (N(v))*dx 2 C||v|2,1,0 for each ve V.
ot=1

The condition (1) is the usual ellipticity, the condition (2) is an inequality of Korn’s
type (cf. [2]).
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Define an operator 4 : ¥V — V* *) by

x

(3 “ {(Au, vy = gla,(N,(u)) N(v)dx.

Consider given elements uq, Y € V, ug = ¥ on Q. (We write u 2 ¢ on Q if u; 2 y;
almost everywhere on 2, i = 1, ..., m.) Denote

K={veV,v—uyeV, vy on Q}.
For a given element f = [fy, ..., f,,] € [L2(2)]™ we shall seek an element u such that

4 . uek,

%) J‘ . tg:la,(N,(u)) Nf(v—u)dx 2 if,(v, —u,)dx foreach veK.

Qr=
The last condition can be writen as

(6) . {Au,v—u)d = {f*,v—u) forall vek,
where the functional f* € V* is defined by {f*, v) = [o Y f,0, dx.
r=1

It is easy to show that the set K is convex and closed in V and that the operator A
is bounded, continuous, strictly monotone on K (ie. {(Au — Av, u —v) >0
for u,v €K, u * v) and coercive on K (i.e. lim (CAu,u — vo)[|u]z,1,0) = +

oz
for a certain v, € K). This follows from the assumptions (1), (2).) Hence, the existence
and unicity of the solution of our problem follows from the general theory of varia-
tional inequalities which is developed for example in the book [3]. Here we shall
deal with the interior regularity of the solution. Namely, we shall prove the following
result:

Theorem. Suppose Y € [W3(Q)]™. Let u be a solution of the problem (4), (5),
let Q' be a subdomain of Q such that @' < Q. Then u e [W3(Q)]"

This result was proved by J. FREHSE in [1] for a special class of operators N,
and for u, = 0. We shall present here another proof, which is based on penalty
method and applies to the general case. )

Let us consider a continuous, bounded and monotone operator f:V — V*
such that ﬂ(v) = 0 if and only if v € K, i.e. the so called penalty operator correspond-

*) We denote by V'* the dual space to ¥; the duality between ¥ and V'* is denoted by {.,.)>.
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ing to the set K. Then for each positive ¢ and f € V* there exists a unique solution
u® € V of the equation*)

@) Au® + 1/3u‘ = f
€

and, moreover, u* — u (if ¢ > 0+), where u is a solution of the problem (4), (6)
(— denotes the weak convergence). Especially, u® are bounded in the norm of V
and (1 /e:) Bu® are bounded in the norm of V*. This holds for a general Banach space V,
a convex closed set K = V and a bounded, continuous, strictly monotone and coer-
cive (on K) operator 4 : V — V* (see [3]).

In our special case, it is not convenient to introduce the penally operator with
respect to K directly in the space V. But if we set Ko = {v € V; v + uo € K} and write
w = u — u,, then the conditions (4), (6) are equivalent to

(8) wek,,
9) (A(ug + w), v — w) 2 {f,v — w) foreach vek,.

Define an operator f : V. — V{* by
{B(w), vy = —j Y (o, + w, — )" v,dx for u,veVr.
nl‘=l

It is easy to verify that B has all the properties declared above (for V. instead of V
and K, instead of K). ‘

We can write an operator A,, : V. — V;* (defined by 4,,(v) = A(u, + v)) instead
of 4 in (9). Hence we obtain from the above that for each & > 0 there exists w* e V-
such that

| T
A(uo + w) + ;ﬁ(w) =,
This means (by setting u® = u, + w*) that there exists u° € ¥ such that

(10 Aw) + = plu = uo) = f

in the space V7, i.e.

(11) J ) éla,(N,(u‘)) Nfo)dx — %L r;(u: ) v, dx =

frop dx
ar=1
for each v € V.. Moreover, u® are bounded in ¥, (1/e) f(u® — u,) are bounded in ¥y
(but need not be bounded in V*!).

*) The so called equation with the penalty corresponding to the problem (4), (6).
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In the sequel we shall use the following notation: Let e be a vector in the direction
of the i-th coordinate axis in R, |le|gy = 1; if v is a real or vector function, h % 0
a real number, thefi v, denotes the function defined by v,(x) = v(x — he). Moreover,
we set

v, — v

4y(v) = ;

Proof of Theorem. Let u° be a solution of the equation (10). Consider an
arbitrary element v € V¥ such that supp v = Q' (i.e. v lies in the closure of [2(Q")]™
in V). Then we have ve V- and for h sufficiently small also v_, € V;.. Hence (11)
holds for v as well as for v_, instead of v. Thus

(12) J‘n éla,(N‘(u‘)) N{v-) — v)dx — L nri(u,‘. —¥) (vy,-p— v,)dx =

&

= if,(v,,_,, —v,)dx.

or=1

The same equality holds for v — v, (instead of v_, — v) and by a translation of h

(13) J‘n tZx',la,(N,(u"_,,)) N{v_, — v)dx —
= j}"f(u Y A v

= ifr.—h(vr,-—h —v,)dx.

ar=1

By adding the two equalities we obtain

(14) J' ) [0V ) — adN )] - V- — o) dx

o DT AN R AR CRRE L

Qr=
=1 Zm (ff.-h _fr) (vr,-h - 0,) dx.
qQr=1

Further, we shall consider a domain Q* such that Q' < Q*, O* < Q. There exists
a real function ® € 9(Q*) such that @ = 1 on Q'. We shall set v = &> . * in (14).
Now, we obtain from (14)

(15) CA(us,) — A(u®), (d52ue _p — DS —
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3 [0 = )™ = (0= 0)] - (@70)- — 0%) dx =

ﬂrg (fr.=n — 1) (9%uy) -y, — P*u;) dx .

We shall show that there exist constants C,, C,, C; such that C; > 0 and

(16) Cy||4-i(?) ®|3,1.0 £ Co|4-4(u*) D10 + Cs.

It will be clear from here that the norms HA —(u’). ¢H 2,1,o are bounded, especially, the

norms | 4_,(u*)|2,1,0- are bounded (independently of &, k). We have 4_,(u®) — 4_,(u)
e-0+

in V for each fixed positive h and therefore the norms |4_,(u)|,,4 e (h > 0)
are bounded, too. That means that there exists a weakly convergent sequence

—m(#) (h, = 0). Simultaneously, 4_,(u) — du/ox; (if h — 0) in [L,(2)]™, because
u e [W3(@)]™ This implies 4_, (u) —~ du/dx; in [W3(2')]™. In particular, du/ox, e
e[W(Q)]", ie. u e [W3(Q)]™ (because the index i was arbitrary). Hence it is suf-
ficient for the proof of Theorem to show that (16) holds.

First, we shall estimate the left hand side in (15). By using the identity 4_,(®*u®) =
= ®* A_,(u°) + u", 4_,(P*) we obtain

(17) L) - A, (@24 - 02y =

) .[ QZ_J: %‘;— (N() + o(No(uts) —

— N(u%) de N(4_,(w*)) N[4_y(®*u*)]dx = I, + I,

where

n-,J S 2N A (u) . N O A () dodx

0 t,s=1 663

94y u u® 2 x.
IZ_LLNZI%SN(A () N,(n 4_(07)) de d

(We do not write the arguments of the functions 6a,/6€s depending on g; it is the same
asin (17).) By using the formulas

(18)  N{®4_,(u) = O NP 4_,(u)) +i§ ic 22040,

J

(19) Ny(4_y(u))® = N(® 4 ;.(u))—Z Z -,.( )
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we obtain

(20) I, = I ﬁ a"'N(cp A_(u)) N(® 4_,(u*)) dg dx —

otl

1 x m N -
[ ] Seento a )| 5, yes 4 3 |de e +
aJo ts=10¢, i=1 o

j=1 X

x da, m N ; ,645
f f %8 N (At ))q:[z Zci,jA_,,(ui)—] dodx.
aJo ts=10& i=1j=1 Ox;

By the assumptions (1), (2) the first integral is not less than ¢, @ 4_,(u))|,1,q. Let
us estimate the second integral. The functions da,[0¢,, 0P[0x; are bounded. Hence,
we obtain by virtue of the Holder inequality and the inequality 2ab < da® + 6~ 1b?
(holding for arbitrary real a, b and 6 > 0) that the second integral is not greater in
the absolute value than

CZHQ A-h(“z))”Ll.ﬂ ”A—h(ue))uz,m s
< (0@ 4-4u)|3.1.0 + 07 4-i()|3.09) »

where we denote by | |2, the norm in the space [L,(2)]™. Let us estimate the last
integral in (20). This integral can be rewritten as

1 % fa, i . o D 0D
f J 5 %8N (@ 4 »[Z y c,.,,.A_h(u,.)—]dgdx -
aJo ts=1 66, i=1j=1 ax,

_Lﬁrzlg‘é"[i ,,A_,,(u)—:l[i g:lcﬁ,jd_,,(u“i)i—f]dgdx.

The first expression can be estimated in the same way as the second integral in (20),
the second 1s not greater than c;|4_,(u%)|3 0. Hence we obtain

(21) Iy 2 ¢y|® A_,(u%)|3,1,0 — ca 8P A (u?)]3,1,0 —

— cs(671 + 1)|| 4-,(%)|3 00 -

Now we shall estimate the.integral I,. It is easy to see that
4_(2%) = 4_(2) (2 + 2_4),
N[4_u) (@ + o_,)] =

= N,[4_, )] (® + 2_,) +‘§1 Jici,,A_,,(u';)—é% (@ + 2_,),
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m N . 6
N,[ue_,,A_,,(d’z)] = N,(ua_,,) A—h(¢2) + Z z c;,ju,-,_,, —— (A—h¢2)'
i=1j=1 0x;

By an easy calculation we obtain from here

1 %=

@ f={[ % FN[A)@ + oIV A ()] dodx -

”” ,,?Z‘;;Ntd-w +.,)] x

[i ict,ui ,,—(A ;.(‘P)):Idgdx—

i=1j=1

-

_ LJ'I 5 ‘L"r[i i cf,jA_,,(ui)gc—j(di + cb_,,)] N (4.4 A_(®)) dg dx +

o ts=10& Li=1j=1

* da, o ¥, Nl
ILI, 1553[; ;fi'f"—h(“a) o, (@ + q)-,,)] x

x [i 3 el s 1(4 («p))] do dx +

i=1j=1

LJ’O i aal‘N(A—h(u)[ii g‘, ui,_,,a_i_;(A_h((pz))] dodx.

t,s= 166, 1j

The functions da,[0&,, A_,(®) are bounded. Hence we can use the same argument to
estimate the first integral in (22) as in the case of the second integral in (20). Moreover,
if we use the identity A4_,(u°)(® + ®_,) = 24_,(u°) D + (uZ,— u°) 4_,(P), we
obtain that the first integral is not greater (in the absolute value) than

67"‘1—11(“3) (@ + D_4)|2,1,0¢ |uZs]2,1,00 =
< 36 4,(w) (@ + _4)|2.1.0 + €787 ula]2, 1,00 <

cgd||d_(u%) D|3,1,0 + cgd™|ut ||2 1.

The second integral can be estimated in the same way. The third integral is not greater
than

cof| 4-4()| 2,00

the fourth integral is not greater than

Cm"“—h(“‘)“%,n- + cw||u°[]§_,, .
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In the case of the last integral, we come back to an expression without any derivatives
of the functions a,. We have

(23) J'J:”iljgyw [ 5, Tt T (447 | d00s =
-1 Sloanie) - v [ 3 % e - (4o ox =
=] Zaov, Zc.,[ui (4-400) = via - (4-407) | v

Further,

(24) % 5"’— (A-(@3) — u - 61 (4_4(#?) =

o (= ) <L (Ai(@D) + w2 [A_(@F — 97)].
0x; 0x;
It is easy to see that the functions (9/dx;) (4_4(®7)) and (1/h) A_,(Ps — ®?) are
bounded. Moreover, we have |a(¢)| < c“& || w (for &€ RY,
Euclidean norm). This follows from the assymption that the derivatives da,[0&,
are bounded. Hence we obtain from (23) and (24) that the last integral in (22) is not
greater in absolute value than

cuauz0.0 ([4-4@)]2.00 + [47]20) <
< col[wan0 + [A-sw)|z0e + [w].0) -

This together with the previous yields

09 IS cir 6[A-i) 00 + cuslsfEn + [0,

where ¢;3 > 0 and ¢;, depends on the choice of .

Let us remind that the norms ”u ”2 1,0 are bounded. It follows from here that the
norms [ 4_,(u®)||,,o- are bounded, too. Hence, if the number § is sufficiently small,
then we obtain from (21), (25)

(26) %(A(uz ") - A(ue) (¢2ue -y =1, +1, 2
> C “q)A—h(“ )”2 10— Cy,

where C; > 0. (The constants C;, C, depend on the choice of 4.)

Now we shall estimate the member given by the penalty operator in the equation
(15). We have

(27) Z [f-n = Vrn)™ — (w2 — ¥)7] %

er=1
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x [(up®?)-) — u;®*] dx =
31 (TR Pty A
eh 1

Qr=

X (up,—n = Yp,p — up + ¥,) P dx +
1 C e - e -
25 2 [(u',‘h - ‘//r,—h) - (ur - wr) ] X
eh 1

ar=
X [=(u;®?) -y + up,—4®* — ¢, _,®* + ¢, 0] dx.

It is clear that the first expression on the right hand side is nonnegative. (This follows
from the monotonicity of the negative part.) The second expression can be written as

_]._Zj i(u: - l//r)— [_u5¢2 + u:¢: - \[/r¢: ¥ Wr,th +
Eh or=1
+ (ur®%) -y — up, 4y P + Y, ®* — Y, P*] dx =
= —1115 {P(u® — uy), u'i,,(@z_,, - (Pz) + u‘((bf - 9?) +
&
+ W= V)P + (U — V) B> =
_ ;’11_2 CBu* = o), u 4[(@2, — B2) — (9% — B)] + (uty — ) (D2 — BF) +
+ (n = ¥) (D7, — D7) + (Vi — 20 + Y,) %) =
£

h? e h
ut, —ut P — P, 20 + (‘Ph = 1//)((153 = ‘pz) 1 (l)bh -2y + ‘/’—h) (pz>'
h h h h h?

+

This expression in the absolute value is not greater than
(28) cs([#] 21,0 + [[4-40) @210 + [ 44¥)]2,1.00 +
1
+ e ”'Ph -2y + w—h“2,1,9' )
because the functionals (1/¢) f(u® — u,) are bounded in the norm of V* (independently
of ¢) and the functions (1/h?)(®%, — 20* + @3), (1/h?)(® — B,)* (1/h) (P — B})
are bounded. We know that |u®|,,, o are bounded. Moreover, it follows from the

assumption y € [W3(Q)]™ that the norms |44 2,1,0% (1/A2) ¥4 — 20 — ¥_4] 2,100
are bounded (if & — 0). Hence the expression from (28) is not less than

—016”41—;.(“2) ‘p”z,l,n — C17-
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