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EXCEPTIONAL VALUES OF LINEAR COMBINATIONS
OF THE DERIVATIVES OF A MEROMORPHIC FUNCTION

H. S. GorPALAKRISHNA and SUBHAS S. BHOOSNURMATH*), Dharwar
(Received April 16, 1975)

We denote by C the set of all finite complex numbers and by C the extended
complex plane consisting of all (finite) complex numbers and co. By a meromorphic
function we shall always mean a transcendental meromorphic function in the plane.
We use the usual notations of the Nevanlinna theory of meromorphic functions as
explained in [2] and [4]. )

If f is a meromorphic function we denote by S(r, f) any quantity satisfying

(1) J &%—) dy = 0<J'r log 1 Tg’if)>

ro X ro X
as r — o0, whenever 4 > 0 and

2 S(r. f) = o(T(r, f))
as r = o0, through all values if f is of finite order and outside a set of finite linear
measure if f is of infinite order.

If f is a meromorphic function, then we have the following fundamental results
of NEVANLINNA [3, page 63].

m(r, f'[f) = S(r. f)

and
. .
(9 —2) T(r, f) §.;N(r, a, f) — Ny(r) + S(r. f)
whenever ay, ..., a, are distinct elements of C, where

Ny(r) = 2N(r,f) = N(r.f") + N(r, 1/f) .

Generalisations and extensions of these results have been obtained by MILLOUX,
HAYMAN and others and most of them are found in [2]. In [2], Hayman denotes

*) Research of the second author is supported by the Department of Atomic Energy, Bombay.

25



by S(r, f) any quantity satisfying (2) above. However, since all the results are obtained
from the fundamental results of Nevanlinna it is easy to see that the theorems in [2]
are valid with S(r, f} satisfying (1) and (2) also.

In particular, we have [2, Theorem 3.1], for a meromorphic function f,

(3) m(r, f®lf) = S(r.f)

for each integer k = 1.
If f is a meromorphic function of order g, 0 < ¢ £ oo and a € C, we define

* +
o(@, 1) = lim sup &M@ S) _ jipy g Jo8" N0 )
LRt log r rowo log r
+ = -
&0, f) = Bmsup PEBBEE) _ o o, 108" NE0)

r+w logr ro o logr
and we call a

(i) an evB (exceptional value in the sense of Borel) for f if o(a, f) < o,

(ii) an evB for f for distinct zeros if g(a, f) < ¢, and

(iii) an evP (exceptional value in the sense of Picard) for f if f assumes the value
a only a finite number of times or, equivalently, if n(r, a, f) = 0(1).

If L > 0 and a is an evP for f then a is clearly an evB for f whereas if ¢ = 0 then,
trivially, f has no evB in C. ,
In [1] Hayman proved the following theorem [2, Theorem 3.5, Corollary].

Theorem A. If f is a meromorphic function and m is a positive integer, then
either f has no evP in C or f™ has no evP in C except possibly zero.

In this paper we extend this theorem to certain linear combinations in the suc-
cessive derivatives of f.

We first prove the following lemma.

Lemma 1. Let f be a meromorphic function and Y, = a, f + ... + a,_,f* 2 +
+ a,f® with k = 3, where a,, ..., y_,, a, € C and a, + 0. If Y/, is not a constant,
then

4) 2Ny(r,f) £ N(r, f) + N(r, 1/(¥; — 1)) + No(r, 1/ys) + S(r. 1),

where N(r, f) is obtained by considering only the simple poles of f and in
No(r, 1/¥s) only distinct zeros of W which are not zeros of Y, — 1 are to be
considered.

Proof. Let
70 il
{1 =y}

g9(z) =
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Let a be a simple pole of f. Then in a neighbourhood of a we have
f(z) = b + h(z) -
Z—a

where b e C, b # 0 and h(z) is analytic.

Thus,
1 —yiz)=1 +(—__l)":# ._kzz(_ii!%‘? _ ¢(z)
(z - a) 1 (z —a)
where
k—2
#(2) = ¥ a; kO(2) + a, h%(z).
i=1
Hence,
L= 09 = e (D R ab + (2 = 0 )
(z _ a)k+l
where

W) = (2 = aF 1 (1 = $(2) - T (1) itz = a2
is analytic.
Also,
1

Yi(z) = {(=1** (kK + 1) ab + (z — a)>v(2)}

where

k—2
W(z) =(z—-a)fd'(2) + (1) (i + 1) ab(z —a)f 2

i=1

is analytic.

Therefore, in a neighbourhood of a, .
(=11 (K + D! agb + (z — a) o(z) [+
® e
[(—1) ' klayb + (z — a)*u(z)]
Hence

g(a) = (=1 +]:!(:‘;- )

Thus, a is neither a zero nor a pole of g.
On the other hand, it is easily verified from (5) that a is a zero of g'.

Hence N,(r, f) £ No(r, 1/g"), where, in Ny(r, 1/g) only distinct zeros of g’ which
are not zeros of g are to be considered.

+£0, Fo0.

Thus,
Ny(r.f) = No(r, 1/g) = N(r, 9/9') < T(r, 9/g") =
. = T(r, 4'[lg) + O(1) = N(r, g'[g) + S(r, 9)
(6) ’ Ny(r,f) = N(r, g9) + N(r, 1/g) + S(r, g) .
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Clearly zeros and poles of g can occur only at multiple poles of f or zeros of y, — 1
or zeros of Y other than the zeros of Y, — 1.
Thus, ‘ .
(7) N(r,g) + N(r, 1/g) < N(r,f) — Ny(r. f) +
+ N(r, 1/(¥; — 1)) + No(r, 1/y5) . .
From (6) and (7) we obtain (4), since it is easy to see that S(r, g) = S(r, ) and
S(r, ¥) = S(r, f).

Theorem 1. Let f be a meromorphic function and V. be as in Lemma 1. If §
is not a constant, then

(8) T(r, f) < 3N(r, 1/f) + 4 N(r, 1/(y, — 1)) + S(r, f).
Proof. By [2, Theorem 3.2] we have
) T(r.f) < N(r,f) + N(r, 1[f) + N(r, 1/(¢, — 1)) —

— No(r, 1J¥5) + S(r, f),
where in No(r, 1 /l,b’f) only zeros of Y/, which are not zeros of y, — 1 are to be con-
sidered.
Now

2N(r,f) S N(r.f) + Ny(r, f) £ T(r, f) + Ny(r. f)
Hence, from (4) and (9),
N(r,f) < 2N(r, 1[f) + 3 N(r, 1/(y; — 1)) — 2 No(r, 1)) +
+ No(r, 1)¥5) + S(r, f) .
Using this in (9) we obtain
T(r, f) < 3N(r, 1)f) + 4 N(r, 1/(¢; — 1)) — 3 No(r, 1[¥}) +
+ No(r, 1y) + S(r, f)

which yields (8) since No(r, 1/y) < No(r, 1/y/).

The following theorem is an extension of Theorem A of Hayman mentioned earlier.

Theorem 2. Let f be a meromorphic function and Y, = a, f® + ... + a,_,f*™? +
+ a f® with k=3, where ay,...,a,_,, a,€C and a, +0. If Y, is not a
constant then

(i) either f has no evP in C or Y has no evP in C except possibly zero, and

(ii) either f has no evB in C or Y, has no evB for distinct zeros in C except pos-
sibly zero.

Note. It is easy to see that.the order of ¥, < the order of f. When the order of ¥/,
is positive, (ii) implies (i).

Proof. Let wy, w, € C and w, % 0. Define F by

Fz) =@ ="
Wwa

Then T(r, F) = T(r,f) + O(1) and S(r, F) = S(r, f).

If Y denotes a,F V) + ... + a,_,F*™ 2 + q,F®, then yp = ¢ [w,.
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