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THE EXISTENCE AND THE UNIQUENESS OF DISTRIBUTIONAL
SOLUTIONS OF SOME SYSTEMS OF NON-LINEAR
DIFFERENTIAL EQUATIONS

JAN LiGgza, Katowice
(Received July 17, 1975)

1. INTRODUCTION

Let f; i=1,..., n) be operations defined for every system of real functions
(#1(#)s ..., ya(2)) of locally bounded variation in the interval (a, b) < R'. Moreover,
let £i(y4(2), ..., yx(t)) be a measure in (a, b) (i.e. fi(y1(t), ..., y.(t)) is the first distribu-
tional derivative of a real function of locally bounded variation in (a, b)). In this
paper we consider the following system of equations

(*) i) = fiys(t), ... (1)) (i=1,...,n),

where the derivative is understood in the distributional sense. By a solution of the
system (*) we understand every system of real functions (y,(¢), ..., y,(t)) of locally
bounded variation in the interval (a, b), which satisfies equation (). This class will
be denoted by V{,s. We prove some theorems on the existence and the uniqueness
of solutions of the system (x). Our results generalize some theorems for linear and
non-linear differential systems (see [6], [9], [10], [12], [13]). The sequential theory
of distributions will be used (see [4]).

2. THE PRINCIPAL RESULTS

First we introduce some notations.

A sequence of smooth, non-negative functions {5,(t)} satisfying: [Z, d,(t) dt = 1,
0(t) = 6,(—1), 8(t) = O for || = «;, where {o,} is a sequence of positive numbers
with o —» 0 as k — oo is called a d-sequence.

We understand the product, the mean value and the modulus of distributions as
generalized operations (see [2], [3], [4]).

One may prove that if P is a function of locally bounded variation in the interval
(a, b), then for every t, € (a, b) the mean value P*(t,) of P at the point ¢, exists and
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oo\ _ Plto+) + P(to—)
(2.1) P1,) = s 3

where P(to+) (P(to—)) denote the right (resp. left) hand side limits of the function
P at the point 7, (see [3]).
Let p be a measure defined in the interval (a, b) ((— oo, 0)). Then we put

(22) r p(i) dt = PHd) — P¥(c), J 0 dt = lim '[dp(t)dt,

c - [4

c— — 0

where P’ = p and ¢, d € (a, b).
In the case when P is a function of locally bounded variation in the interval (a, b)
and g is a measure (in (a, b)), then it has been proved in [11] that

ey |[Fodva]s|[Irlok 0] s e loto|[ 10

Now we shall introduce two hypotheses.

Hypothesis H,. 1. Let f; (i = 1, ..., n) be operations defined for every system
of functions (yy(t), ..., y«(t)) of locally bounded variation in R'. Moreover, let
S{y1(£)s ..., ya(t)) be measures in R'.

2. There exist non-negative measures L;t) (i,j = 1, ..., n) defined in R' such

that for two arbitrary systems of functions (y(t), ..., y,(t)) and (34(2), ..., 7.(t))
of locally bounded variation in R* we have

@4 |flra(®)s - ) = £(FA), - TAD))] §j§11‘u(t) ) = 70 »
(2:5) 2 Ltdt <1, J ) |fdts - t)| dE < 00,

e o]
=1 ) _ o
where t,, ..., t, denote constant functions').

Hypothesis H,. 1. Let f; (i = 1, ..., n) be operations defined for every system of
functions (y(t), ..., y?)) of locally bounded variation in the interval (a, b) = R*
and such that f(y,(t), .-, y«(t)) is a measure.

2. There exist non-negative measures L;(t) defined in the interval (a, b) such that
for arbitrary two systems of functions (y,(£), ..., y.(t)) and (3,(t), ..., 7.(1)) of locally
bounded variation in the interval (a, b), inequality (2.4) holds.

Example 1. Let L(f) and g(t) be measures defined in R* and such that |*, |L|(f)dt <’
<1, {2, |g] () dt < oo. Moreover, let h be a constant and let y(z) be a function of

locally bounded variation in R!. Then it is not difficult to check that the operation f
defined by

(2.6) F(() = L()

satisfies the hypotheses H; and H,.

1

1+ yX(t+ h) +ol)

1) The inequality between two distributions is understood as in [2].
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Theorem 2.1. Let hypothesis H, be fulfilled. Moreover, let h be a constant. Then
the problem -

(2.7) {y;(t) = fiys(t + h), ..., y(t + h))

.V:‘(to)=y(1)a i=1,""n
has exactly one bounded solution in the class V{_ , ).

Remark 1. We understand that two systems of functions from the class V{, ) are
equal, if they are equal in the distributional sense.

Remark 2. The assumptions (2.5) in Theorem 2.1 is essential. This can be observed
from the following

Example 2.

(2.8) {y’(t) =26(1) ¥(t)
y*(— 1) =0 )

where J denotes Dirac’s delta distribution. In fact, let H denote Heaviside’s function
and let ¢ denote a constant. From the equality
(2.9) Hé =46 (see [14])
it is not difficult to show that the distribution y = cH is a solution of the problem
(2.8).

Let all elements of the matrix L = (L;;) (i,j = 1, ..., n) be measures defined in the
interval (a, b) < R'. We say that the matrix L has the property (P) in the interval
(a, b) if for every t, € (a, b) there exists a number & > 0 such that

tot+e

(2.10) [to — &ty + €] = (a,b) and 211'[ || () dt < 1.

to—¢
It is easy to verify that every locally integrable function in the interval (a, b) has the
property (P). There exists a matrix of measures, which has not the property (P).
In fact, let us put L(t) = 26(t),a = —o0, b = o0 and ¢, = 0.

Theorem 2.2. Let hypothesis H, be satisfied. Moreover, let the matrix L = (L;;)
have the property (P) in the interval (a, b). Then the problem
(2.11) {y'i(t) = fi(y1(1), . ¥a(1))
yilto) = W, to €(a,b), i=1..n
has exactly one solution in the class Vi, .
- Remark 3. Let f(¢, vy, ...,0,) (i = 1, ..., n) be real functions defined in the set
Dia<t<b, —0<U),..,0,< 0.
Moreover, let us assume that:

1. The functions fit, vy, ..., v,) are measurable with respect to ¢ for every system
(Bys =es By



2. The functions f(t, vy, ..., v,) are continuous with respect to (vy, ..., v,) for every
te(a, b).

3. There exist non-negative, locally integrable functions (in the interval (a, b))
Li(t) (i,j = 1, ..., n) and u(¢) such that

212) it 01008 = BB o8] S 3, L) by = 51

(2.13) [7(£,0, ..., 0)| < u(?).
Then the problem

(214) {y:(t) = fl(ta yl(t)’ sie w9 yn(t))

yito) = ¥y, toe(a,b), i=1,...,n
has exactly one solution in the Carathéodory sense in the interval (a, b) (see [5]).
It is easy to verify that the right-hand side of the system (2.14) satisfies hypothesis

H,, too. Thus in this case Theorem 2.2 generalizes the classical Carathéodory’s
result.

Remark 4. Non-continuous solutions of ordinary differential equations have been
considered either by means of integral equations with generalized Stieltjes integral
(see'[7], [8], [15], [16]) or by means of theory of distributions (see [6], [9], [10], [12],
[13]). The distributional solutions of non-linear differential equations have not been
sufficiently studied. In [6], [9] and [10] the authors give theorems on the distribu-
tional solutions of some linear differential equations, but the product of two distri-
butions is understood more generally in our paper than by those authors. More
precisely, the existence of the product of a measure and a continuous function or
a function of locally bounded variation does not result in general from the definition
given in [6]. Hence our results may be applied even to some types of linear differential
equations in the case when the theorems from [6], [9] and [10] cannot be used.

3. PROOFS

Proof of Theorem 2.1. We shall apply the method of successive approximations.
Thus we consider the sequence of functions {g,,} defined as follows

(31) gio(t) = _V? ’ giu(t) = y? +J‘ fi(glu—l(s + h)9 L] gnv—l(s + h)) dS ’

i=1,...,n, v=12,..., teR'.
We put

(32) L=y j "L, M, = j RRTTCR Py
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In view of (2.3) and (2.4), we have

(33) lgi(t) — gfo-1(t)] < M;L{™" forevery te(—oo, o).
Hence we infer that the sequence of functions {g‘,,(t)} is uniformly convergent to
a function g; € V(- », ) as v > oo. In fact, the inequality (3.3) implies

(34) lg:l* (2) = |¥7)] + - Ez.'

Thus g, is a bounded function in R'. We consider a finite sequence of numbers {t,}
such that t;, < t, < ... < t,. Since

(3.5) Zlg (1) — giu(te—1)| éf £y, .. ¥2)| dt +
- ; Jm Lij(1) [g0-1(t + B) — »3| dt < M, +

+3 j L) (8] + )dt+z j 193] Lie)

g is a function of locally bounded variation in R!. Taking into account that bil (3.3)
the sequence of functions {g7(¢)} is uniformly convergent, we obtain
(3:6) gito+) = yi + lim lim (F () — Fito)) =

t=tot

=y? + lim hm (Fi(t) = Fifto)) = ¥! + 31im (Fi(to+) — Fi(to—=))

v 1t

where Fi,(1) = f(g1(t + h), ..., guo(t + h)). Similarly

(3.7) glto—) =y + hm hm (F (1) — Fii(to)) =
=y +,,11,T, tljf“ (Fi (‘) F;, (‘0)) =y - 2l (Filtot+) — Fulto—)) -

Hence g7(to) = 7. Next, by (2.3) and (2.4) we conclude that

{g1(s + ), ..., gu(s + B)) — fdg1(s + h), ... gus + B))]ds| <

< L(Y suplg; — g5l* (1) -
j=1 teR}

Thus the system of the functions (g4(£), ..., g,(¢)) is a solution of the problem (2.7).
It remains to prove the uniqueness of the solution. Let g, ..., g, be bounded functions
of locally bounded variation in R' such that g7(to) = ¥{, (9:(t), ..., g.(t)) *
* (g4(2), ..., @(1)) (i = 1, ..., n). Moreover, let the system of the functions (g,(?), ...
.-+ Ga(t)) satisfy the system (2.7). Then the inequality (2.4) yields

(39) K< K( )3 j :OLU(t) dt),

i,j=1
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