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ON A CLASS OF ARITHMETICAL SETS

H. G. MEUER, Delft and TiBor SALAT, Bratislava
(Received August 8, 1975)

Infinite subsets of the set N of all natural numbers will be called arithmetical sets.
In the paper [1] P. Erdés studied the arithmetical sets 4 = {a, < a, < ...} with
the property (P): If iy < i, < ... < i, is an arbitrary finite sequence of indices, then
a;, + a;, + ... + a;, does not belong to the set 4. Denote by T* the system of all
arithmetical sets having the property (P)

Let k be a natural number, k = 2. Denote by T; the system of all arithmetical
sets A = {a; < a, < ...} with the following property (P.): If i; <i, < ... < i,
is an arbitrary sequence of indices with k terms, then the number a; + a;, + ...

k @©
.. + a;, does not belong to the set 4. Put Ty = 'ﬂsz (for k =2 2) and T= _UZTJ.
j= i=

We have obviously
00 0
T*=NTy=NT, and T3 >T3>..oTf>TfH:>....
k=2 k=2

It is clear that if A € Ty or A € T and B is an arithmetical set, B = 4, then Be T,
and B € Ty, respectively. Further, it is easy to check that

B, ={1,3,..,2k—1,..} €T, — T,
and
B, ={1,2,3,10,10%...,10" ..} eT; ~ T, ..
Hence none of the inclusions T, = T, T3 = T, is valid.
If
AcN={12,..},
then we put ;
An)= Y 1, 6,(4) =Ilim infM , 0,(A) = lim sup Aln)
n— n n

asn,aeA n—>oo

and 6(A4) = lim (A(n)/n) (if the limit of the right-hand side exists). It is proved in [1]
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that the asymptotic density 5(4) of each arithmetical set A having the property (P)

is zero.
o0

With each set 4 = N we can associate a real number g(4) = Y ¢; 27/, where
i=1

g; = 1if j € A and ¢; = 0 otherwise (see [2], p. 17). The number ¢(A4) will be called
the dyadic value of the set 4. If S is a system of sets A = N, then Q(S) denotes the
set of all numbers g(4), 4 € S. Obviously we have ¢(S) = <0, 1) and ¢(S) provides
a tool for measuring the size of the system S.

The purpose of this paper is to illustrate from both the metric and the topological
point of view the structure of the systems T, T*, T,, Ty in terms of the just defined
dyadic values of sets A = N.

1. METRIC PROPERTIES OF SETS o(7), o(T*), o(T}), o(TF)

In the following, we denote by |M| and |M|* the Lebesgue measure and the outer
Lebesgue measure of the set M, respectively, and by dim M the Hausdorff dimension
of the set M = (— o0, + ).

We mention the following simple fact which is well-known in the theory of dyadic
expansions of real numbers: If m is any natural number then the interval (0, 1) is
a union of pairwise disjoint intervals of the form

1=(5, S N o<s<omo .
om’ . om

Eachinterval I is associated with a sequence e(l’, €2, +vus sz of numbers 0 and 1 in such
B i
a way that for the dyadic expansion x = Y &(x)27* (g(x) = 0 or 1 and for an infi-
k=1

nite number of k’s we have g(x) = 1)) of any number x belonging to I the equalities
&(x) =& (k=1,2,..., m) hold. '

In the following, the interval (0, 1) is regarded as a metric space with the Euclidean
metric.

The proof of the main part of the following theorem is based on this lemma.
Lemma 1,1. Let a be a fixed natural number. Put
H(a) = {x€(0,1); ":asj(x) &j+a(x) = 0} .
Then |H(a)| = 0. J

Proof. Let t = 1 be an arbitrary natural number. The set H(a) is contained in
the union of all such intervals

( s s+l> (0__<_s§2(2'+1)a'—1)

(2t+1)a’ A(2t+1)a
2 2
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which are associated with the sequences

(1) » €15 825 -+ €21+ 1)a
of 0’s and 1’s having the following properties: each of the numbers ¢, ¢,, ..., & is 0
or 1, and
2 0 = &441-82001 = Ea42 - 82042 = ++0 = 835. 835 =
= €341 -84a+1 = +- T 845856 T +o0 T E2t—1)a+1 - E2ta41 T -0
coe = €200 - 8214 1)a ¢

It is easy to check that the number of sequences (1) satisfying (2) is 2%. 3%, Therefore

- 3“ t
|H(a)|* = 2(2:+1)a = (E) :

Hence we conclude |H(a)| = 0 since ¢ is arbitrarily large.

Theorem 1,1. Each of the sets o(T;)(k = 2,3, ...) is a Gg-set (in (0,1)) and |o(T;)| =
=0(k=23,..)
Corollary. |o(T)| = [e(T*)| = 0, |o(TZ)| =0 (k = 2,3,...).
Proof. Let k = 2. Denote by I,, the union of all intervals
S sV pgs<omo ),
2m om
which are associated with such sequences &, &,, ..., &, that if 1 =¢; = ¢,

=&, G <ipg<..<i, h+i+...+ i =m, then & 41,4 +; = 0 We
shall prove that

3) o(T) =m611'" .

o0

If x € o(T;), then x = g(4), A€ T;, x = ) &(x) 277 (the dyadic expansion of x).
g =

It follows from the definition of the system T, that silﬁﬁ_"“k(x) =0,i; <i, <..
. < ipifeg x) =1(1=1,2,.., k). Therefore x €1,, for each m = 1,2, ....

o0

Let x€(0, 1), x = Z &)(x) 279, x ¢ o(T;). Denote U the system of all arithmetical

sets. Then ¢(U) = (0, 1) and ¢ : U - (0, 1) is a one-to-one mapping (cf. [2], p. 18).
Hence (0, 1) = ¢(T;) v o(U — T;), the sets on the right-hand side being disjoint.
Hence x €o(U — T;), x = g(A), AcU — T,. Since A ¢ T,, there exists such a se-
quence iy < i, < ... < i of natural numbers that ¢;(x) =1 (I =1,2,..., k) and

a0
&, +ip+..+i(X) = 1. Hence x ¢ I,, where p = i; + i, + ... + i, therefore x ¢ ) I,,.

The equality (3) is proved.
From (3) it follows immediately that ¢(T;) is a G,-set in (0, 1).
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Let k = 2, let
(4 ad<ad<..<ad,
be a sequence of natural numbers. Denote by T,,(a‘l), Ay 1) the system of all sets
A € T, of the form
A={al<ad<..<al  <ay<ay<..}.
Then
oT) = Ne(Ti(ass -, a;-1)) ,

the union on the right-hand side being taken over all finite sequences of the form (4)
Hence it suffices to prove that

() le(Ti(a?, ..., a-1))| = 0
for each sequence (4).
In the notation used in Lemma 1,1 we have obviously

o(Ti(al, ..., ap-,)) = H(a),
where a = a] + ... + a;—,. Hence (5) follows from Lemma 1,1. The proof of
Theorem 1,1 is complete.
The proof of the following lemma is based on an idea from [1]. The lemma will
be useful in the proof of Theorem 1,2.

Lemma 1,2. If A€ T, (m = 2), then 6,(A) < 1/m. Moreover, there is an A € T},
such that 5(A) = 1/m.

Proof. Let A = {a, < a, < ...} € Tn. Since A€ T, (m = 2), the elements of the
sets P,, P,, ..., P,, do not belong to the set 4, where
Pl = {al + az, al + a3, ooy al + aj, ...},

P, ={(a, + a;) + a3, (a; + a3) + a4, ..., (a; + a3) + a;, ...},

Po={(ay + ...+ ap) + apiy, (ag + ... + ap) + Gpya, -..

v (@y F oi F ) + ay )
The sets Py, P,, ..., P, are pairwise disjoint. Indeed, if P, P, + 0 for i + I,
i, | £ m, then there exist such numbers s,d, s =i + 1,d = | + 1 that

(ay+...+a)+a,=(ay +...+a)+a,.
Let i < I. Then
(6) a,=a;41 + ... +a,+ a,
and the number of summands on the right-hand side of (6)is equalto I — i + 1 < m.
Hence (6) contradicts the assumption A4 € T},

Let n > a, + ... + a, + m. The number of elements of the set P, lying in the
interval {1, n) is obviously equal to A(n —a 1) — 1, similarly the number of elements
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of the set P, lying in that interval is equal to A(n — (a; + a,)) — 2, etc. Since the
sets P; (j = 1,2, ..., m) are pairwise disjoint, we obtain

(7) (A(n — a;) — 1) + (A(n — (ay + @) — 2) + ...
+ (A(n — (ay + ... + a,)) —m)=<n.

A simple estimation yields

(8) A(n — a,) 2 A(n) — ay,
A(n - (ay + ay)) g A(n) — (ay + a;),

An — (a, + ... + a,)) g A(n) — (ay + ... + a,).
From (7), (8) we get

+_’

M<bm+cm 1
n ~  nm m

where
_m(m + 1)

bm
2

s Cw=ay+(a; +a))+ ...+ (a + ... + ap,).
The inequality 52(A) < 1/m follows now immediately.

Further, theset 4 = {1, m + 1,2m + 1, ..., jm + 1,...} belongs to the system T}
and 6(4) = 1/m. The proof is complete.

Since |o(T*)| =0, |o(T%) =0 (k=2,3,...) the question of the Hausdorff
dimension of the sets o(T*), ¢(Tx) (k = 2) arises. In what follows we give upper and
lower estimates for dim o(Ty) and the precise value of dim o(T*).

Denote by d the function defined on the interval (0, 1) in the following way:
d(0) = d(1) = 0 and

d(e) = CIog{C + (1 —={)log(l —¢)
log
for ¢ €(0, 1).
It is easy to see that

) limd({) = 0.

=0+

Theorem 1,2. (i) For each k 2 2, the inequality dim o(Ty) = 1/k holds.
(ii) For each k 2 2, the inequality dim ¢(T%) < d(1/k) holds.

(iii) dim o(T*) = 0. |

Remark. The estimate for k = 2 in (ii) is trivial since d(}) = 1.

Proof. (i) Put (for k = 2)
Co={Lk+1,2.k+1, ., lk+1,..)}.
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Evidently C, € Ty. Denote by S, the system of all arithmetical sets which are subsets
of the set C;. Then S, = Ty and so

(10) o(Sy) < o(TF).
Denote by 2 the system of all subsets of the set C,. Then it is easy to see that the
set 0(2°) — ¢(S,) is countable, hence

(11) dim ¢(2%) = dim (S,) .

0
But o(2%) is equal to the set of all such real numbers x = Y ¢;.27/ that ¢; = 0 for
Jj=1

j*¥lk+1(1=01,.)and gy, =00r1(I=0,1,..).
The Hausdorff dimension of the set Q(ZC") can be established by virtue of Theorem
2,7 from [3]. The following special result is a consequence of this theorem:
Let P be a set of natural numbers, let {¢}}, j € P be a sequence of numbers 0
and 1. Denote by
Z = Z(P; {&]}, j € P)

theset of all such x = Y ¢;.2 7/ thate; = &) for je P and¢; = Oor 1forjeN — P.
Then

ji=1

log II 2
dim Z = lim inf —JS%JN=F
n=o nlog2
PutP =N — G, 8? = 0 for j € P. Then we get
’ log II 2
(12) dim (2%) = lim inf —JSneCe _

o nlog?2
[(n—1)/k] _
= liminflﬁgz— = lim infuk_] = 1
n—+o n log 2 n-o n k

([] denotes the integer which satisfies [u] < u < [u] + 1). From (10), (11) and (12)
we obtain dim o(T}) = 1/k.

(ii) Denote by Z, the system of all arithmetical sets 4 with 6,(4) < 1/k. Then on
account of Lemma 1,2 we have Ty < Z,. It is well-known that dim o(Z,) = d(1/k)
(cf. [2], p. 195 or [5], Theorem 51). From these facts we get dim o(Ty) < d(1/k).

(iif) We shall give two proofs for (iii).

Proof I Since T* < Ty (k=23 ...) according to (ii) we have

dim o(T%) < d (i) (k=23,.)
and so (see (8))

k=

dim o(T*) < lim d(i) =0.
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Proof II. Denote by W, the system of all arithmetical sets A with ¢ 1(A) = 0.
Then

(13) : dim o(W,) = 0

(see [2], p. 195). We have mentioned already that if A € T*, then 6(4) = 0 (cf. [1]).
Hence

(14) T* < W,.

From (13), (14) we get dim ¢(7T*) = 0. The proof is complete.

2. TOPOLOGICAL PROPERTIES OF SETS o(7}), o(T%), o(T), o(T*)

.

In this part of the paper we shall complete the first part by proving some further
properties of the sets o(T;), e(T%), o(T), o(T*). These sets are viewed as subsets of
the metric space (0, 1) with the usual Euclidean metric.

It was already proved in the first part of the paper that the sets ¢(T;) (k 2 2) are
G;-sets. This fact implies easily

Theorem 2,1. The sets o(T*), o(T¢) (k = 2) are Gy-sets, o(T) is a Gs,-set in (0, 1).

Proof. Theorem 2,1 follows at once from Theorem 1,1 and from the equalities
k =) 0
(15) oTé) = Ne(T). oT*) =Neo(T ¢), oT) =V oT).
= = =

Finally, we shall show that the sets studied in this part of the paper are poor
from the topological point of view.

Theorem 2,2. (i) The sets o(T*), o(T}), o(Ti) (k = 2) are nowhere-dense sets in
(0, 1). ,
(ii) The set o(T) is a set of the first Baire category in (0, 1).

Proof. Part (ii) follows from (i) in virtue of (15). Further,
oAT*) < oTe) = o(T) (k=23,..),
hence it suffices to prove that o(T;) (k = 2) is a nowhere-dense set in (0, 1).
Let kK = 2. On account of the well-known criterion of the nowhere-density of sets
in metric spaces it is sufficient to prove that each open interval I = (0, 1) contains
an interval J which is disjoint with the set o(T;) (cf. [4], p. 74).

Let I = (0, 1) be an open interval. Choose a hatural number m such that for
a suitable 5, 0 < s £ 2™ — 1, we have

Il=_s_,s+1 cl.
"
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