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Applying (3.17), (3.18), (3.19), (3.20) and (3.21), we obtain
(3-22) () + (1) + 6(t — 1) (4 ¥(ty) = U, t,) (5(r) + 7(1)) +
+ U(t, t,) [-H(t — t,) y(t; =) — H(ty — ) y(t,+)] +
+ 8(t — t,) (4 A(t) y*(t,) + J(2) + F(t) + &(t — t,) (4 F(ty)) .
Using Lemma 3.1 and (3.22), we infer that

(3.23) A y(t,) = (4 A(ty)) y*(t,) + 4 F(t,) .
An application of condition (2.1) completes the proof of Lemma 3.3.

Proof of Theorem 2.1. We consider an arbitrary interval [c, d] such that
c,de(a, b). Let ro = min (t; — a, b — t,), where t; €[c, d]. Then the properties
of functions of locally bounded variation yield that the set of all points ¢, such that

(3:29) I“H“AH (Hde>1,

ty—r

for every 0 < r < ry is finite. Thus, applying (3.13), (3.14) and Lemma 3.2 we can
extend uniquely the local solution in the whole interval (a, b) and this completes
the proof of the theorem.

Remark 2. Let the assumptions of Theorem 2.1 be satisfied. Then by Lemma 3.3
and Theorem 2.1 it is not difficult to show that the system (*) with the initial condition
W(to+) = yo (¥(to—) = yo) has exactly one solution in the class Vi, ).
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