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ON DISTRIBUTIONAL SOLUTIONS OF SOME SYSTEMS
OF LINEAR DIFFERENTIAL EQUATIONS

JAN LiGgzA, Katowice
(Received July 17, 1975)

1. INTRODUCTION

Let A(f) = (a;;(1)) be a matrix such that a;({) is a measure in the interval (a, b) =
S R'fori,j=1,...,n, and let f(¢) be a vector whose all components f,(t) are also
measures (defined in (a, b)). In this note we consider the system of equations

() ‘ (1) = AQ1) ¥(0) + £(0),
where y is an unknown vector. The derivative is understood in the distributional
sense. Our result generalizes some theorems for linear differential equations (see

[1], [2]. [3], [6])-

2. THE PRINCIPAL RESULT

First we introduce some notations.

Let A(t) = (a;;(t)) be a matrix whose all elements a;,(t) are measures defined in
the interval (a, b) (i,j = 1, ..., n), and let A(f) = (d;,()) be a matrix whose all ele-
ments d,; are functions such that a;; = [d;;]. We put 4 A(t) = A(t+) — A(t—),

Il (t)=id_i=llaul @ yo =08 30, IYoI=l_§"l|y?I, (1) = (), - (1)),

PI* () = ZIvil* () where te(a, b), A(t+) = (dift+)), A=) = (di1-)) and
¥i € R, The remaining notations in this paper are taken from [5].

Theorem 2.1. We assume that a;(t) and f(t) are measures defined in the interval
(a, b) fori,j =1,...,n. Moreover, for every t €(a, b)

(2.1) det(2I — A A(t)) £ 0 and det(2l + A A(r)) £ 0,
where I denotes the identity matrix. Then the problem
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22 {y’(t) = A(1) y(t) + f(1)
y*(to) = Yo
has exactly one solution in the class V{, , for every t, € (a, b).

-

Remark 1. The assumption 2.1 in Theorem 2.1 is essential. This can be observed
from the following

Example .
(23) {y'(l) = 25(t) y(1)
y(-1)= o,
(24) ) {z'(t) = —24(t) =(¢)
1) = 0

(6 denotes Dirac’s delta distribution). In fact, let H denote Heaviside’s function and
let ¢ be a constant. From the equality

(2.5) Ho =15 (see [4])

it is not difficult to show that the distributions y = cH and z = ¢(H — 1) Aare solu-
tions of the problem (2.3) and (2.4), respectively.

3. PROOFS

Before giving the proof of Theorem 2.1 we shall prove some lemmas.

Lemma 3.1. We assume that P, P, €V{,, and lim P{(t) = lim P3(t). Moreover,
let o Hr
(3.1) pi(t) + ¢, 8(t — 1) = pa(t) + 2 8(¢ — 1),

where Py = p,, P, = p,, r€(a, b) and c,, c, are constants. Then ¢, = c,.
This fact follows easily from the equality

(32) J palFds 5cx j "85 — r)ds = 'f Tl e J’ o — r) ds.

Lemma 3.2. Let a,t) and f{(t) be measures defined in the interval (a, b) (i, j =
= 1,..., n), to €(a, b). Then there exists a number r > 0 such that:
lLa<ty—r<ty+r<ba, )

2. the problem (2.2) has exactly one solution y(t) in the class

n
V(!o~r,ro+r) ’

3. there exist finite limits lim y*(f), lim y*(2).

t—oto—r+ t=tot+r—
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Proof. If there exists a number r > 0 such that
tot+r
(3.3) f 4] (e <1,
to—r

then in view of [5] the problem (2.2) has exactly one solution in the class V(s—y,0+r)-
In the opposite case we consider matrices 4,(t, t,) and Zz(t, to) defined as follows:
. A(t), for a<t<t,
(3.4) A(r 1) = { )
A(to—), for to<t<b,
A(to+), for a <t=t,
A(f), for ty<t<b.

(3.5) Al )= {

Hence, we have
(3.6)  A(t) = Ay(t, to) + Ay(1, to) — H(t — to) A(to—) — H(to — t) A(to+)

and

(3.7 Y(t) = U(t, to) ¥(t) + 8(t — to) (4 A(to)) y*(to) + (1),
Where U(t, to) = Al(t, to) + Az(t, to), Al(t, to) = (Al(t, to))’ and Az(t, to) =
= (A,(1, to))". Moreover, there exists a number r; > 0 such that

(38) j U] (g ar < 1.

to—ry

Taking into account [5], we infer that the system (2.2) has exactly one solution y(t)
_in the class V7, where I = (to — ry, to + r,). We claim that sup |y[*(f) < 0.
tel

Indeed, let us put

totry
(3.9)  F=05(t — to) (A A(to)) y*(to) + f, K =1 —J‘ U] (& 1) dt,
to—r;
tot+ry n
M,‘=J‘ fl(t)dt, M=ZM;, 8>0, J=[t0_r1+8,t0+r1—8]
to—ry i=1

(a<to—ri+e<to+r,—e<b).

Then the relation (2.2) and [5] imply

(3.10) sup [y[* (1) < [vo| + sup [y* (t)j [U]l (& to)dr + M
€ € 7

and

(3.11) stu? ‘yl* (0= K_1(|y0| + M).

Now we consider an arbitrary sequence {f,} such that t,el (k=1,2,...) and
ty = to + ry—. Using (2.2), [5] and (3.11), we have
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(3-12)  |yi() = yi(ta)] = sup [y[* () +

f :“U” (t, 1) dt .f m 7 dt’ <

= K_1(|y0| + M)l Z*(tk) - Z*(t,,,)l + IG?(tk) - Gi*(tM)l ’

where Z' = |U|, G; = f;and i = 1, ..., n. Similarly we prove that there exists a finite

limit lim y*(¢). Thus our assertion follows.
t—=to—ry+

Lemma 3.3. Let the assumptions of Theorem 2.1 be fulfilled and let y(t) be a solu-
tion of the problem (2.2) in the class V{, ). Then for every t €(a, b)

(3.13) Wt+) = (21 — A A(0))"* [(2I + 4 A(1)) y(t—) + 24 F(1)]
and : :

(3.14) Wt=) = QI + 4 A(t)) ' [(2T — 4 A(1)) y(t+) — 24 F\1)],
where F' = f and 4 F(t) = F(t+) — F(t—).

Proof. Let y() be a solution of the problem (2.2). We consider vectors ji(f) and
7(t) defined as follows:

o L OF for a <t<t
G.13) = {y(tl-—) , for t;,<t<b,
s Wty +), for a <t=1
(319 ) = {y(t) . for t, <t<b.
Then
(3.17) (1) = #(t) + 3(t) — H(t — t;) y(t,—) — H(t; — 1) y(t,+)
and
(3.18) Y(@) = 7(t) + 7'(2) + 6(t — 1,) (4 ¥(t,)) -

On the other hand,

(3.19)  Y'(1) = U(t, t,) p(t) + 8(t — 1) (4 A(ty)) y*(t1) + J(t) + 7 () +
+ 8(t — t,) (4 F(ty)),

where f = F', f = F’ and °

F(1), for a <t<t

F(t,—), for t; <t<b,

(3.20) F() = {

- R - ) T 0 <15

F(1), for t; <t<b.
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