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13. Remark. If for a harmonic function h and a set G the assumptions of Theorem
10 are satisfied and condition (ii) holds, the corresponding Radon measure u is
uniquely determined. Indeed, suppose that there are u,, u, € C’ such that Up, =
= Up, = honG. Thenfor u = pt; — u, I = 0, Up = 0 on G and by Theorem 26
of [13] p = 0, ie. py = p,.

14. Corollary. If h is a function harmonic on G and satisfying a Lipschitz
condition, then there exists p € C' such that h = Uu on G.

Proof. Note that |grad h| is bounded on G, so that condition (ii) of Theorem 10
is satisfied.

15. Corollary. If h is harmonic and bounded on G and (ii) from Theorem 10
is fulfilled, it follows that

fgradz hdH,, < .
G

Proof. Choose ¢€(0,1). Then by the Gauss-Green theorem (compare [8],
Remark 2.11)

J grad h . grad hdH,, = <
Ge

f i B —f h AhdH,,
3G, G

e

< Ksup |n(G)| < o0 ; B:= Ksup |h(G)|.
For ¢ 7 1 we obtain

J" grad> hdH,, < B.
G

In the following example, G & @ is an arbitrary bounded convex set. We are
going to construct a harmonic function h, which does not satisfy the condition (ii)
of Theorem 10.

16. Example. Let x, € dG. By [6], Lemma 3.7, there is a continuous function h
on (_;\\{xo} which is strictly positive and harmonic on G and h = 0 on G \ {x,}.
We shall prove that for such an h the condition (ii) does not hold.

Suppose on the contrary that (ii) holds and so Theorem 10 yields a Radon measure
ve C' such that

Uv=h on G.

Since h = 0 on 9G \ {x,}, we can show as in the proof of Theorem 26 in [13] that
v = 0. But this is a contradiction with the fact that h > 0 on G.
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