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Introduction. Consider a domain G in the m-dimensional euclidean space R™
(m > 2). A class of harmonic functions on G is formed by restricting Newtonian
potentials associated with signed measures on dG. The problem that we are going
to investigate here, can be formulated as follows: Given a harmonic function % on G,
does there exist a signed measure y with support in 0G such that h coincides on G
with the Newtonian potential of u? If it were not the case, the question arises how to
characterize the class 2,(G) consisting of all harmonic functions on G = R™ which
are representable by means of potentials mentioned above. This class of functions
occurs in a natural way in connection with the Neumann and Robin problems
treated by the method of integral equations.

An analogous question may be, of course, formulated also for plane domains.
In this case Newtonian potentials are replaced by logarithmic potentials. In [3],
Chap. IV, G. C. EvANs characterizes the system 2,(G) for G = U, where U, denotes
a circle with a radius r. His proof depends on the complex functions theory and
Herglotz’s theorem. The plane case is also investigated in [16]. DE LA VALLE POUSSIN
gives in § 2, Chap. 9, sufficient conditions (see Théoréme 260) for h € 2,(U,).

The results of Evans were extended by G. A. GARRETT in [4]. In addition to the
above mentioned representation he investigated also a representation by means of
double layer potentials. (Compare [15] where some other kinds of representations
of harmonic functions in R can be found as well.) In [4] the system 2;(G) is studied
for G with a very smooth boundary (it is assumed that the normal satisfies a Lipschitz
condition). In this connection a system of special sets G, = G which exhaust G in an
exactly determined sense is introduced and functions h € 2,(G) are characterized in
terms of a growth condition imposed on the total variation of the flow of grad h
on G, To prove these facts, Garrett makes essential use of smoothness of the
boundary in order to get information about the kernel of the corresponding integral
equations.

Methods introduced in [4] are not applicable even for sets with boundaries of the
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class C!. In particular, they give no results for such simple geometric bodies as cubes,
cylindres, cones etc.

For an investigation of the above mentioned problem, it is convenient to apply
methods developed for solving the boundary value problems in potential theory
by J. KRAL. We make essential use of the results connected with the Neumann
problem obtained in [8], [13] and [14].

We shall prove a characterization of 2,(G) in the case that G is an open bounded
convex set. The main result is presented by Theorem 10. The example given in Sec. 16
shows that there are “many” harmonic functions not contained in 2,(G).

The problem studied in this paper can be also understood as an inverse problem
in potential theory. The case when R™\ G is a k-manifold is investigated in [2].
It should be noted here that a characterization of an essentially different type is given
by I. N. KARCIVADZE (compare [7]).

1. Notation. Throughout this paper m > 2 will be a fixed integer. The closure of
a set M = R™ is denoted by M, its boundary by oM and its interior by int M. We
shall write ,(x) for {z € R™; |z — x| < r}. For each positive integer k and M = R™,
H.M will denote the outer- Hausdorff k-dimensional measure on R™ defined by
HM = 2 % lim inf ) (diam M,)*
=04+
where o is the volume of the unit k-ball and the infimum is taken over all sequences
{M,} of sets M, with UM, = M such that diam M, < & for all n. H,, thus coincides
n

with the Lebesgue measure in R™ (see [9]). If K is a compact subset of R™, we shall
write C = C(K) for the Banach space of all continuous functions on K. The dual
space of C is denoted by C’ = C'(K); the elements of C’ are called Radon measures
on K. For a Radon measure ve C’ and f e C we shall sometimes write [k f dv in-
stead of v(f). If A = K is measurable and y, is its characteristic function, then we
write v(4) instead of v(x,).

For v € C’' we shall consider its potential

Uv:x 1—>J‘ p(x — y)dv(y)

corresponding to the Newtonian kernel p(z) = |z|*~™/(m — 2). For a positive super-
harmonic function v and a set A = R™, RZ will denote the balayage of v relative to A
in R™ (for the definition see [5]).

2. Lemma. Let G be a convex subset of R™ with a nonempty interior. Then for any
Xo € R™ there exists an m-dimensional density '

. H,(2/(x,) n G)
d = lim —/————r 2
G(xO) r—lvlgl-r H m(Q,(XO))
and dg(x,) > 0 for all x,€G.
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Proof. Obviously, dg(xo) = 0 for each x, € R"\ G, dg(x,) = 1 for x, €int G.
Consider now x, € dG. Without loss of generality we can assume x, = 0.

Let 0 < r; < r,"and let ¢ be defined by
@:x 1= (ryfry)x, xeR™.
Then ¢(G) = G and ¢(2,,(0)) = £2,,(0). Using the fact that H,(G \ G) = 0, we obtain
Hp(2,(0) 0 G) _ Hu(2,,(0) 0 G) | Hu(24,(0) 0 0(G)) _
H,(2,,(0)) H,(2,,(0) H,(2,,(0))
ry H,(2,,(0) n G) _ H,(2,,00) n G) -0
7 Hh(2:(0) .17 Ha(2.(0)
It follows that there exists a positive
i Han(@dx0) 0 G)
r—04 HM(Q,(XO))
3. Lemma. Let G be a bounded convex subset of R™ with a nonempty interior

and let s be a non-negative continuous superharmonic function on R™. Then RS
is a continuous potential of a positive Radon measure.

Proof. The only fact which should be verified here is that RS is continuous. Ac-
cording to Lemma 2, G is not thin at any of its boundary points. This can be shown
in a similar way as in [5] (see Corollary 10.5). Consequently, we have R = s on G.
(See Theorem 10.7 in [5].)

Since RS is harmonic on R™\ G, it follows from the Riesz decomposition theorem
and Theorem 6.9 in [5] that RY is a potential of a positive Radon measure p € C'(G).
Now we can apply Evans-Vasilesco’s theorem to obtain continuity of R on R™,

4. Remark. It should be noted that in our special case RS coincides with the
réduite RE.

In view of the introductory remarks we shall suppose troughout this note that G
is a fixed open bounded convex subset of R™. We shall investigate the system 2,,(G)
defined in the introduction.

Without loss of generality we suppose 0 € G and for ¢ > 0 we define

G, = {ox; x€ G} .
In what follows we shall wtite C and C’ instead of C(0G) and C'(9G), respectively.

5. Proposition. Let h be harmonic on a neighborhood of G. Then there is a constant
¢ > 0 and a positive Radon measure p e C' such that h + ¢ = Up on G and Up
is a continuous potential.

Proof. Since h is harmonic on a neighborhood of a compact set G, there is ¢ > 1
such that h is harmonic on a neighborhood of G,. Choose a; > sup h(9G), a, <
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< inf h(9G,) and let u be the capacitary potential for G. Since 0 < u < 1 on R™

and lim u(y) = 0, we have by the maximum principle
[yl - o

u(x) —1<p<0 on 0G,.
It follows that thereisy > 0, y > dl such that o
Pu(x) — 1) S0y — oy
whenever x € 0G,,.

Put g = yu. Obviously, g is a potential. It follows from Lemma 3 that g = y on G
and q is a continuous potential on R™. Let ¢ = y — a;. Then

1) g(x) — ¢ =a; > h(x) on oG,
(2) g(x) — ¢ S a, < h(x) on 0G,.
Define a function p on R™ as follows:
h+c on G
/. ‘ _
p=—inf(h+c,q) on G,\G
q on R"\G,.

We shall prove that p is the potential of a positive Radon measure. According
to the Riesz decomposition theorem, it is sufficient to show that p is a non-negative
superharmonic function dominated by a potential. It follows from the continuity
of g and h and from (1) that for each x € G there is a neighborhood ¥(x) such that

P(J’) = h.(y) +c¢ forall ye V(x) .
Analogously for each x € 6Ga there is a neighborhood W(x) such that

p(») = q(y) on W(x).

Continuity of p on R\ (G, U 0G) is clear from the definition of p. Therefore p is
a continuous superharmonic function on R™. Applying the minimum principle to p,
which is non-negative on dG,, we obtain that p = 0 on G, and hence p = 0 on R™
(note that p = g on R™\G,).

Since p is dominated by the potential g, it follows that p is a continuous potential.
By the Riesz decomposition theorem there is a measure u such that Uy = R§.

Since Up is harmonic on R™\ 0G, it follows from Theorem 6.9 of [5] that pu € C".
By Lemma 3, Uu = Rﬁ is a continuous potential on R™ and

U“=Rg=p=h+c on G.

6. Remark. It should be noted that it is an easy consequence of Theorem 5.2.2
(Fortsetzungssatz) in [1] that there are continuous potentials p, ¢ which are har-
monic on G and

=p—q on G.
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7. Definition. A unit vector @ is called the exterior normal of a Borel set M = R™
at y € R™ in the sense of Federer provided the symmetric difference of the sets M
and the half-space {x € R™; (x — y) @ < 0} has the m-dimensional density 0 at y.
In what follows we shall put ny(y) = © if @ is the exterior normal of M in the sense
of Federer and we denote by nM(y) the zero vector if there is no exterior normal @
at y in the above mentioned sense. (See [8], where relevant references can be found.)
If f is of the class C! on a neighborhood of M, we define

aif (») = nu(y) grad f(y); yeM.
Ny .

Finally, for M = G, we shall write n,(y) instead of n().

8. Remark. The normal in the above mentioned sense is obviously uniquely
determined and it is easily seen that

nt) = ng(tle), teR™.
Relations between the ‘“‘classical”” normal and the normal in the sense of Federer
are studied e.g. in [10].

9. Lemma. Let h be harmonic on G. For ¢ €(0,1) and y € G put h(y) = h(ey).
Define

K = sup Oh (x)| dH,p-1(x) ,
0€(0,1) G 6nG

K = sup .[ %(x) dH,,_,(x).
¢¢(0,1) 3G, 6ne

Then K < oo if and only if K < .
Proof. Fix ¢ €(0, 1). Then

[
G

ong
1 1
1 [ e b et a9 = =L |
0 G, Q 0G,

Since h is harmonic on G, there is ¢ > 0 such that

(x)‘ dH,,_(x) ='QLG|grad h(ex) ne(x)| dH,,—(x) =

dH,,_(x).

oh
— (X
A0

|grad h(x)| = |o grad h(ex)| < ¢
for each ¢ € (0, 3) and each x € dG. We see that there is d > 0 such that

sup sup |grad h(x)| < d.
¢=(0,1/2 9Ge

We can therefore limit ourselves to ¢ € (4, 1). The equality proved above now implies
easily that K < oo if and only if K < 0.
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10. Theorem. Let G be an open bounded convex subset of R™, m > 2, 0e G
and let h be a harmonic function on G. Then the following conditions are equi-
valent:

(i) There exists a Radon measure p € C'(0G) such that h = Up on G.

(i)
K = sup f Oh
e<0.1) J 56, [0n,

Proof of implication (i) = (ii). The converse will be proved later (see Sec. 12).

Choose ¢ €(0, 1). The mapping grad Upu is continuous on a neighborhood of the
compact set G, so that

dH, _(x) < + .

grad U p(x) = —f L)—C—_—)i)—du(y), x €0G,.
aclx =

Hence for each x € 0G,
ou ny(x).(x —
_E(x)z_f o) - ( my)du(y).
on, w6 |x— Y

Applying Fubini’s theorem and substituting x = ot, we have

ke [ P an, s [ [ 1o ) an 9 -
2G, n, 3Gy J 0G lx—J’lm

0

=.[ (I . IX)(xyI Nan, l(x)>dlu|(y)—

= [ ([ et lan, _g)au o).

|t = ylel”
Here, as usual, || stands for an indefinite variation of p. Using the equality n,(ot) =
= ng(t) we get

©) K, = Levi(y/e) dlu] (3) = (sup o&(2)) [

where vl(z) is the quantity introduced in [8] as follows: Let 0 = M < R™ be an
open set with a compact boundary. We call x a hit of a half-line S =« R" on M
provided x € S and each ball Q (x) meets both S N G and S\ G in a set of positive
linear measure. Given y € R™, © e I' = 02,(0), consider the total number n’s(0, y)
(0 < n¥%(@, y) < ) of all hits of the half-line {y + ¢@; ¢ > 0} on M. For fixed y,
nu(O, y) is a Baire function of the variable @ € I' and we may put

o¥(y) = Jrng(@, y) dH,,_4(0).
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In particular, since G is a convex set, then for each z € R™ obviously nfo(é'), z) <2,
so that

)

By Proposition 2.10 and Lemma 2.12 in [8]

08 (z) = ne(y) (v — 2) |
=(2) LG b~ dH,,_ ().

sup v5(z) < 2H,,_4(T).
zeR™

According to (3),

K = sup K, < (Sl}l{g v5(2)) || S 2H,-o(T) 1] < .

ee(0,1)

This completes the proof of (i) = (ii).

11. Notation. For each pu e C’ we shall define a functional 7, on the space 2
of all infinitely differentiable functions ¢ with compact support in R™ as follows:

o, T = f grad ¢ . grad Up dH,, .
G

The distribution &, is a weak characterization of the normal derivative of Up
(see [8])
Since for any convex set sup v5(y) < oo (see (4)), by Theorem 1.13 in [8] it is
yedG
possible for each p € C’ to identify the functional 7, with a unique Radon measure
which will be denoted by J u. The mapping J : u'— J pu is a bounded operator

on C'. Since G is convex, a result of [14] shows that the hypotheses of Theorem 28
of [13] are fulfilled. Consequently, the range of the operator 7 is equal to

Co:= {veC’; ¥(0G) = 0} .

It is easily seen that Cy = C' is a Banach space.
Thus we know that for each v € Cy there is u € C’ such that

) Tp=v.
Denote
" G
=g~ HOG)
%(0G)

where % € C' is the capacitary distribution for G. Note that %(0G) + 0 and T x = 0,
because Ux is constant on G. Obviously i € Cy and

\

% u(0G)
9- 3 ,7— —_— —.7'% = .9- .
A=Tn= o) 1
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We see that 7 (Cp) = Cp. Now we shall show that the restriction 7, of the opera-
tor 7 to Cy is injective.

With regard to the fact that 7 is a linear operator, it is sufficient to prove that
T ov = 0 for a ve C; implies v = 0. By the results of [12]—[14], Theorem 26 of
[13] is applicable. Therefore v = 0 implies that there exists ¢ € R such that Uy = ¢
on G.

We first show that v = c». Indeed, since for v* = v — ¢x we have Jv* = 0 and
Uv* = 0 on G, we conclude again by Theorem 26 in [13] that v* = v — cx = 0.
Hence 0 = ¥(0G) = ¢ %(0G) and ¢ = 0 (recall that x(0G) * 0). We see that Uv = 0
and again from Theorem 26 of [13] we get v = 0.

Since J, is an injective and continuous linear operator mapping C, onto Cg
the inverse Z ! is a bounded linear operator on Cy by the open mapping theorem.

Our next objective is

12. Proof of implication (ii) = (i) of Theorem 10. For an arbitrary ¢ € (0, 1) we
define a Radon measure v, by

vq:fl_’J‘ f%gde—li fGC
o¢ Ong

By Lemma 9 we have

I =

Obviously there is a function ¢ infinitely differentiable with compact support in R™
such that ¢ = h, on a neighborhood of G. Applying the Gauss-Green theorem
(compare e.g. Remark 2.11 in [8], where the corresponding references can be found),
we get

%(x)’ dH,_ ()5 K < .
ong

Lcnc(x) grad ¢(x) dH,,_ (x) = J' Kolxdx = 5

G

so that

oG

,(6G) = J

Ohy (x)dH,—4(x) = 0.
ong

This shows that v, € Cg.

Let /i, € Cy be chosen such that
T olly, = Y, -

(We know that i, is uniquely determined.) Then

|l = K|7a" -
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By Alaoglu’s theorem it is possible to choose a sequence {g,}, ¢, # 1 and jie C’
such that for ji, = fi, we have

’ w*—lim fi, = i

where w* refers to the w*-topology on C'. Since 0 € G and x — 1/(m — 2) .1/|x|""?
is a continuous function on 8G, U [1,(0) = U (0).

Put for ¢ €(0, 1)
Mo = i + [h(()) = U ﬁ‘,(O)] Hs Hp = [y,

where x as above denotes the capacitary distribution for G. Recalling that 7x = 0,
we have

. TUe=Tf,=,.

For ¢ € (0, 1) the equalities

(5) U 1(0) = h(0) = h(0)

hold. In order to show that Uy, = h, on G we apply Proposition 5. Hence for each
¢ €(0, 1) there is ¢, > 0 and a Radon measure ji, € C’ such that

(6) Ui, = h,+¢c, on G.
It is easily seen that 7 fi,() = v(y) for all y € 2. It follows
Thy=Til,=9u,.
Using Theorem 26 of [13], we establish the existence of &, such that
Uty =Up, + ¢, on G

and according to (5) and (6),
Up,=h, on G.

Setting
o = By + [H(0) — U (0)]
from
w¥—lim 1, = @, h(0) — U f,(0) > h(0) — U (0)
we obtain
w*—lim p, = fi + [h(0) — U 3(0)] » .
Denote

=i+ [(0) — U G(0)] »

and fix y € G. Then the function x i— 1/(m — 2).1/|x — y|™~? is continuous on 9G
so that '

h(eny) = ho(y) = U (y) = U(y) -
This together with the fact that h(g,y) — h(y) establishes the equality

Uu=h on G.
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